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Abstract

Monocular depth estimation is an essential but ill-posed
(computer) vision task. While human visual perception of
depth relies on several monocular depth clues, such as oc-
clusion of objects, relative height, usual object size, linear
perspective, deep learning models have to implicitly learn
these cues from labeled training data to determine depth.
In this paper, we investigate whether monocular depth cri-
teria from human vision are violated for certain image in-
stances given a model’s predictions. We consider the task
of depth estimation as a ranking problem, i.e., for a given
pair of points, we estimate which point is nearer to the cam-
era. In particular, we model four monocular depth criteria
to automatically predict a subset of point pairs and infer
their depth relation. Our experiments show that the imple-
mented depth criteria achieve comparable performance to
deep learning models. This allows the investigation of mod-
els with regard to the plausibility of predictions by finding
image instances where the prediction is incorrect according
to modeled human visual perception.

1. Introduction

Monocular depth estimation (MDE) is an essential com-
puter vision task with many applications, such as aug-
mented reality, robotics, or autonomous driving. Due to
the natural lack of reliable stereoscopic visual relationships
for monocular images, it is an ill-posed problem to regress
depth in 3D space [13]. While human visual perception
of depth relies on several monocular depth clues [5], such
as occlusion of objects, relative height, usual object size,
and linear perspective, deep learning models have to im-
plicitly learn these cues from labeled training data to de-
termine depth maps. The incorporation of additional con-
straints [15], e.g., from auxiliary tasks (e.g., semantic seg-
mentation [22, 24]), regularizing constraints (e.g., occlu-

Figure 1. Consider the task of monocular depth estimation and
a predicted depth map from a model. We automatically examine
whether strong monocular depth cues are satisfied (if visible). For
this purpose, a selection of point pairs with associated rank-based
depth (closer to camera) is evaluated for each criterion.

sion [12], linear perspective [13]), and cross-dataset train-
ing [18], guide models to learn more robust representations.
For specific image regions, e.g., from two visible objects, a
human can judge whether one point is closer to the cam-
era than the other. Motivated by this, some approaches
learn a pairwise rank-based depth between selected point
pairs sampled from ground-truth depth maps during train-
ing [10, 24, 25]. Other approaches incorporate metrics and
loss functions to assess the reconstructed 3D scene [12, 21]
via point cloud reconstruction [14] or depth discontinu-
ities [9], and tackle uncertainty estimation [6] in addition to
the traditional image-based metrics (like pixel-wise mean
absolute error) [21]. However, whether monocular depth
features are implicitly learned and whether the model’s pre-
dicted depth maps are plausible remains unclear.

This paper investigates whether monocular depth criteria
from human vision are violated for certain image instances
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given a model’s prediction. To gain insights into this prob-
lem, we introduce model sanity checks [7, 8] for MDE. For
example, humans often know whether a chair is in front or
behind another through usual size or occlusion (as in Fig. 1).
Consequently, we implement monocular depth criteria to
find point pairs that rank the relative depth in relation to
the camera. Point candidates are sampled based on criteria-
based preconditions. Since these pairs should present strong
depth cues according to human visual perception, we as-
sume that an MDE model is supposed to be correct for these
pairs, i.e., the relative ranking should be preserved. Exper-
imental results show that the proposed approach is able to
find image instances where this assumption is violated. This
indicates that combining deep learning models with monoc-
ular depth criteria may lead to further improvements (e.g.,
plausible predictions and more comprehensible results).

We describe the approach to perform this model-sanity
check for MDE in Sec. 2 and provide details of the imple-
mented depth criteria in Sec. 3. Experimental evaluation is
reported in Sec. 4. Sec. 5 concludes the paper and outlines
future research directions.

2. Model Sanity Check using Depth Criteria

As humans, we often know exactly whether a chair is
in front or behind another, through usual size or occlu-
sion (as in Fig. 1). In general, there are strong monocular
depth features for humans that provide information about
relative depth [5]. Inspired by Kang et al. [7, 8], we intro-
duce a model sanity check for MDE. Does a depth estima-
tion model that predicts depth maps violate certain relations
and criteria? This section formally presents an approach to
automatically detect potential violations.

Preliminaries: Consider an RGB image I ∈ Rh×w×3 and
depth information D ∈ Rh×w for each pixel, where h and
w denote the image height and width. The task of an MDE
model M is to predict the metric depth D̂M given image I
as input. Moreover, D[p] denotes the depth information of
a pixel or point p ∈ {1, . . . , h}×{1, . . . , w} identified by a
vertical and horizontal position. Without loss of generality,
lower values D[p] represent a lower distance to the camera.

2.1. Pairwise Rank-based Depth Information

Given a point pair (p1,p2), we define its rank-based
depth information such that D[p1] ≻ D[p2], i.e., p1

is “closer-to-camera” than p2 to evaluate the order re-
lation of individual parts in an image I. These rank-
ings can be obtained from various sources, e.g., (in-
complete) ground-truth (metric) depth maps, pseudo-depth
maps, or even by humans, using pair sampling strategies in-
cluding random [2], superpixel [25], and structure-guided
sampling [10, 24]. Rank-based depth information can be

sampled for a total number of nsamples ≪
(
h×w
2

)
point

pairs per image.

2.2. Model Sanity Check using Depth Criteria

Given an image I, we assume that the following in-
puts are provided: (1) a pseudo-depth maps for monocular
depth criteria (DC) D̃DC, like linear perspective or usual
size, (2) a predicted metric depth map D̂M from an MDE
model M, and (3) a respective ground truth DGT.

1. We sample nsamples point pairs from each pseudo-
depth map of the monocular depth criteria D̃DC (if avail-
able), and order their depth ranking such that D[p1] ≻
D[p2]. Since some depth criteria (Sec. 3) are only appli-
cable to specific image areas, the objective is to select only
those valid point pairs that can be described by the criterion.
2. To ensure that the ranking of the sampled points is cor-
rect, we verify the selected pairs derived from each pseudo
depth map D̃DC using the respective ground truth DGT.
Hence, for all selected point pairs, such pairs are rejected.
Please note that DGT is only used to sample pairs with cor-
rect ranking for the model sanity check, the prediction of
DDC and D̂M doe not use any ground-truth information.
3. For each verified pair (p1,p2), we check whether
model’s M prediction is correct, i.e., D̂M[p1] ≻ D̂M[p2].
For the set of verified pairs, the accuracy is computed as the
fraction between the number of correct model predictions
to the ground truth for each image and criterion.

In other words, the proposed procedure can be seen as an
additional metric for MDE, which is more comprehensible
for humans since it involves monocular depth criteria.

3. Modeling Monocular Depth Criteria
In this section, we present implementations for different

monocular depth criteria. All criteria are designed such that
for a selection of point pairs, it can indicate whether one
point is closer to the camera than the other (see Sec. 2.1).

Relative Height: Sometimes referred as elevation crite-
rion, it is assumed that points at the top of an image are
typically further away from the camera than points at the
bottom, in particular for outdoor images. Of course, this
(simple) criterion is not correct for all point pairs, e.g., if a
point is above the horizon, but can be considered as a weak
feature [3], i.e., often much better than random guessing.
The relative ranking for a point pair is computed according
to their vertical positions D[p1] ≻ D[p2] if p1[0] < p2[0].

Linear Perspective: One possibility to model linear per-
spective is to detect vanishing lines and corresponding van-
ishing points in an image. Since some lines meet in the
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same vanishing point, all points on a line towards the van-
ishing point increase in depth. Instead, 2D planes in the
image can be detected, which can be viewed as a gener-
alization of the vanishing point problem (all lines on one
plane meet in the same vanishing point). We apply the Plan-
eRCNN model [11] to detect planes, instance masks, and
corresponding normal vectors. Given two pixels (p1,p2)
on a detected plane with the predicted normal vector n, a
3D point x can be described by nx − d = 0, where d is
the (unknown) distance of the plane to the origin. Given
that any 3D point is projected to a 2D point according to
p = Kx = (x̂, ŷ, 1)T where K is the intrinsic camera
matrix, we can rewrite this equation, s.t.:

nK−1p− d =

n1

n2

n3

x̂z
ŷz
z

− d = 0 (1)

Resolving Eq. (1) for z obtains z = d/(n1x̂ + n2ŷ + n3).
Finally, given two randomly selected points p1,p2 on the
same plane, we know D[p1] ≻ D[p2] if z1 < z2 ⇐⇒
n1x̂2 + n2ŷ2 < n1x̂1 + n2ŷ1.

Occlusion: Recognizing clear boundaries of two objects
and being able to tell that one object is occluding the
other gives a strong sense of the depth ordering of the
scene. The P2ORM occlusion model [16] predicts occlu-
sion masks, orientation angles [16], and confidence scores
for each pixel p. We randomly choose k = 400 points us-
ing the top-k confidence scores to provide enough candi-
dates k > nsamples for sampling (Sec. 2.1). Given the
rotation angle, the second point is calculated to be directly
orthogonal on both sides of the occlusion boundary, and
hence, in combination with the occlusion mask, it can be
inferred whether p1 is closer to the camera than p2.

Usual Size: Humans have learned the usual size of ob-
jects in the world and apply the perceived size of those ob-
jects to infer the actual distance to that object. This knowl-
edge can be modeled by determining instance segmentation
masks for all objects in an image and by collecting prior
statistics about the 3D size of each object instance. We ap-
ply DETR [1] to automatically infer instance segmentation
masks. For each object class, we sample all instance masks
for a set of images with known depth maps. We then calcu-
late each object instance’s average depth ẑ from the respec-
tive ground-truth depth values. We then define the size in
3D as s ≈ g(z) ≈ z2

f2 a from the 2D object size a (sum of
all pixels) and focal length f , which can be interpreted as
the area of the 2D region of the image plane projected into
the scene by a factor of z. Having collected M measure-
ments for an object class, we then compute the approximate
probability density function ρs(s) [19]. Next, given ρs(s)

of an object, a measurement of the 2D size a and the focal
length f , we calculate the probability of z using the change
of variable method:

ρz(z) = ρs(g(z))g
′(z) = ρs(g(z))2z

a

f2
(2)

We aim to compute the probability that object 1 is closer to
the camera than object 2. Therefore, we define a random
variable r = z1

z2
where r follows the ratio distribution

ρr(r) =

∫ z2=zmax

z2=zmin

|z2| ρz1 (rz2) ρz2 (z2) dz2 (3)

and thus, for two points p1 ∈ z1, and p2 ∈ z2, hold
D[p1] ≻ D[p2] if:∫ r=1

r=0

∫ z2=zmax

z2=zmin

|z2| ρz1 (rz2) ρz2 (z2) dz2dr < 0.5

Please note that the actual focal length is only required to
compute the actual object size and has no effect on the rel-
ative depth ranking.

4. Experiments
In this section, we experimentally verify the proposed

approach of modeling sanity checks for MDE (Sec. 2) and
evaluate the implemented monocular depth criteria (Sec. 3).
The experimental setup is described in Sec. 4.1 whereas ex-
perimental results are presented in Sec. 4.2.

4.1. Experimental Setup

We apply several pre-trained state-of-the-art models1 in-
cluding Dense Prediction Transformers (DPT) [17] with
cross-dataset training (MiDaS) [18] and different back-
bones (SwinFormer, BEiT, ResNet), namely DPT Large,
midas DPT SwinV2 L 384, midas DPT BEiT L 512. Due to the
multi-dataset training, we assume that general depth cues,
i.e., monocular depth criteria, were learned, which is less
likely with training on individual benchmark datasets [18].
Evaluation is performed on the NYUv2 [20], KITTI [4], and
HRWSI [24] dataset. A subset of 1000 randomly selected
images is taken for evaluation from the respective training
split for each dataset.

4.2. Experimental Results

Do models violate monocular depth criteria? For each
image, we check whether the selected pairs, for which depth
criteria should be valid, the model’s prediction is also cor-
rect according to the procedure in Sec. 2.2. Results are
presented in Fig. 2 for one model M since similar con-
clusions can be drawn from the other two tested models.

1https://github.com/isl-org/MiDaS
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Figure 2. Performance of model M (midas DPT BEiT L 512) on individual images with respect to the compliance of monocular depth crite-
ria: For each image, point pairs per criteria are sampled (nsamples = 32) if the criterion is present and averaged over these pairs (accuracy).
The graph shows the sorted accuracy of the model M over different fractions of a dataset containing 1000 images.

The accuracy per criterion and image is independently or-
dered per dataset. The performance drops of model M for
individual depth criteria indicate its violation for certain im-
age instances. Additionally, some variance across different
datasets can be observed. Consequently, individual images
can be inferred where the model is wrong according to a
single monocular depth criterion.

Quality of implemented depth criteria: To assess the
performance of all implemented depth criteria (Sec. 3), a
comparison to the respective ground-truth ranking is con-
ducted for selected point pairs per criteria and image. Fig. 3
shows how often the prediction of each criterion is correct
compared to three MDE models on the same selected pairs.

Figure 3. Pairwise relative depth ranking accuracy for all criteria
compared to different models on three dataset. The same pairs per
image (nsamples = 32) are selected for all models.

Figure 4. Pairwise relative depth ranking accuracy while varying
the number of selected pairs per image (nsamples) on HRWSI.

The overall quality is similar to or slightly lower than the
tested depth estimation models. All selected pairs for depth
criteria are better than random depth ranking (correct = 0.5)
with the exception of occlusion on KITTI. Relative height is
a strong depth cue, in particular for outdoor images.

Does the number of sampled pixel pairs matter? While
varying the number of selected pairs per criteria, the perfor-
mance is almost unaffected by the number of point pairs
selected according to Fig. 4. This indicates that there are
always enough pairs to sample if the monocular depth cri-
terion is visible for a given image.

5. Conclusion
In this paper, we have investigated to what extent we

can analyze the plausibility of depth estimation results by
modeling and exploiting (human) monocular depth criteria.
Similar to related work, we consider depth prediction as a
ranking task of two or more points in the scene. Particularly,
we have modeled monocular depth criteria, namely usual
size, linear perspective, occlusion, and relative height (most
of them are only applicable to specific parts of an image).
Their implementation allows to sample a subset of point
pairs and to infer their depth relation. Experimental results
indicate that the proposed approach is able to find image in-
stances where these criteria are violated. This knowledge
can help to debug and improve these models [8]. For exam-
ple, during training of ranking models, the incorrect rank-
ing of point pairs could be weighted where depth criteria are
assumed to be correct, or this knowledge may help for user-
guided depth estimation [23]. One drawback of the sam-
pling based on the implemented depth criteria is that some
sampled point pairs may not reflect the human perception
of the underlying depth criteria. However, an evaluation of
this issue requires human annotations, which we leave open
as future work along with a more in-depth analysis (e.g.,
dataset bias) of the proposed sanity check.
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