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Abstract

Mechanistic interpretability aims to understand how
models store representations by breaking down neural net-
works into interpretable units. However, the occurrence of
polysemantic neurons, or neurons that respond to multiple
unrelated features, makes interpreting individual neurons
challenging. This has led to the search for meaningful vec-
tors, known as concept vectors, in activation space instead
of individual neurons. The main contribution of this paper
is a method to disentangle polysemantic neurons into con-
cept vectors encapsulating distinct features. Our method
can search for fine-grained concepts according to the user’s
desired level of concept separation. The analysis shows that
polysemantic neurons can be disentangled into directions
consisting of linear combinations of neurons. Our evalua-
tions show that the concept vectors found encode coherent,
human-understandable features.

1. Introduction
Mechanistic interpretability is a fast-emerging research

topic that aims at deciphering the internal representations
held by a model by reverse engineering into understandable
computer programs [1, 20, 21]. Previous work in this field
breaks down convolutional neural networks (CNNs) into the
features learned by the fundamental units of a layer, which
are considered as directions of a geometric space. Many
previous works consider neurons as these units [20, 21].
Breaking down the model into such interpretable units al-
lows us to better understand how models store represen-
tations in vision tasks [4, 5, 20, 21] and language mod-
els [8]. This could even allow us to predict and edit model
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behaviour such as work by Bau et al. that removes units
that are important to a class [5] and has also been stud-
ied for other architectures such as GANs and GPT mod-
els [3, 16, 17].

A frequent issue is the occurrence of polysemantic neu-
rons, namely neurons that respond to several unrelated fea-
tures, or concepts [19–21]. They can be found by looking
at the maximally activating dataset examples and finding
they consist of multiple groups that are conceptually very
different [6, 20]. This makes the interpretation of individ-
ual neurons challenging since they cannot be mapped to
unique features. This is exemplified in Olah et al. [20, 21]
by a neuron equally likely to respond to car shields and cat
paws at the same time, and with the same intensity. There
is evidence that the training of models pushes networks to
represent many features within individual neurons [7, 24].
Models have a limited number of neurons meaning a dis-
crete neuron is often not possible for all features. This is
related to the idea of superposition, which refers to when
neural networks represent more features than they have neu-
rons [7]. These empirical observations in existing research
indicate that neurons are not always the right fundamen-
tal unit encapsulating an individual feature represented by a
model. If we define activation space as all possible combi-
nations of neuron activations, we can widen our lens to look
for meaningful vectors in activation space instead of single
neuron basis vectors.

There is evidence that suggests monosemantic regions in
activation space exist [4,6,7,11,21], but they are not always
made obvious by studying individual neurons [6,26]. A key
issue resulting from this observation is the question of how
directions in activation space representing distinct features
can be found [21].

Previous work has shown the existence of high-level hu-
man interpretable concepts such as textures, shapes and
parts of objects present as directions in activation space.
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Figure 1. Step 1. A set of images that maximally activate a neuron in a model layer is taken. Step 2. The Euclidean distance between
images in activation space is used as the similarity space on which the clustering is performed. This returns the appropriate number of
clusters for a given distance threshold. Step 3. K-means clustering computes the cluster membership. Step 4. From the images in each
cluster, a concept vector is calculated, which points toward the non-neuron aligned direction in activation space.

Some early work by Alain et al. [2] took the features of the
layers in a model and fit a linear classifier to each layer to
predict the class labels. The work by Kim et al. [13] on Con-
cept Activation Vectors (CAVs) defines a concept as a vector
in the direction of the activation values of a set of exam-
ples of that concept. The authors find a concept by training
a linear classifier to distinguish between examples of that
concept and random counterexamples. The concept vector
is then taken as the vector orthogonal to the boundary. A
limitation of this method is that it requires a handcrafted
set of examples of a concept to find the concept direction
in latent space. A small number of unsupervised methods
used to find concepts have been developed [10, 14, 22], this
research direction is known as concept discovery.

Concept discovery involves the search for unit vectors in
the latent space of a model that encode learned representa-
tions of high-level concepts. However, none of the existing
methods seek to disentangle polysemantic representations.
The concept vectors are linear combinations of units, and as
such, they are likely to inherit polysemanticity from polyse-
mantic neurons [10]. Furthermore, none of these methods
incorporate the notion of a privileged basis proposed by El-
hage et al. [7]. A privileged basis is where some represen-
tations are encouraged to align with basis directions, mean-
ing directions in space corresponding to individual neurons.
Even though neuron directions are usually meaningful can-
didates for representing a feature [4, 7, 20, 21], they likely
do not show the whole story due to the countervailing force
of superposition [7]. The main contribution of this paper is
a method to find and disentangle monosemantic directions
starting from polysemantic neurons. Moreover, our method
can search for concepts that are fine-grained according to

the user’s desired level of concept separation. Our analysis
shows that polysemantic neurons can be disentangled into
directions consisting of linear combinations of neurons.

2. Methods
We consider a CNN predicting a classification output (p-

dimensional output vector) from an input image. We note
that the method can be generalised to other models, but use
a CNN for our analysis. We assume the model was already
trained, and that we have access to the intermediate rep-
resentations of an arbitrary layer inside the model. Fig. 1
summarises the steps discussed in more detail below.

We take a given intermediate layer l. We calculate the
embeddings for the entire dataset and apply global average
pooling to aggregate the spatial information of the convo-
lutional feature maps. We select a neuron n, and apply the
following steps iteratively. In step 1, we take these activa-
tions {ϕl(xi)}Ni=1 where ϕl(xi) ∈ Rd, and for the neuron
n, we take the top N activating images {xi}Ni=1.

The second step involves measuring the similarity of the
pooled activations (of the top activating images) at the in-
termediate layer l. We use the Euclidean distance as a dis-
tance metric which has been shown by previous work to
be highly predictive of perceptual similarity [28]. We then
apply a clustering technique to group these measurements
of similarity into sets of close examples. For this, we use
agglomerative clustering, a bottom-up type of hierarchical
clustering [18], since it does not require us to pre-specify
the number of clusters to be generated, as is required by
the k-means approach. With clustering settings described
in Appendix A.1, we apply agglomerative clustering with a
distance threshold dmax that specifies the maximum link-
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age threshold at which clusters will be merged. Its result
can be visualised in a dendrogram, or tree-based represen-
tation of elements, as is depicted in Fig. 1, step 2. The
distance threshold is a hyperparameter that is tuned to an
appropriate range for the model layer. It can be tweaked to
fine-grain concepts into big or small buckets. Please refer
to Appendix A.1 for a demonstration of this.

The third step takes the resulting number of clusters C
obtained from step 2 and performs k-means clustering on
the same measurements of similarity. The benefit of using
k-means clustering over agglomerative clustering alone is
that the k-means centroids allow us to easily remove outliers
from each cluster that have low similarity to the rest of the
cluster as employed in [9].

The final step finds the directions of the Ĉ 1 concept
vectors corresponding to the Ĉ clusters, {ĉj}Ĉj=1, by tak-
ing the mean of the remaining embeddings for each cluster,
giving us a set of vectors {avg({ϕl(xi)}i∈ĉj )}Ĉj=1 which
are then normalised to give us disentangled concept vectors
{vj}Ĉj=1, where vj ∈ Rd.

3. Results
We consider Inception V3 (IV3) [25] for our experi-

ments since it is a de-facto standard convolutional neural
network. Moreover, interpretability research has already
given multiple insights for this model [9, 10, 13], and pre-
trained weights on the ImageNet ILSVRC2012 [23] dataset
are available online. As this exploratory study only aims at
a proof of concept, we focused on an undersampled version
of ImageNet, retaining 130 random images for each class.
This kept computation accessible to our infrastructure, fea-
sible and light. Our results can easily be scaled to the en-
tire dataset and larger dataset sizes. Where not stated, we
consider the concatenation layer Mixed 7b, a convolutional
layer with 2048 feature maps (d = 2048) near the end of the
IV3 model. We pick this layer as we expect it to encode
complex concepts [21, 27]. A similar analysis can be done
on other layers and architectures.

We demonstrate the results of the method described in
Sec. 2 on a number of both polysemantic and monoseman-
tic neurons. We took N = 100 top activating dataset exam-
ples and set the distance threshold parameter dmax = 15.
We select neuron 35 as an example of a polysemantic neu-
ron, as it activates highly for images of apples, sports, and
also three images are dominated by a net-like pattern. This
results in 3 clusters. When the k-means clustering step was
applied (i.e. Step 3 in Figure 1) and outliers were removed,
the cluster containing the net-like images was removed as
there were < 5 images in this cluster. Fig. 2a shows the em-
beddings of the remaining images plotted using UMAP [15]

1Ĉ may be different from C since clusters with less than 5 samples are
removed.

dimensionality reduction. The plot shows how UMAP sep-
arates embeddings for images of apples and sports. Note
that UMAP is used only for demonstration of our results
to depict the clusters found using k-means since we found
it accurately reflects the cluster membership result. We se-
lect neuron 16 as an example of a monosemantic neuron
that activates for many categories of elliptical shapes as de-
picted in Fig. 2b. The same procedure applied to this neuron
yields only one cluster, yielding one monosemantic concept
vector which has a much higher similarity than the neuron
direction to the original images. The case of neuron 1 is
interesting and demonstrates the application of our method
to fine-grain concepts. This neuron activates highly for un-
derwater images as shown in Fig. 2c. Further inspection
shows how it activates highly for both general underwater
images and, images of scuba divers. Applying our method
yields two clusters, one for general underwater scenes such
as coral, and another for scuba divers, meaning two concept
vectors can be found for this neuron. However, at a higher
distance threshold, the clusters of images are merged by the
algorithm, and one concept is found. Here the features are
not entirely conceptually different. However, these two re-
lated directions can be differentiated, and concept discovery
can separate them. We believe this hints at how it may be
helpful to view concepts as varying continuously in the la-
tent space instead of being encoded discretely by neurons.
We suspect this phenomenon is related to the notion of ‘fea-
ture facets’ [19]. The same analysis was scaled to multiple
neurons in the same layer. We provide additional exam-
ples and a depiction of the dendrogram for neuron 1 to see
the result of altering dmax in the Appendix A.1, Figs. A.7
and A.8. We note that we found that the majority of the
neurons we analysed in layer Mixed 7b were found to show
some amount of polysemanticity. A possible explanation
for this is that the number of features may be very high for
a later layer in the model as it encodes complex concepts.

We performed a qualitative and quantitative assessment
of the identified concepts. The semanticity of concept vec-
tors was evaluated, first by finding the dataset examples
with the largest projections along the vectors, analogous to
viewing the maximally activating dataset examples for in-
dividual neurons. Fig. 3 demonstrates how the two concept
vectors found for polysemantic neuron 35 were confirmed
to be monosemantic regions in the latent space, cleanly acti-
vated by the originally entangled concepts. A further qual-
itative assessment involved applying the technique of fea-
ture visualisation [21] using the Lucent [12] library. Fig. 3
also shows the result of applying this technique on polyse-
mantic neuron 35, and on the concept vectors found with
our method. The polysemantic neuron fails to give a hu-
man interpretable representation, whereas the disentangled
directions closer resemble the distinct categories of images
which excite this neuron. For instance, the concept point-
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(a) (b)

(c)

Figure 2. UMAP of the maximally activating images kept after
k-means clusters and outlier removal in latent space: (a) sepa-
rate clusters for polysemantic neuron 35 (b) a single cluster for
monosemantic neuron 16.

ing towards representations of apples is maximally activated
by round shapes with a stem cavity that is typical of ap-
ples, whereas the second concept seems to be maximally
activated by large green squares such as football, soccer or
baseball pitches.

As has been done in concept discovery works [9, 10],
we evaluated our results with human experiments to eval-
uate the coherency and understandability of concepts. To
avoid any cherry-picking of results, concepts from the first
8 neurons were used for all questions on the form, and a
random number generator was used to select images from
each concept’s maximally projecting images2. The first four
questions evaluated the concepts’ coherency by asking par-
ticipants to identify an intruder out of four other images
that maximally activate another concept vector found from
the same neuron or concept discovery starting point. The
(n = 8, including 3 domain experts) participants selected
the intruder image with an overall 100% accuracy showing
the images have a coherent theme. The other six questions
were designed to evaluate the understandability of concepts.
Participants were asked to label two concepts and assess
whether they agree with a given label for four sets of im-
ages. Agreement with the given labels was observed 97%
of the time. Further details are provided in Appendix A.3

2The evaluation form can be accessed at https://forms.gle/
62H6iUiXHdLYs9nr9

Figure 3. Disentanglement of the representations for neuron
35. The maximally activating inputs and feature visualisation are
shown for the polysemantic neuron (left) and the disentangled con-
cept directions (right).

for the only label change suggestion (from a domain expert)
that occurred. This confirms that the images have a consis-
tent semantic meaning across multiple individuals.

A number of quantitative metrics were used to anal-
yse the images making up the clusters for computing the
concept vectors and also the maximally projecting images
along concepts. A natural starting point was to check the
distribution of Euclidean distances between maximally ac-
tivating images as is shown in Fig. 4 (a). Fig. 4 (b) shows
how the inter-cluster distance (distance between images of
apples and sport-type images) is considerably higher than
the intra-cluster distance. Appendix A.2 and particularly
Fig. A.9 illustrate the components of the 2048 concept
vectors for these two concepts, which differ considerably
across other dimensions. When the maximally projecting
images along the concept vectors were calculated, our anal-
ysis confirmed that the projections and cosine similarities
of their corresponding activations with the concept vector
are remarkably higher than that with the neuron direction as
exhibited in Fig. 5. As shown in additional examples in Ap-
pendix A.1, our results are consistent for other monoseman-
tic and polysemantic neurons.

4. Conclusions and Future Work
Finding meaningful directions in activation space that

are pointing to unique patterns, or concepts is a non-trivial
problem encountered in our journey of understanding neu-
ral networks. Our results suggest that exploring directions,
instead of neurons may lead us toward finding coherent fun-
damental units. We believe this work helps move toward
bridging the gap between understanding the fundamental
units of models as is an important goal of mechanistic in-
terpretability, and concept discovery. We evaluated the co-
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Figure 4. Euclidean distance between activation pairs, for the top
100 maximally activating images as in step 1 (on the left) and for
the 52 remaining images after step 3, ordered by cluster member-
ship (on the right).

Figure 5. The left plot shows the projection of the elements of a
cluster along the corresponding concept vector and the projection
along the neuron direction for neuron 35. The right plot shows the
cosine similarities between elements of a cluster with the concept
vector and the neuron direction.

herency and understandability of the raw images whose em-
beddings have the maximum projections along a concept
vector. We found that the latent space representations have
much higher similarities with the concept vectors discov-
ered than with the neuron directions. This work goes in the
direction of building interpretability in a human-controlled
way, as is important for the field of AI safety, and for ap-
plications of image models such as medical lesion analy-
sis. We note a limitation of this work is its reliance on the
data used to generate clusters. Furthermore, all experiments
were performed on image data as image data is easier to vi-
sualise than other data forms. Generalising the method to
other data types such as language and tabular data is a di-
rection we wish to pursue in future work, as is looking at
other starting candidates for concepts besides neurons.
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