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Abstract

Machine learning is a data-driven field, and the quality
of the underlying datasets plays a crucial role in learning
success. However, high performance on held-out test data
does not necessarily indicate that a model generalizes or
learns anything meaningful. This is often due to the exis-
tence of machine learning shortcuts - features in the data
that are predictive but unrelated to the problem at hand.
To address this issue for datasets where the shortcuts are
smaller and more localized than true features, we propose
a novel approach to detect and remove them. We use an
adversarially trained lens to detect and eliminate highly
predictive but semantically unconnected clues in images.
In our experiments on both synthetic and real-world data,
we show that our proposed approach reliably identifies and
neutralizes such shortcuts without causing degradation of
model performance on clean data. We believe that our ap-
proach can lead to more meaningful and generalizable ma-
chine learning models, especially in scenarios where the
quality of the underlying datasets is crucial.

1. Introduction

Shortcuts in machine learning data refer to false fea-
tures that are strongly correlated with the target class but
are not expected to be present in real-world applications.
These features are easy for neural networks to learn, but
they may not generalize beyond the training data. Shortcuts
can arise from various factors, such as the data collection
process, data collection techniques, or the type of data be-
ing collected. Often, these shortcuts are highly localized
and spatially much smaller than true features [7, 13, 26].
For instance, a neural network trained on an image dataset
where all images of class k exclusively contain watermarks

*equal contribution

has been shown to rely solely on the presence of the wa-
termark to predict the class [1, 13]. Indeed, identifying
shortcuts during data collection or preprocessing can be a
challenging task. This is evidenced by the fact that there
are many datasets released to the public that contain short-
cuts [1, 7, 9, 15].

Training a model on data with shortcuts can lead to an
over-reliance on irrelevant features. This results in seem-
ingly high performance on held-out data if the shortcut is
present, which may be the case if the test data is sampled via
the same process as the training data. Such models may not
generalize well to out-of-distribution (OOD) data, which is
a common issue in machine learning known as domain gen-
eralization [27].

In this paper, we introduce a supervised neural network
that can learn the essential features of a dataset, even if there
are localized shortcuts present (known or unknown). To ac-
complish this, we use an adversarially trained “neural lens”
that can remove shortcut features and provide a visual repre-
sentation of the avoided shortcuts. Our model is successful
in identifying and in-painting shortcuts in various datasets,
such as chest x-rays from the COVID QU-Ex dataset [9].
Importantly, this process doesn’t harm the model’s perfor-
mance when no shortcuts are present.

2. Related Work
In machine learning, shortcuts come in varying degrees

of spatiality, ranging from small and localized to global.
Local examples include logos and watermarks in image
datasets, such as the Pascal VOC 2007 dataset’s watermark
on horse photos [1,13], or hospital- or device-specific marks
in chest x-ray images [7, 26]. Meanwhile, global shortcuts
include the presence of pastures as an easy indicator for the
class ”Cow” [4], or artefacts in pooled medical databases,
where patient positioning, imaging device type, and image
size are utilized by the model to infer the target class [18].
These shortcuts are problematic not only in supervised com-
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puter vision but also in self-supervised learning [10] and
when using pretext tasks to design feature extractors [8,14].
Additionally, shortcuts are not limited to image datasets;
they can also be observed in audio datasets. For instance,
the amount of leading silence in the ASVspoof Challenge
Dataset on audio deepfake detection can be utilized to pre-
dict the target class [15, 24].

2.1. Automatic shortcut removal

One potential solution to address the presence of short-
cuts in a dataset is to remove them. For instance, in the con-
text of self-supervised representation learning, Minderer et
al. [14] suggest incorporating a U-Net [19], referred to as
a ”lens,” in front of the classification network. The lens
is trained adversarially and enables the elimination of lo-
cal shortcuts, such as logos, through in-painting. However,
this approach is restricted to self-supervised learning. In
the supervised domain, adversarial autoencoders have been
proposed by Baluja et al. [3] and Poursaeed et al. [16]. In
this approach, an autoencoder is added at the beginning of
a classification network and trained adversarially to gener-
ate images that appear similar to the original input, but can
mislead the classifier into producing incorrect output. Sim-
ilarly, Xiao et al. [25] introduce AdvGAN, which incorpo-
rates a GAN-discriminator as an additional loss for the au-
toencoder, leading to less noticeable perturbations. While
these methods share similarities with the architecture pro-
posed in this work, none utilize the generated adversarial
images to robustly train the classifier.

2.2. Improving model robustness

An alternative approach for addressing shortcuts is to en-
hance the robustness of models against them. Wang et al.
[23] propose the use of gradient-reversal to deceive helper
networks that consider only small local patches, while the
global network is encouraged to classify the overall input
correctly. A similar idea is explored in [6]. To prevent a net-
work from focusing excessively on shortcuts that exist only
in a subset of the dataset, Dagaev et al. [5] suggest weighted
training, which involves assigning lower weights to images
that can be accurately classified by a low-capacity network,
assuming that those contain shortcuts. However, this ap-
proach may not be effective when a significant number of
images in the dataset contain shortcuts, unlike our proposed
method, c.f. Sec. 5.1. Lastly, for known shortcuts, one can
artificially introduce them into the dataset and encourage
the model to disregard them [2]. The drawback of this ap-
proach is that the shortcuts must be identified beforehand.

3. Architecture
To remove shortcuts in supervised problems, we adopt

an unsupervised learning architecture [14]. A low-capacity
Image-to-Image network (called “Lens Network”) is placed

in front of the classification network. This lens is then
trained jointly, but adversarially, with the classifier to de-
crease its performance. The idea is that the lens is trained to
isolate features of the image that the classification network
is paying attention to. Since the capacity of the lens is lim-
ited, only simple features (i.e. shortcuts) can be removed by
the lens. To further enforce this, we extend the training loss
with an additional reproduction loss Lrepr. This ensures
that the lens modifies the original image only slightly.

Inspired by [17], we propose using two U-Net-based net-
works, an attention network A and a replacement network
R, as shown in Fig. 1. Network A determines the location
of the shortcut in the original image, while network R com-
putes a suitable replacement for the shortcut.

Given an input image I , we obtain a shortcut-removed
image I ′ as follows:

I ′ = A ·R+ (1−A) · I. (1)

The capacity of the attention network corresponds to the
complexity of the shortcuts identified and should be cho-
sen accordingly. Since the task of the replacement network
is more complex than that of the attention network, there-
fore we accord a larger model capacity (i.e. more up- and
downsampling steps) to R than to A. Lens and classifica-
tion model are trained jointly via L = λLrepr+LCE where
LCE is the cross entropy loss of the classification network
C and λ is a hyperparameter controlling how much the lens
is allowed to modify the input image:

Lrepr = max

ρ,
1

wh

∑
ij

Aij

− ρ. (2)

ρ ∈ [0, 100%] is a hinge hyperparameter that controls
the percentage of the image that can be modified without
penalty. Note that while gradients from the cross-entropy
loss flow into both the lens and classifier, the reproduction
loss only affects the lens. In our experiments, we use the
ResNet18 [11] architecture as classifier C.

We have noticed oscillations during training, where the
classifier stops paying attention to the shortcuts once they
are removed, leading the lens to stop removing them. To
counteract this, we pass a copy of the image directly to the
classifier. This ensures consistent focus on the shortcuts and
attenuates oscillations during training.

4. Data and synthetic shortcuts
We assess the performance of our proposed architecture

on both synthetic and real-world datasets. Initially, we ex-
amine our model’s efficacy by introducing artificial short-
cuts on CIFAR10 [12] and ImageNet [20]. Specifically, for
CIFAR10, we create ”Color Dot” and ”Location Dot” short-
cuts by in-painting a circle in which the color or location
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Figure 1. Architecture of our proposed attention lens model. The lens (red) consists of an attention module A and a reconstruction module
R, both of which are U-Nets. Its output is passed to the original classifier C (blue), trained via cross-entropy loss. Optionally, input images
are also passed to the original classifier. The lens is trained via the classifier’s inverted gradients and a reproduction penalty loss Lrepr .

corresponds to the target class, as shown in Fig. 2. In addi-
tion, we use a subset of the visually similar target classes,
”goose” and ”pelican,” from the ImageNet dataset [20] to
simulate real-world scenarios where classes have overlap-
ping visual features, such as in medical image analysis.
To enhance visual similarity, we convert these images to
grayscale and introduce shortcuts by overlaying a single
logo or a textual watermark across the entire image.

Furthermore, we conduct an evaluation on real-world
data, specifically, the covid-qu-Ex dataset [9], which com-
prises x-ray images of the human chest labelled as either
”healthy”, ”COVID-19”, or ”pneumonia”. Chest X-ray im-
ages have been previously found to contain shortcuts [26],
especially when obtained from multiple sources, such as
different hospitals. Upon visually examining the dataset,
we observe a significant amount of text, markers, and med-
ical equipment in the corners of the images that may serve
as shortcuts, provided they are correlated to the target class.
Such shortcuts can severely impede the practical applicabil-
ity of machine learning models in real-world scenarios [7].

5. Experiments and Results
5.1. Synthetic Data

This section presents the results of our proposed model
when training on shortcut-perturbed data, and evaluating on
clean test data (CIFAR and ImageNet).

Experimental Setup. For the attention network A, we
chose 3 downsampling steps and 5 downsampling steps for
the replacement network R. For the CIFAR-based experi-
ments, we use ρ = 2.5%, while for the ImageNet exper-
iments, we use ρ = 5.0% (logo shortcut) or ρ = 10.0%
(watermark shortcut). Classifier and Lense have different
learning rate (1.5 · 10−6 and 1 · 10−4, respectively). We use
λ = 15 and train the model for 30 epochs on CIFAR10, and
50 epochs on ImageNet.

Results. Based on the results presented in Table 1, we

Shortcut W/o Lens With Lens
CIFAR10 None 75.1± 2.4 76.7± 2.3

Color Dot 28.5± 0.9 70.5± 2.1
Location Dot 41.9± 7.0 69.0± 3.2

ImageNet None 78.9± 1.1 76.1± 2.8
Logo 51.9± 2.0 74.1± 9.0
Watermark 52.4± 1.4 61.0± 5.2

Table 1. The effect of the lens network, measured in test accu-
racy. We train a ResNet18 architecture on datasets with and with-
out shortcuts and subsequently assess the model’s performance on
clean validation data. The experiment is repeated three times, and
the mean test accuracy and a 95% confidence interval are reported.

make the following observations. Firstly, the absence of
shortcuts does not impair the test accuracy, indicating that
our proposed solution is effective without any drawbacks.
Secondly, our proposed shortcuts prove to be highly effec-
tive, leading to a substantial decrease in test performance
(first row). For instance, the Color Dot shortcut lowers the
accuracy from 75% to 28.5%, reflecting the model’s over-
reliance on the simplistic shortcut features. However, with
the lens activated, the adverse impact of the shortcuts is
almost entirely mitigated. The performance of the ”Color
Dot” shortcut on CIFAR10 is restored from 28.5% to 70.5%
of the original 75%, for example.

Visualization: Figure 2 presents example outputs of the
attention lens when training on the CIFAR10 Color Dot
shortcut. We make the following observations based on
the visualization: Firstly, the attention lens successfully re-
moves the shortcuts from the image. Secondly, for the Color
Dot shortcut, recoloring the dots is sufficient to eliminate
the shortcut as only the color of the dot is deterministic of
the class. Additionally, we perform similar experiments for
the Location Dot shortcut. The model correctly learns that
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Figure 2. Examples of shortcuts and lens output on CIFAR10
training data. Row 1 shows the input image with the color dot
shortcut added: for example, all cars have a blue dot. Row 2
shows the output of the lens, where the shortcut is mitigated by
recoloring.
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Figure 3. Accuracy on the clean validation set when training our
model on the CIFAR10 dataset, with varying degrees of ρ (Loca-
tion Dot shortcut).

the Location Dot shortcut cannot be removed by recolor-
ing the dots. Instead, the lens fills the dots by in-painting a
best-effort background.

In order to determine the optimal value of ρ, we conduct
a CIFAR10 Location Dot experiment with varying values
of ρ. Specifically, we evaluate each of the candidate values
for ρ over three independent runs, and reported the mean
accuracy and 95% confidence interval in Fig. 3. Our find-
ings suggest that the optimal value of ρ for this particular
shortcut is around ρ = 2.5%, which approximately cor-
responds to the percentage of the image occupied by the
shortcut. A significantly higher value of ρ leads to the lens
over-manipulating the image, resulting in a poor classifier
performance on the original images.

5.2. Real-World Data

For the covid-qu-Ex dataset, we trained the network with
hyperparameters λ = 5, ρ = 0.25%, 2 downsampling steps
in the attention network, and 5 downsampling steps in the
replacement network. We used a learning rate of 2 · 10−4

for both the lens and classifier. As there is no validation
set without shortcuts for covid-qu-Ex, we evaluated the ef-
fectiveness of the lens in identifying shortcuts using Grad-
CAM [22]. Figure 4 shows the GradCAM images for all
three classes and both trained networks. From these exper-
iments, we made several observations. First, without the
lens, the network predominantly focused on areas in the
corners of the images, mostly in areas with text. Second,

(a) Normal (b) COVID (c) Pneumonia

Figure 4. GradCAM images showing network attention when
training on the covid-qu-Ex dataset. Row 1 is the input image
from the validation set. Row 2 is the classifier attention of a net-
work trained without, and Row 3 with our proposed model.

Original

Lense
output

Difference

(a) Normal (b) COVID

Figure 5. Lens output and attention on x-ray images from the
covid-qu-Ex dataset for the classes classes COVID and Normal.
Row 1 shows original images. Row 2 shows the output of the
lens. Row 3 shows the difference between rows 1 and 2.

with the attention lens, the network focused on more rel-
evant sections of the image, including the lungs. Our pro-
posed approach not only explains shortcuts but also corrects
them, as shown in Fig. 5, where highly localized shortcuts
such as markers and text are removed.

6. Conclusion

In this paper, we propose a method for detecting and
eliminating small but highly influential shortcuts in machine
learning datasets. Our approach is built upon the hypothe-
sis that genuine features are typically more global in nature,
whereas shortcuts are localized but highly predictive. How-
ever, we acknowledge that there may be datasets containing
global shortcuts such as image background [21] or ambient
lighting, but leave this for future work. To validate our pro-
posed approach for localized shortcut detection, we conduct
experiments on both synthetic and real-world datasets and
demonstrate our model’s effectiveness.
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