-
[pdf]
[supp]
[arXiv]
[bibtex]@InProceedings{Zhang_2024_CVPR, author = {Zhang, Siwei and Bhatnagar, Bharat Lal and Xu, Yuanlu and Winkler, Alexander and Kadlecek, Petr and Tang, Siyu and Bogo, Federica}, title = {RoHM: Robust Human Motion Reconstruction via Diffusion}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {14606-14617} }
RoHM: Robust Human Motion Reconstruction via Diffusion
Abstract
We propose RoHM an approach for robust 3D human motion reconstruction from monocular RGB(-D) videos in the presence of noise and occlusions. Most previous approaches either train neural networks to directly regress motion in 3D or learn data-driven motion priors and combine them with optimization at test time. RoHM is a novel diffusion-based motion model that conditioned on noisy and occluded input data reconstructs complete plausible motions in consistent global coordinates. Given the complexity of the problem -- requiring one to address different tasks (denoising and infilling) in different solution spaces (local and global motion) -- we decompose it into two sub-tasks and learn two models one for global trajectory and one for local motion. To capture the correlations between the two we then introduce a novel conditioning module combining it with an iterative inference scheme. We apply RoHM to a variety of tasks -- from motion reconstruction and denoising to spatial and temporal infilling. Extensive experiments on three popular datasets show that our method outperforms state-of-the-art approaches qualitatively and quantitatively while being faster at test time. The code is available at https://sanweiliti.github.io/ROHM/ROHM.html.
Related Material