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Abstract

The lack of interpretability of the Vision Transformer may
hinder its use in critical real-world applications despite its
effectiveness. To overcome this issue, we propose a post-hoc
interpretability method called VISION DIFFMASK, which
uses the activations of the model’s hidden layers to predict
the relevant parts of the input that contribute to its final pre-
dictions. Our approach uses a gating mechanism to identify
the minimal subset of the original input that preserves the
predicted distribution over classes. We demonstrate the faith-
fulness of our method, by introducing a faithfulness task, and
comparing it to other state-of-the-art attribution methods on
CIFAR-10 and ImageNet-1K, achieving compelling results.
To aid reproducibility and further extension of our work, we
open source our implementation here.

1. Introduction
The Vision Transformer (ViT) [9] has been a major break-

through in recent years, with applications in tasks such as
image classification, object detection, and image captioning.
However, its success comes at the cost of interpretability, as
deep neural networks are usually treated like “black boxes”
that do not provide any insight into their decision-making
process. This becomes a major drawback for many real-
world applications that require safety and social acceptance.

As a result, there has been a surge of work in the area of
post-hoc interpretability, which aims to explain how models
arrive at their decisions. These methods can be categorized
into two main groups; model-specific and model-agnostic
methods. Model-specific methods are tailored to a specific
architecture and make use of a model’s internal structure
to generate explanations. They are usually faster and more
efficient, but they are not applicable to other models, which
makes them less flexible when a new architecture is proposed.
On the other hand, model-agnostic methods can be applied
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Figure 1. Overview of VISION DIFFMASK’s architecture.

to any model, but are often more computationally expensive
and require more data to train.

Within the model-specific category, a natural consequence
of the Transformer’s [23] self-attention mechanism is to use
the attention weights to explain the predicted output. A pop-
ular method in this line of research is attention rollout [1],
which uses the attention weights to generate a saliency map
over the input. However, a consensus has not been reached
on whether attention can be considered as a faithful interpre-
tation of the model’s decision-making process, with advo-
cates both in favor [24] and against it [12].

On the other hand, model-agnostic methods are generally
split into two sub-categories; gradient-based, and attribu-
tion propagation approaches. The former is characterized
by the use of the gradients of a model’s output with respect
to a layer’s input as an indicator of importance [19, 21, 22],
while the latter relies on the Deep Taylor Decomposition
method [16] to recursively break down the model’s out-
put into the contributions of each layer [3, 5, 20]. Other
approaches that do not fall into these two categories are
methods based on input perturbations [6, 10, 17, 18] or exci-
tation back-propagation [25], with a common theme being
the treatment of the model as a black box. However, this usu-
ally implies an increase in computational complexity, which
makes them infeasible to use with large models like ViT.

A common shortcoming of these methods is that they do
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not guarantee that the model is fully ignoring low-scored
features, or that the output distribution will be preserved
in their absence. Hence, a question that occurs naturally
is whether these explanations are faithful to the model’s
decision-making process. Recent works have relied on era-
sure [14] to tackle this issue, with De Cao et al. [7] proposing
DIFFMASK, an interpretation method for the language do-
main that predicts attribution spans over an input text based
on a model’s hidden representations. The training objective
is designed to keep the minimal subset [2] of the input that
produces a similar output distribution over the target labels.

In this paper, we extend DIFFMASK to the vision do-
main by introducing VISION DIFFMASK, an interpretation
network that predicts saliency maps for models that follow
ViT’s architecture. Our method fundamentally relies on a
series of gating mechanisms on each of ViT’s layers, which
are optimized with the goal of preserving the model’s out-
put when masking the input. During training, all gates cast
a binary vote on whether an image patch should be kept
or not. Subsequently, the votes are aggregated across lay-
ers to produce the final mask. During inference, each gate
predicts a probability instead of a binary vote, creating a
continuous attribution map over the input. However, we
empirically demonstrate that, due to our training objective,
the attributions collapse to hard boundaries between rele-
vant and irrelevant patches. This design choice allows us to
confidently identify significant portions of the input that the
model disregards during its predictions.

Attribution methods cannot be evaluated simply by using
human annotations, for that would measure the plausibility
of the explanations according to humans, and not a faithful
attribution according to the model [11]. Hence, we first test
the faithfulness of our model in a controlled scenario. Then,
we evaluate our methodology using both qualitative and
quantitative experiments against other state-of-the-art meth-
ods on CIFAR-10 [13] and ImageNet-1K [8]. We show that
our method produces faithful and plausible outputs and can
be used to provide insights into the model’s inner workings.

In summary, our main contributions are:

1. We introduce VISION DIFFMASK, a novel method for
post-hoc interpretability in the vision domain.

2. We formulate a faithfulness task and show that our pro-
posed method is indeed faithful to the model’s decision-
making process.

3. We evaluate our method on CIFAR-10 and ImageNet-
1K, both qualitatively and quantitatively, and achieve
strong results against common interpretation methods.

2. Methodology
VISION DIFFMASK is applied on a pre-trained Vision

Transformer and produces a saliency map for each input

image x. During the forward pass, we transform each of the
model’s hidden states into a patch-level mask. These masks
are then aggregated over the hidden layers and result in the
final mask z that is applied to the input. An overview of our
approach is shown in Figure 1.

2.1. Gating Mechanism

Our method uses a total of L+ 2 gates to transform the
hidden states to masks; the first two process the patch em-
beddings, h̄(0) and h(0), without and with the positional em-
beddings added respectively, while the rest L process ViT’s
hidden states

(
h(ℓ), ℓ ∈ {1, 2, . . . , L}

)
. For each state h, the

input to the corresponding gate is the concatenation [h̄(0);h].
We use MLPs with tanh activations as gating mechanisms,
followed by a linear stretch. This stretch gives us explicit
control over the range of probabilities in the saliency map,
which allows us to choose a suitable percentage of image
patches to be masked during initialization. This results in a
total of L+ 2 patch-level activations for each image:

u(ℓ) = α · MLP([h̄(0);h(ℓ)]) + β · 1 , (1)

where α, β are the parameters of the linear stretch.

2.2. Mask Generation

The activations u(ℓ) take values in the (−∞,∞) range
which is unsuitable for saliency maps. One way to convert
them to the [0, 1] range would be to apply a softmax, but
this would assign no probability mass to truly mask out an
image patch. To overcome this, we use u(ℓ) as parameters
for the modified Hard Concrete (HC) distribution [7, 15],
which gives support to [0, 1). Hence, during training, our
masks are sampled as follows:

z(ℓ) ∼ HardConcrete(z(ℓ);u(ℓ), l, r) (2)

where l ≤ 0 and r ≥ 1 control the probability density of
the HC distribution at 0 and 1. During inference, instead of
sampling z(ℓ), we take its expected value. The reason for
this is that during training we need VISION DIFFMASK to
understand the importance of each patch while during in-
ference we want a smoother attribution map over the input.
We calculate the mask of x as the product z =

∏
z(ℓ). As

this results in a patch-level saliency map, we use bi-linear
interpolation to arrive at a higher granularity pixel-level map.

If we were to naively multiply x with z, we would be
replacing masked-out patches with zeros, which corresponds
to a black patch. Although this makes sense from a human’s
perspective, ViT has not learned to ignore these patches but
rather to treat them as another source of information. To
address this issue, we use a special vector b that is learned
along with the parameters of the gating mechanisms and is
shared across all instances in the dataset. Ultimately, we
define the element-wise masking operation as:

x̂i = zi · xi + (1− zi) · b (3)
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2.3. Training Objective

We cannot rely on human annotations to train VI-
SION DIFFMASK, so we resort to a self-supervised objective.
We train our interpretation module to produce a mask, such
that the masked input gives an output sufficiently close to
the original one, while simultaneously ignoring as many
patches as possible. In the case of image classification, the
first objective is achieved by introducing the KL divergence
DKL[y || ŷ] between the unmasked y and the masked predic-
tions ŷ in the loss. The second one is achieved by including
the L0 norm1 of the predicted mask in the loss, denoted as
L0(ϕ,b | x), where ϕ are the parameters of the gates and b
is the learnable baseline vector of Eq. 3.

The described training procedure can be expressed as a
constrained optimization problem, where we minimize L0

– and thus aim to mask out as many patches as possible –
while keeping the divergence of the two distributions DKL

within an acceptable margin m:

min
ϕ,b

∑
x∈D

L0(ϕ,b | x) s.t. DKL[y || ŷ] ≤ m, (4)

To deal with the intractability of non-linear constraint opti-
mizations, we can equivalently express this as a Lagrangian
relaxation problem [4]:

max
λ

min
ϕ,b

∑
x∈D

L0(ϕ,b | x) + λ (DKL[y || ŷ]−m) (5)

where λ ≥ 0 is the Lagrangian multiplier.

3. Experiments
3.1. Implementation & Training Details

We employ a VISION DIFFMASK architecture with 14
gates for all of our experiments, with each gate being a
two-layer MLP using a tanh activation. For CIFAR, we
use a linear stretch with α = 15 and β = 8 (in Eq. 1).
By doing so, the expected percentage of masked patches
in a randomly initialized model is ∼ 30%. Furthermore,
we initialize λ to 20 and m to 0.1, and we use 3 different
learning rates to optimize our model: 2 · 10−5 for the gates’
parameters, 10−3 for the baseline vector, and 0.3 for the
Lagrangian. Additionally, we used a batch size of 16 and
trained for 25 epochs. Finally, we chose the LookAhead
Adam optimizer [26]. For ImageNet, we initialize our model
with the converged model on CIFAR. In this case, we set
the linear stretch to α = 20, and adjust the learning rates
for the gates’ parameters to 10−5, for the baseline vector
to 5 · 10−3, and for the Lagrangian to 0.15. We provide
additional information with our training observations and
computational requirements in Appendices B & D.

1The L0 norm of a vector is defined as the number of non-zero elements,
i.e. ∥z∥0 = #{i | zi ̸= 0}. Although it is not a proper norm from a
mathematical perspective, it is often referred to as such in the literature.

Figure 2. Saliency maps of VISION DIFFMASK and rival methods
on the faithfulness task. As the model counts the red patches on the
grid, it only needs to inspect either the red subset or its complement.

3.2. Faithfulness Task: Counting Patches

In order to verify that our method is indeed faithful, we
evaluate it on a problem where we know the ground truth by
design, such as by counting the appearances of an object of
interest. To this end, we propose the following setup: on a
3× 3 grid, we color n random patches with red, and the rest
with a random combination of 6 other colors. We then train
a ViT with the goal of counting the number of red patches
on a given grid, and, as expected, achieve a 100% accuracy.2

We expect the decision-making process in ViT to involve
either only the red-colored patches in the grid or all the
others; any more is not needed to arrive at a correct pre-
diction and any less is not sufficient to correctly solve the
task. We compare our approach to well-established meth-
ods, such as the one proposed by Chefer et al. [5], Attention
Rollout [1], and Grad-CAM [19]. As shown in Figure 2,
VISION DIFFMASK is the only method that produces faith-
ful and consistent interpretations for all inputs, while rival
methods occasionally fail to do so.

3.3. Image Classification

We evaluate our method on the standard setting of im-
age classification, using the CIFAR-10 and ImageNet-1K
datasets. We use ViT models with 98.75% and 85.49% ac-
curacy respectively, and plot the saliency maps produced by
VISION DIFFMASK and other methods in Figures 3 & 4.

In CIFAR-10, objects are typically centered and oc-
cupy a significant portion of the image, suggesting that
VISION DIFFMASK should primarily focus on the central
object within an image. This hypothesis is supported by the
saliency maps presented in Figure 3, which consistently
attribute the primary object. The ImageNet-1K dataset

2More details about the faithfulness task can be found in Appendix C.
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Figure 3. Attribution maps of VISION DIFFMASK and rival meth-
ods on sample images from CIFAR-10.

presents greater complexity due to its increased number of
classes and frequent inclusion of multiple objects within a
single image. As our method is trained to preserve the entire
class distribution of the input rather than solely its top class,
we would anticipate attributions across all prominent objects
within an image. This expectation is confirmed in Figure 4.

Our findings demonstrate that VISION DIFFMASK ef-
fectively attributes the primary object(s) within the images,
aligning with the current literature on result plausibility. In
contrast, competing methods attribute regions that seem un-
likely to contribute to the model’s decision. A key distinction
of VISION DIFFMASK is its ability to delineate clear bound-
aries between what it identifies as the triggering subset and
the remainder of the image. Despite adapting our training
objective from the language domain, spatial continuity is
largely maintained within highly attributed patches. How-
ever, it should be noted that our method occasionally omits
low-frequency patches that are part of the primary object
while retaining secondary objects within the image (e.g., a
person riding a horse in the rightmost image of Figure 3).

Although qualitative analysis of results can provide
valuable insights into interpretability methods, there is no
straightforward approach to evaluate them [7]. Hence, to
complement the above analysis, we also calculated the pos-
itive and negative perturbation curves, proposed by Chefer
et al. [5]. These curves show how the KL divergence and
top-1 accuracy vary when removing pixels or patches with
increasing and decreasing order of importance according to
the model’s attributions. We report the AUC of those curves
for CIFAR-10 in Table 1 and provide the full plots in Ap-
pendix A. VISION DIFFMASK surpasses all other methods
when removing image patches with decreasing order of im-
portance (neg. perturbation), while remaining competitive
when removing patches with increasing order of importance
(pos. perturbation). This is expected as our method’s at-
tributions collapse to hard boundaries, giving no relative
attributions to patches. For example, in the airplane image

Figure 4. Attribution maps of VISION DIFFMASK and rival meth-
ods on sample images from ImageNet-1K.

Metric for AUC Ours Grad-CAM Attn. Roll. Chefer et al.

Pos. DKL (↑) 39.3 43.6 23.5 50.5
Neg. DKL (↓) 17.4 37.8 26.1 31.2
Pos. accuracy (↓) 12.9 12.6 18.8 9.8
Neg. accuracy (↑) 21.8 14.7 17.8 17.1

Table 1. Quantitative comparison of VISION DIFFMASK and rival
methods on CIFAR-10. ↑ (↓) indicates that higher (lower) is better.
Bold numbers correspond to the best result in each row.

in Figure 3, our method considers the whole airplane to trig-
ger the model’s prediction, while Attention Rollout mostly
focuses on the fins. This causes the latter to remove them
first, which likely deteriorates ViT’s performance more than
an ostensibly random plane pixel removed by our method.

4. Conclusion

In this work, we introduced VISION DIFFMASK, a post-
hoc interpretation module for the Vision Transformer. Our
method predicts a mask that preserves only the minimal sub-
set of patches and when applied results in the same output
distribution as the original image. We proposed a faithful-
ness task and demonstrated that VISION DIFFMASK pro-
vides faithful interpretations while other approaches fail to
do so consistently. We also evaluated our method on two im-
age classification datasets, CIFAR-10 and ImageNet-1K, and
achieved plausible interpretations, with compelling quantita-
tive metrics. With our study, we exhibit the lack of faithful-
ness tasks in the field of Explainable AI and aim to pave the
way for more sophisticated interpretation methods that are
thoroughly evaluated for their faithfulness.
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A. Perturbation Curves
We report the negative and positive perturbation curves

in Figures 5 and 6 respectively. In addition to computing
the drop in top-1 accuracy as in [5], we also compute the
increase in KL divergence (DKL). Figure 5 showcases that
our model indeed gives low attribution to the most irrelevant
patches of the image, since removing them does not affect
its performance, measured either by the top-1 accuracy or
the divergence between the original and the new class distri-
bution. However, since our method creates hard boundaries
for what it believes to be the triggering subset of the image
and the rest of the patches, removing the most important
image patches does not impact the model’s performance as
much as in methods with progressive attribution, as shown
in Figure 6.

Figure 5. Negative perturbation results. Ideally, when removing
pixels with a low attribution score, the model’s output should re-
main the same, preserving a small KL divergence / high accuracy.

Figure 6. Positive perturbation results. Ideally, when removing
pixels with a high attribution score, the model’s output should
radically change, leading to high KL divergence / low accuracy.

B. Training Observations
To aid the reproducibility of our work as well as encour-

age further research, we are apposing a few critical observa-
tions for the training procedure of VISION DIFFMASK.

B.1. General comments

Even with the best hyperparameters, different random
initializations can result in either convergent or divergent
models. We attribute this to the fact that the initial few
epochs are critical to the convergence of the model. If the

initialization of the VISION DIFFMASK model creates an
initial mask that results in a high KL divergence, the model
has to precipitously explore the masking space. Otherwise,
the optimizer for the Lagrange multiplier will overcompen-
sate in either direction to lower the loss, which diverges the
model. A possible solution to this would be to search for a
method to controllably adjust the position of the initial mask.
This is currently an indirect process as we can only control
VISION DIFFMASK’s initialization.

B.2. Effects of the linear stretch on convergence

We chose the hyper-parameters of the linear stretch (α, β)
after an extensive search. Our configuration for CIFAR-10
results in randomly initialized gates masking out ∼ 30%
of the input image’s pixels. If that percentage was higher,
which is the case when we are not stretching the output of
the MLP for example, the model would not be able to learn
image concepts and the baseline vector b. This would render
the KL divergence incapable of being reduced, leading to L0

being the only factor to optimize. We observed that this led
to local minima where the entire image was being masked.

Given a small β, the model will excessively mask the
input, making it impossible to lower the loss unless the
optimizer slowly decreases the Lagrangian multiplier to 0.
In turn, when λ decreases to 0, the optimization objective
reduces to

min
ϕ,b

∑
x∈D

L0(ϕ,b | x) (6)

which has an obvious optimum at masking the whole image,
leading to divergence.

Given a large β, the model will not mask anything at
all. In turn, to keep the KL divergence constant near 0, the
optimizer will increase the α, completely overpowering the
masking objective, which again results in a divergent model.

C. Faithfulness Task

For the faithfulness task of counting colored patches in a
grid, we train a Vision Transformer using the HuggingFace
implementation, for a maximum of 20 epochs with a batch
size of 16. We use a ViTFeatureExtractor that nor-
malizes each of the image’s channels to be centered around
0.5 and have a standard deviation of ±0.5. The optimizer
used is AdamW with a learning rate of 5 · 10−5 and a weight
decay of 10−2. We use a scheduler that linearly decreases
the learning rate after each epoch so that it reaches 0 at the
end of 20 epochs. However, we also resort to early stopping
in case the validation set accuracy does not increase after 5
epochs. For our synthetic dataset, this meant that training
stopped after 8 epochs. As one would expect for such a
simple task, the Vision Transformer achieves 100% accuracy
on a hold-out evaluation set.
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D. Computational Requirements
All of our models were trained on 6 cores of an Intel Xeon

Silver 4110 CPU @ 2.10GHz and an NVIDIA GeForce GTX
1080 Ti GPU. Training a single VISION DIFFMASK model
for the image classification task on CIFAR-10, using a ViT-
base model with 12-layers and 16× 16 patches, required 10
hours for the 25 epochs it took to converge. Regarding the
faithfulness task, pre-training a ViT-base model required 1
minute for a total of 8 epochs, while training the correspond-
ing VISION DIFFMASK model required 9 minutes for a total
of 100 epochs. Finally, the ImageNet model was fine-tuned
for one epoch, with a duration of 18 hours.
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