Dynamic Graph Representation with Knowledge-aware Attention for Histopathology Whole Slide Image Analysis

Jiawen Li, Yuxuan Chen, Hongbo Chu, Qiehe Sun, Tian Guan, Anjia Han, Yonghong He; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 11323-11332

Abstract


Histopathological whole slide images (WSIs) classification has become a foundation task in medical microscopic imaging processing. Prevailing approaches involve learning WSIs as instance-bag representations emphasizing significant instances but struggling to capture the interactions between instances. Additionally conventional graph representation methods utilize explicit spatial positions to construct topological structures but restrict the flexible interaction capabilities between instances at arbitrary locations particularly when spatially distant. In response we propose a novel dynamic graph representation algorithm that conceptualizes WSIs as a form of the knowledge graph structure. Specifically we dynamically construct neighbors and directed edge embeddings based on the head and tail relationships between instances. Then we devise a knowledge-aware attention mechanism that can update the head node features by learning the joint attention score of each neighbor and edge. Finally we obtain a graph-level embedding through the global pooling process of the updated head serving as an implicit representation for the WSI classification. Our end-to-end graph representation learning approach has outperformed the state-of-the-art WSI analysis methods on three TCGA benchmark datasets and in-house test sets. Our code is available at https://github.com/WonderLandxD/WiKG.

Related Material


[pdf] [supp] [arXiv]
[bibtex]
@InProceedings{Li_2024_CVPR, author = {Li, Jiawen and Chen, Yuxuan and Chu, Hongbo and Sun, Qiehe and Guan, Tian and Han, Anjia and He, Yonghong}, title = {Dynamic Graph Representation with Knowledge-aware Attention for Histopathology Whole Slide Image Analysis}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {11323-11332} }