SurroundSDF: Implicit 3D Scene Understanding Based on Signed Distance Field

Lizhe Liu, Bohua Wang, Hongwei Xie, Daqi Liu, Li Liu, Zhiqiang Tian, Kuiyuan Yang, Bing Wang; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 21614-21623

Abstract


Vision-centric 3D environment understanding is both vital and challenging for autonomous driving systems. Recently object-free methods have attracted considerable attention. Such methods perceive the world by predicting the semantics of discrete voxel grids but fail to construct continuous and accurate obstacle surfaces. To this end in this paper we propose SurroundSDF to implicitly predict the signed distance field (SDF) and semantic field for the continuous perception from surround images. Specifically we introduce a query-based approach and utilize SDF constrained by the Eikonal formulation to accurately describe the surfaces of obstacles. Furthermore considering the absence of precise SDF ground truth we propose a novel weakly supervised paradigm for SDF referred to as the Sandwich Eikonal formulation which emphasizes applying correct and dense constraints on both sides of the surface thereby enhancing the perceptual accuracy of the surface. Experiments suggest that our method achieves SOTA for both occupancy prediction and 3D scene reconstruction tasks on the nuScenes dataset.

Related Material


[pdf] [arXiv]
[bibtex]
@InProceedings{Liu_2024_CVPR, author = {Liu, Lizhe and Wang, Bohua and Xie, Hongwei and Liu, Daqi and Liu, Li and Tian, Zhiqiang and Yang, Kuiyuan and Wang, Bing}, title = {SurroundSDF: Implicit 3D Scene Understanding Based on Signed Distance Field}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {21614-21623} }