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Abstract

As deep learning models increasingly find applications
in critical domains such as medical imaging, the need
for transparent and trustworthy decision-making becomes
paramount. Many explainability methods provide insights
into how these models make predictions by attributing im-
portance to input features. As Vision Transformer (ViT) be-
comes a promising alternative to convolutional neural net-
works for image classification, its interpretability remains
an open research question. This paper investigates the per-
formance of various interpretation methods on a ViT ap-
plied to classify chest X-ray images. We introduce the notion
of evaluating faithfulness, sensitivity, and complexity of ViT
explanations. The obtained results indicate that Layerwise
relevance propagation for transformers outperforms Local
interpretable model-agnostic explanations and Attention vi-
sualization, providing a more accurate and reliable repre-
sentation of what a ViT has actually learned. Our findings
provide insights into the applicability of ViT explanations
in medical imaging and highlight the importance of using
appropriate evaluation criteria for comparing them.

1. Introduction
Vision Transformer (ViT) [9] is a novel class of deep

learning models that use self-attention mechanism [35] to
process images in a sequence of patches, rather than relying
on convolutional operations. ViTs have achived impressive
results on image classification tasks [7, 9], including medi-
cal imaging [19, 34]. However, as deep neural networks are
increasingly deployed in critical domains such as health-
care, it is valuable to understand what features they rely
on [14]. Explainable Artificial Intelligence (XAI) methods
aim to provide such understanding by generating human-
interpretable representations of model behavior [13,17,25].

Several XAI methods have been proposed or adapted for
ViTs [1, 6], yet a rigorous and standardized evaluation of
these methods in terms of their quality of explanations is
still lacking. To address this issue, we propose utilizing two

key criteria, namely faithfulness [3] and sensitivity [3, 38],
to assess the quality of the explanations. Moreover, there
is no clear consensus on how to best visualize the attention
maps produced by ViTs, which can be ambiguous or even
misleading [4].

This paper first introduces the notion of evaluating faith-
fulness, sensitivity, and complexity of ViT explanations.
We then perform experiments with three interpretation
methods: model-agnostic, attention-based and gradient-
based applied to a ViT trained on a chest X-ray classifi-
cation task (see examples in Fig. 1). Specifically, the ob-
tained results show that a gradient-based approach outper-
forms baselines in both metrics providing more accurate
and consistent explanations of ViT’s decisions. Our goal
is to foster the use of comprehensive metrics for a unified
benchmarking protocol of ViT explanations, which is es-
sential in medical imaging.

2. Related work
Prior to the emergence of ViTs, a variety of saliency map

generation techniques were proposed for Convolutional
Neural Networks (CNNs), including gradient-based [28,
30–32] and attribution propagation [11, 15, 18, 29] meth-
ods. Of the latter, Layerwise Relevance Propagation
(LRP) [17] is a notable example that is formalized and
theoretically justified in the Deep Taylor Decomposition
framework [20]. Other methods such as Local Interpretable
Model-agnostic Explanations (LIME) have been proposed
as model-agnostic techniques for generating feature im-
portance maps. Although fewer methods are available for
ViTs, they exhibit interesting properties such as robustness
against texture changes and severe occlusions compared to
CNNs [21], making them a promising subject of XAI study.

The attention mechanism of ViTs can be easily visu-
alized because its dimensions correspond to the input se-
quence dimension, making it a popular target for XAI adap-
tations. One of the most popular, the attention rollout
method [1] was introduced as a way to estimate precise at-
tentions. Recently, a Layerwise Relevance Propagation for
Transformers (TransLRP) approach [6] was introduced to
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Figure 1. Exemplary explanations of ViT trained on the X-ray classification task. There are two images per class label (columns) and each
one is explained using three interpretation methods (rows). For each explanation, we report their corresponding performance metrics mea-
sured with faithfulness (F), sensitivity (S), and complexity (C). For sensitivity and complexity lower scores are better, and for faithfulness
higher ones. More such examples are presented in Appendix A.

aggregate backward gradients and LRP throughout all lay-
ers and heads of the attention modules to derive explanation
relevancy. This method outperforms previous transformer-
specific and unspecific XAI methods and was extended to
multimodal transformers [5]. Although this approach is
considered state-of-the-art in XAI for ViTs in various do-
mains, many studies lack quantitative evaluation of the gen-
erated explanations [36, 37]. However, some studies have
addressed this issue. For instance, Chefer et al. utilized
a perturbation metric that demonstrated the superiority of
their method over others significantly [6].

In medical imaging, explanations often go unexamined.
On Chest X-ray (CXR) images, a popular modality that our
study focuses on, many studies were performed where gen-
erated explanations were used to explain predictions [19,
23]. However, the generated saliency maps were not evalu-
ated and compared to objective baselines, which limits the
reliability of the results. This lack of comprehensive evalua-
tion also applies to computed tomography (CT) [19,26] and
magnetic resonance imaging (MRI) [16, 26]. Existing eval-
uation methods either rely on segmentation masks [26, 27],
which focus more on the model than the explanations, or
use metrics such as the sensitivity of the model to weight
randomization, repeatability, and reproducibility [2]. How-
ever, there remains a significant gap in the comprehensive
evaluation of generated explanations, limiting the trustwor-

thiness and applicability of these models in critical health-
care domains. We aim to address this gap in our study.

3. Towards evaluating explanations of ViT
We aim to perform a quantitative evaluation of the inter-

pretation method adapted specifically to ViTs [6], in com-
parison to model-agnostic [25] and attention-based interpre-
tation methods [4], on the example of medical imaging.

3.1. Explanation methods

For the purpose of this study, we rely on three common
approaches for generating feature attribution explanations.

As a well-proven baseline method, we use LIME [25], a
model-agnostic approach that generates local, interpretable
models to explain individual predictions. For image data, it
selects superpixels using the k-lasso algorithm. In our study,
we use binary saliency maps (see Fig. 1) and include the top
two superpixels based on their positive contributions.

To visualize ViT Attention, we use the attention rollout
technique proposed in [1]. At each ViT block, there is an
attention matrix A that describes how much attention flows
from the previous layer to the next layer for each token.
To obtain the total attention flow between two layers, these
matrices can be multiplied. Since ViT utilizes residual con-
nections, we model them by adding the identity matrix I
to the layer attention matrices A + I . To obtain one fea-
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ture attribution matrix, it is suggested to average attention
over multiple attention heads [1], while other options like
the minimum, maximum, or weighted average can also be
considered. Following this, we recursively compute the at-
tention rollout Ãl matrix at layer l as Ãl = (Al + I)Ãl−1.
The resulting matrix is of the shape n × n, where n repre-
sents a number of patches fed to the ViT. Since we focus on
the classification task, only the classification token is con-
sidered. We take the row associated with this token, dis-
card the first value, and reshape it to the patch grid size (for
squared images,

√
n− 1×

√
n− 1). Finally, we upsample

it back to the size of the original image for visualization.
As a current state-of-the-art approach to explaining ViTs,

we rely on the TransLRP algorithm proposed in [6]. At-
tention scores are integrated throughout the attention graph,
by combining relevancy and gradient information to itera-
tively eliminate negative contributions. The calculation of
the output matrix Āl at layer l can be expressed in a man-
ner similar to previously with Āl = (AGR

l + I)Āl−1 and
AGR

l = (∇Al ⊙ Rl)
+ where ⊙ denotes the Hadamard

product, ∇Al is the gradient of the attention map Al, and
Rl represents the relevance of layer l with respect to a tar-
get class. The notation ()+ is used to retain only positive
values, which resemble positive relevance. To produce ex-
planations, the final output is processed similarly to atten-
tion rollout. More details regarding the practical aspects of
implementing these methods are provided in Appendix B.

3.2. Explanation evaluation metrics

Given feature attribution maps produced with various in-
terpretation methods, we would like to evaluate their prop-
erties to assess their quality without human intervention.
However, unlike supervised learning, where ground truth
is available for comparison, this becomes an unsupervised
problem. We formulate our evaluation framework based on
three useful criteria: faithfulness to the model, sensitivity
to the data, and relative complexity. In practice, we calcu-
late these metrics by adapting their implementations conve-
niently available in the Quantus framework [12].

Faithfulness correlation [3] aims to quantify the extent
to which feature attributions accurately follow the model’s
prediction. It evaluates the linear correlation between the
predicted logits of a modified test point when effectively re-
moving features and the average explanation attribution for
the particular subset of features, taking into account multi-
ple runs and test samples. The metric generates a float value
between −1 and 1 for each input-attribution pair. Aver-
age sensitivity [3, 38] ensures that if inputs are similar and
their model outputs are close, their corresponding explana-
tions should also be similar. To achieve this, Monte Carlo
sampling-based approximation is employed while measur-
ing how explanations change under minor perturbation of
the input. Effective complexity [22] measures the num-

Table 1. Evaluation results where lower sensitivity and higher
faithfulness scores indicate better explanations. We report mean ±
standard deviation over metric values calculated for 300 images.
TransLRP outperforms LIME and Attention visualization but pro-
vides more complex explanations.

Explanation Faithfulness↑ Sensitivity↓ Complexity↓
LIME 0.07±0.13 0.21±0.06 0.09±0.04

Attention 0.10±0.08 0.07±0.03 0.16±0.12

TransLRP 0.16±0.18 0.06±0.03 0.21±0.16

ber of attributions that exceed a specified threshold. Values
above the threshold indicate that the corresponding features
are important, while values below it suggest the features are
not significant. Complexity is particularly important when
visualization is the desired output of an explanation.

For class-specific methods like TransLRP and LIME, we
generate explanations with respect to the model’s predicted
class. In contrast, the generated attributions do not differ
across classes for Attention visualization. Therefore, we
use an absolute value of the Faithfulness correlation metric
in Attention visualization. As this technique is not tethered
to any particular class, the unfavourable (negative) correla-
tion could signify higher levels of faithfulness with respect
to other classes. Our approach is an intuitive enhancement
to the metric and may not be optimal for class-agnostic in-
terpretation methods in general.

4. Experiments with medical images
We now critically evaluate ViT explanations for a medi-

cal imaging task, specifically chest X-ray classification.

Setup We use the COVID-QU-Ex dataset [33] con-
sisting of 33,920 CXR images including 11,956 images
with COVID-19 infection, 10,701 healthy chest X-rays,
and 11,263 non-COVID infections, i.e., viral or bacterial
pneumonia. The dataset authors’ recommended 65/15/20
split was adopted for training, validation, and test sets, re-
spectively. We finetune a base-sized ViT model [9] that
was pre-trained on the ImageNet dataset [8]. The model
achieved a test set accuracy of 0.954, with balanced accu-
racy across all three classes. Details of model training are
further described in Appendix C. For calculating explana-
tion evaluation metrics, 300 images were randomly sampled
from the test set, with 100 images belonging to each class.

Results Table 1 presents a benchmark comparing inter-
pretation methods in the three dimensions of interest. We
observe that TransLRP outperforms the other techniques
based in terms of two primary evaluation criteria: faithful-
ness, and to a lesser extent, sensitivity. This indicates that
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Table 2. Evaluation results for TransLRP divided into class labels.
Explanations for the COVID-19 class perform visibly worst.

Class Faithfulness↑ Sensitivity↓ Complexity↓
COVID-19 0.07±0.13 0.07±0.03 0.34±0.19

Healthy 0.22±0.17 0.05±0.02 0.16±0.09

Non-COVID 0.20±0.18 0.06±0.02 0.15±0.08

LRP provides feature attributions that are highly correlated
with the model’s predicted outcome, as reflected in its rel-
atively high faithfulness score. Moreover, as demonstrated
by a low sensitivity metric value, its estimations remain the
most consistent under small changes to input data.

Based on the quantitative results, TransLRP appears to
be a strong candidate for explaining ViT’s predictions on
the COVID-QU-Ex task, and thus can be recommended to
be interpreted by humans, e.g., radiologist experts. A quali-
tative assessment of explanation visualizations suggests that
TransLRP is generally robust to imaging artifacts, although
instances of spurious correlation leading to prediction can
still occur (refer to Fig. 1, column 1). LIME explanations
are more consistent across images, but their reliance on su-
perpixels may result in inaccuracies when the focus is not
entirely on the lungs (see Fig. 1, columns 2 & 6). Atten-
tion visualization, when compared to TransLRP and LIME,
appears to generate even more inaccurate explanations. Ad-
ditional examples are available in Appendix A.

On the quality-complexity tradeoff in interpretability
In addition to the main metrics focusing on explanation
quality, we also considered the complexity of the generated
explanations, which becomes crucial when presenting visu-
alizations to humans (see a discussion on information over-
load in [24]). Table 1 reports that the Attention explanations
are slightly less complicated than TransLRP. However, the
complexity is quite low in both cases when compared to
other aggregating methods of Attention heads (see Tab. 3).
For the purpose of this study, LIME attributions are binary,
and therefore serve as a relatively simple baseline as indi-
cated by the complexity metric. Note that the complexity
metric’s values depend significantly on a cutoff threshold
and therefore will be biased toward binary feature attribu-
tions, which should be addressed in future work.

Are explanations equally good across classes? Our
study unveils the disparate quality of generated attributions
across COVID-19, non-COVID, and healthy CXR cases as
presented in Tab. 2. Plausibly, the overlapping symptomatic
features of COVID pneumonia with other diseases based on
medical imaging may limit the efficacy of generated attribu-
tions [14]. Conversely, non-COVID pneumonia and healthy

Table 3. Evaluation results for Attention visualization divided into
different approaches of its aggregation over ViT heads. Follow-
ing [10], we discard 99% of the lowest attention values after ag-
gregation with maximum, resulting in less complex explanations.

Aggregation Faithfulness↑ Sensitivity↓ Complexity↓
Average 0.11±0.09 0.06±0.02 0.93±0.06

Minimum 0.11±0.09 0.08±0.04 0.63±0.31

Maximum− 0.10±0.08 0.07±0.03 0.16±0.12

Figure 2. Exemplary explanations for Attention visualization di-
vided into different approaches of its aggregation over ViT heads.

CXR cases with more unambiguous indications could facil-
itate the production of more accurate explanations. Such an
analysis can be especially important to assess bias under an
imbalanced class distribution. In each case, further expla-
nation benchmarking is required to validate this challenge.

On the (im)proper attention aggregation over ViT heads
The architecture of ViT utilizes multi-head self-attention
and there are various methods to aggregate attention across
the "heads" dimension. In [1], it is proposed to average at-
tention over ViT heads. However, our findings show that
this approach produces overcomplex outcomes, as illus-
trated in Fig. 2, where the entire image is highlighted. Even
though minor input perturbations do not significantly im-
pact the explanations, as shown by the sensitivity metric,
their complexity renders them unsuitable. In [10], atten-
tion rollout on natural images is analyzed, concluding that
the best aggregation approach is to take the maximum over
attention heads and discard a fraction of the lowest attribu-
tions. They also considered the minimum approach, which
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we included in our study. Ultimately, we have decided to
adopt the maximum approach as it offers comparable expla-
nation quality while maintaining significantly lower com-
plexity (Tab. 3).

5. Conclusion
Our study contributes to the advancement of the adop-

tion of ViT explanations in practical fields, particularly in
medicine where they are of great importance. The find-
ings demonstrate that TransLRP outperforms other ana-
lyzed explanation methods on the COVID classification for
CXR images. To our knowledge, this is the first work
that comprehensively evaluates ViT explanations for med-
ical imaging. In the future, this approach could be ex-
tended to other medical modalities, such as CT or MRI,
for further exploration. The code is available at https:
//github.com/piotr-komorowski/towards-
evaluating-explanations-of-vit.
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A. Supplementary explanations
Exemplary explanations of ViT trained on the X-ray

classification task. There are four images per class la-
bel (doubled columns) and each one is explained us-
ing three interpretation methods (doubled rows). For
each explanation, we report their corresponding per-
formance metrics measured with faithfulness (F), sen-
sitivity (S), and complexity (C). See at https :
//github.com/piotr-komorowski/towards-
evaluating - explanations - of - vit / blob /
main/figures/fig3.jpg.

B. Implementation details of methods
In our study, we employed the original implementation

of LIME [25] with 500 samples generated per instance.
We use binary saliency maps and include the top two su-
perpixels based on their positive contributions. For atten-

tion visualization, we built on the implementation presented
in [10]. Our analysis involved three different aggregation
approaches for ViT heads, namely average, minimum, and
maximum. Following [10], in the case of maximum ap-
proach, after aggregation we discard 99% of the lowest at-
tention values, to enhance the isolation of salient regions
in the image. For TransLRP we utilize the implementation
from the original work [6]. Generated attributions for all
methods were normalized to the [0,1] range. All displayed
examples of explanations are for input images where ViT
accurately predicted the ground truth class label.

C. Details of ViT training
We use a base-sized ViT model that was pre-trained

on ImageNet. The input consisted of a sequence of non-
overlapping patches of size 16× 16 of the input image, fol-
lowed by flattening and linear layers to produce a sequence
of vectors. An additional token was added at the begin-
ning of the sequence for classification. We fine-tuned the
model for 15 epochs with a batch size of 32 and a constant
learning rate of 3 · 10−4. To prevent overfitting, we em-
ployed early stopping and found the best-performing model
based on the validation set accuracy after the 10th epoch of
training. The model achieved an accuracy of 0.954 on the
test set with balanced accuracy among the three classes. To
improve the model’s generalization performance, we intro-
duced light data augmentation techniques such as random
crop and random rotation (±15 degrees), which effectively
allowed the model to generalize better and achieve the best
performance.
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