This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Robustness of Visual Explanations to Common Data Augmentation Methods

Lenka Tétkova
lenhy@dtu.dk

Lars Kai Hansen
lkai@dtu.dk

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, 321, 2800 Kgs. Lyngby, Denmark

Abstract

As the use of deep neural networks continues to grow,
understanding their behaviour has become more crucial
than ever. Post-hoc explainability methods are a poten-
tial solution, but their reliability is being called into ques-
tion. Our research investigates the response of post-hoc vi-
sual explanations to naturally occurring transformations,
often referred to as augmentations. We anticipate explana-
tions to be invariant under certain transformations, such as
changes to the colour map while responding in an equivari-
ant manner to transformations like translation, object scal-
ing, and rotation. We have found remarkable differences
in robustness depending on the type of transformation, with
some explainability methods (such as LRP composites and
Guided Backprop) being more stable than others. We also
explore the role of training with data augmentation. We pro-
vide evidence that explanations are typically less robust to
augmentation than classification performance, regardless
of whether data augmentation is used in training or not.

1. Introduction

Convolutional neural networks (CNNs) are commonly
used in computer vision. However, CNNs are fragile to ad-
versarial attacks [11]. It has been shown that explanation
methods are fragile as well and that attackers can manipu-
late the explanations arbitrarily [9, 10].

To be trusted, explanations need to show common-sense
behaviour. In this work, we investigate one such basic be-
haviour: If a transformation of an image does not change
the target class, the explanation should assign importance
to the same part of the object as in the untransformed im-
age'. If the explainability method does not preserve the ex-
planations of the perturbed images, we lose trust in it. We

'We do not consider cases where the transformation of an image would
change the ground-truth label.

believe that it is even more concerning than adversarial at-
tacks since perturbations such as e.g., object rotation, are
omnipresent and happen spontaneously.

In this work, we investigate how perturbations of an im-
age influence visual post-hoc explanations. To understand
the role of augmentation during training, we train CNNs
from scratch on both augmented and non-augmented data.
We examine the robustness of the models and compare the
explanations. We pose the questions: Are visual explana-
tions as robust to augmenting the input image as the predic-
tions? Are there differences among various explainability
methods and model architectures? Does training with aug-
mented images improve the robustness? Which explainabil-
ity methods are the best both in robustness to small augmen-
tations and in faithfulness measured by the pixel-flipping
test?

Related work The feasibility of adversarial attacks [2]
is well-known. It has been shown [9, 10] that explanation
methods are fragile as well and that attackers can manipu-
late the explanations arbitrarily. In this paper, we focus on
the fragility of the explanations in the case of more naturally
occurring (often unintentional) disruptions.

Data augmentation techniques [7, 34] have been used to
improve the generalization of the image classifiers (e.g.,
[24,31]). Rebuffi ef al. [21] found that using data augmen-
tations helps to improve the robustness against adversarial
attacks. Very recent work by Won et al. [33] found that data
augmentation used under model training has an impact on
model interpretability, however, they do not consider stabil-
ity under test time augmentation as in the present work.

Wang and Wang [32] built a model with transformation
invariant interpretations. However, this self-interpretable
model violates one of the desiderata for explanations [29]:
low construction overhead. We explore whether we could
get similar robustness with available post-hoc explainabil-
ity methods. Moreover, we broaden the set of considered
transformations.

Although explainability is important for understanding
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neural networks, the existing methods differ in the quality
of produced explanations and many saliency methods have
been criticized (e.g., [1, 15,20]). Therefore, metrics to eval-
uate the quality have been developed (e.g., [5,6,22]). Quan-
tus [13] is a toolkit that collects many of those metrics. Our
experiments shed further light on the stability of explain-
ability methods.

2. Methods

Augmentation methods Here we divide augmentation
techniques into two groups: invariant and equivariant meth-
ods. For invariant techniques, the explanation of the aug-
mented image should be the same as the explanation of the
original image. In the case of the equivariant techniques,
the explanation of the augmented image should be the same
as the augmented explanation of the original image.

We chose three invariant (change of brightness, hue and
saturation) and three equivariant techniques (rotation, trans-
lation and scaling). When using equivariant methods, the
background of each image was padded with black pixels to
match the original image format if necessary. In prelimi-
nary experiments, we studied the influence of various back-
ground padding methods and differences were negligible.

We used the library ImgAug [14] for augmenting im-
ages. For each method, we chose an interval of values so
that classification performance was reduced by 10%. A ta-
ble showing the chosen intervals for each method can be
found in Appendix B and Fig. 3 displays one image aug-
mented by values within these intervals for changing bright-
ness and rotation. The figures for the rest of the methods are
in Appendix B.

The experiments were performed on the ImageNet [8]
dataset. For comparing explanations, 500 images across all
ImageNet classes were randomly selected. Analyses were
done on the correctly classified images. For every augmen-
tation method and for each image, the interval of possible
values of the augmentation method parameter was divided
into equidistant units and augmented versions of the image
were created, one for each of these values. Each image was
passed through the networks to get the probability of the tar-
get class and we got explanations for post-hoc explainability
methods. We computed the Pearson correlation between the
explanations of the augmented images and the explanation
of the original image (augmented explanation in the case of
the equivariant methods) and top-1000 intersection (inter-
section of 1000 most important pixels in the explanation).
We compared only the area of the original image — hence,
in equivariant methods, we computed the correlation and
top-1000 intersection only on the parts that were present in
both the original and the augmented image and mask the
rest.

Metrics We can plot the probability of the target class and
all its augmented versions with the augmentation param-
eter on the x-axis and the probability on the y-axis. We
call this relation a probability curve. In the same way,
we plot the correlations between the original and the aug-
mented images (call it correlation curve) and the top-1000
intersections (fop-1000 curve). These curves can be vi-
sualised as in Fig. 2. To compare explainability methods
in a fair way, we score relative to classification certainty.
For a fixed range [M, N|, we compute a normalized area
under the response curve for z € [M, N], or, more pre-
cisely, the portion of this area out of a rectangle with corners
[M, 0], [N, 0], [N, 1], [M,1]. Moreover, to be able to com-
pare the scores of different curves and let the score depend
only on the shape of the curve, we ensure that the point on
the curve corresponding to the zero-augmented image takes
a value of 1 by shifting the response curve. Figure la il-
lustrates how the score is computed. For each curve, we
get a number between 0 and 1 and higher values indicate
a more stable response. Finally, since we want to compare
the robustness of the model’s predictions and its explana-
tions, we divide the score for the correlation (or top-1000)
curve of explanations by the score for the probability curve
and denote it as S(corelation, probability) (or S(top-1000,
probability)). If S(-, probability) is smaller than 1, it means
that the predictions are more stable than the explanations,
whereas values higher than 1 entails more robust explana-
tions. The intervals for augmentation parameters are chosen
such that the probability of the target class drops on average
by at least 10% at one of the endpoints (in comparison to
the original image).

Apart from comparing the robustness of the explainabil-
ity methods, we are interested in the overall quality of ex-
planations. One method for evaluating the quality is pixel
flipping [5]. We consider only the original and correctly
classified images. We flip the most relevant pixels first and
replace them with black pixels. For each perturbed image,
we divide its probability of the target class by the original
image’s probability of the target class and plot these values
as a curve by linear interpolation. We compute the normal-
ized area over the curve (up to 1) from zero to the first 20%
pixels flipped and average these numbers across all images.
Figure 1b visualizes how the pixel flipping score is com-
puted. A similar definition has been given by Samek et
al. [23]. Our definition differs in dividing the probabilities
instead of subtracting them. The fractions better capture the
relative decline of the probability and can take all values in
[0,1].

Networks We study three convolutional networks
(ResNet50 [12], VGGI16 [26], and EfficientNetV2
small [30]). Because of space constraints, we present
in this paper only the results for ResNet50. However,
the results for VGG16 and EfficientNet V2 small show

3716



target class probability

8
f(ﬁaugm Z

o

o

0 N 05 0.1 0.2 0.3

M 0
augmentation parameter portion of the pixels flipped

(a) Robustness score (b) Pixel flipping

Figure 1. Visualization of the metrics defined in Sec. 2. In both
cases, we compute the portion of the yellow part in the green rect-
angle.

similar tendencies. Since we wanted to explore the role
of augmenting images during training, we trained each
model architecture with two different settings. Models
trained with fully augmented data (denoted “full aug” in
the following) were trained with Trivial Augment wide [19]
strategy. Models trained with limited data augmentation
(denoted “lim aug”) used only random resized cropping,
random horizontal flipping and random erasing [36] (only
EfficientNet V2 and ResNet50). Details on training can be
found in Appendix A.

Explanation methods We investigated the following ex-
planation methods: Gradients [25], Input x Gradients [25],
Integrated Gradients [28], Guided Backpropagation [27],
Deconvolution [35] and three variants of Layer-wise Rel-
evance Propagation [4, 16] composites: EpsilonPlusFlat
(LRP-¢-rule for dense layers, LRP-a, 5 (. = 1,8 = 0),
also called ZPlus rule, for convolutional layers, and the flat
rule for the first linear layer), EpsilonGammaBox (LRP-¢-
rule for dense layers, the LRP-y-rule (y = 0.25) for con-
volutional layers, and the LRP-ZZ-rule (or box-rule) for
the first layer) and EpsilonAlpha2BetalFlat (LRP-¢-rule for
dense layers, LRP-«, 8 (o« = 2,8 = 1) for convolutional
layers and the flat rule for the first linear layer) [18]. We
used Zennit [3] to generate LRP explanations and Captum
[17] for the rest of the explainability methods.

The code and hyperparameters for reproducing the ex-
periments can be found in the project repository .

3. Results

Figure 2 shows the probability and correlation curves for
rotation and “ResNet50 full aug”. It shows that, although
the predictions do not change much for increasing magni-
tudes of augmentation, the drop in correlation is huge. Ta-
ble 1 shows S(corelation, probability) for all augmentation
and explainability methods tested on “ResNet50 full aug”.
We observe that the explanations are in most cases less sta-

Zhttps://github.com/LenkaTetkova/robustness—of-
explanations.git
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Figure 3. Examples of the augmented images and their explana-
tions.

ble than the predictions. Moreover, the robustness of ex-
planations depends on the augmentation method — for some
of them, the explanations are more robust than for others.
Specifically, explanations of images augmented by invariant
methods are more stable than the ones augmented by equiv-
ariant methods. The variance in robustness across explain-
ability methods was an unexpected finding. The most stable
ones, the composites of LRP and Guided Backprop, indicate
a certain degree of stability, whereas the least stable ones,
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[ Brightness | Hue | Saturation || Rotate | Scale | Translate

Gradients 0.468 0.442 | 0.354 0.127 | 0.122 | 0.246
Input x Gradients 0.330 0.443 | 0.343 0.126 | 0.120 | 0.245
Integrated Gradients 0.478 0.636 | 0.546 0.209 | 0.229 | 0.327
Guided Backprop 1.005 1.028 | 0.994 0.819 | 0.866 | 0.875
Deconvolution 0.975 1.014 | 0.975 0.434 | 0.437 | 0.449
LRP: EpsilonPlusFlat 0.923 1.053 | 1.038 0.796 | 0.834 | 0.792
LRP: EpsilonGammaBox 0.632 0.856 | 0.832 0.480 | 0.512 | 0.532
LRP: EpsilonAlpha2BetalFlat || 0.662 1.006 | 0.972 0.691 | 0.722 | 0.706

Table 1. Results of S(correlation, probability) for "ResNet50 full aug”

, computed on 391 (correctly classified) images.

All numbers are

with uncertainty (standard error of the mean) at most £0.007. Highlighted are the highest values for each augmentation.
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Figure 4. Comparison of S(corelation, probability) and pixel flip-
ping score for "ResNet50 full aug”. The scores are defined in
Sec. 2. The x-axis shows the average of the S(corelation, prob-
ability) for all six augmentation methods used in this paper. The
dashed line corresponds to a baseline pixel-flipping score com-
puted with random sorting of the pixels. The best methods are in
the top right corner.

Gradients and Gradients x Inputs, show a steep decrease in
the similarity of explanations even for small perturbations.
Figure 5 depicts the comparison of ResNet50 trained with
full and limited augmentations evaluated on the changes in
brightness. We can observe negligible differences between
both networks. Therefore, it indicates that training with data
augmentations does not diminish this problem. Additional
plots for other augmentation methods can be found in Ap-
pendix C.

However, stability is not the only desired property of
explainability methods. We need to consider also their
overall quality. In our experiments, we measured faith-
fulness, specifically pixel flipping score. Figure 4 shows
S(corelation, probability) against the pixel-flipping scores.
We can observe that all the LRP composites lie in the top-
right corner. On the other hand, Guided Backprop and De-
convolution attain low pixel-flipping scores in comparison
to other methods. This is not surprising because Nie et

1.2 —— ResNet50 full aug
ResNet50 lim aug

1.0
=
5 -
3
o 0.8
—_
o
c
o L
= 0.6
o
(0]
=
o
L 0.4 -
n

0.2 1

d\e“‘aa%(géomo\uﬂon p\us\’agt“maagg al\:\at

G‘a \on
Eps‘ 5\\0“ ANpne
Ep EP

\nP! o {egrate “‘de

Figure 5. Comparison of “ResNet50 full aug” (391 images) and
”ResNet50 lim aug” (385 images) for each explainability method.
We plot S(corelation, probability) for changes in brightness (Ad-
dToBrightness from -95 to 95). Boxes show the quartiles and me-
dians, and whiskers extend to the most extreme, non-outlier data
points.

al. [20] showed that these two methods do not depend much
on the tested model but rather perform a (partial) image re-
covery.

We consider the instability of explanations to be a serious
problem that is relevant for many domains where computer
vision tasks are solved using neural networks. Our study
contributes additional evidence that current explainability
methods cannot be trusted to deliver a reliable justification
of the outputs of a model. Many of the tested perturbations
may occur unintentionally when taking images under dif-
ferent light conditions, from a different angle or by domain
shift and variability of the data. Unless more stability of
explainability methods is ensured, explanations cannot be
trusted and used as a foundation for authorizing neural net-
works with important tasks with significant impact.
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4. Conclusion

We investigated the robustness of post-hoc explainabil-
ity methods under natural perturbations of the input images.
We found out that LRP composites and Guided Backprop
produce the most stable explanations and Gradients and In-
put x Gradients are the least stable ones. When perturbing
with the invariant methods (e.g., changing brightness, hue
and saturation), the explanations are more stable than when
perturbing with equivariant methods (e.g., rotation, scaling
and translation). Training with data augmentation does not
reduce this problem.
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