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Abstract

Vision-Language Models (VLMs) such as CLIP are
trained on large amounts of image-text pairs, resulting
in remarkable generalization across several data distribu-
tions. However, in several cases, their expensive train-
ing and data collection/curation costs do not justify the
end application. This motivates a vendor-client paradigm,
where a vendor trains a large-scale VLM and grants only
input-output access to clients on a pay-per-query basis in
a black-box setting. The client aims to minimize inference
cost by distilling the VLM to a student model using the
limited available task-specific data, and further deploying
this student model in the downstream application. While
naive distillation largely improves the In-Domain (ID) ac-
curacy of the student, it fails to transfer the superior out-
of-distribution (OOD) generalization of the VLM teacher
using the limited available labeled images. To mitigate
this, we propose Vision-Language to Vision - Align, Dis-
till, Predict (VL2V-ADiP), which first aligns the vision and
language modalities of the teacher model with the vision
modality of a pre-trained student model, and further distills
the aligned VLM representations to the student. This max-
imally retains the pre-trained features of the student, while
also incorporating the rich representations of the VLM im-
age encoder and the superior generalization of the text em-
beddings. The proposed approach achieves state-of-the-art
results on the standard Domain Generalization benchmarks
in a black-box teacher setting as well as a white-box setting
where the weights of the VLM are accessible. Project page:
http://val.cds.iisc.ac.in/VL2V-ADiP/

1. Introduction
While the initial success of Deep Learning was predomi-
nantly driven by training specialized models for each task
or dataset [26, 29], recent research on foundation models
[24, 34, 47, 65] eliminates the need for this by training
generic models jointly over several modalities using large-
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Figure 1. Schematic diagram showing class and domain distri-
butions in the shared text/ image embedding space of a VLM:
VLMs learn highly specialized image representations that are not
domain invariant. Thus, a linear classifier (red decision bound-
ary) that is trained over the vision encoder using limited training
data cannot generalize well to the target domain (shown in pur-
ple). On the other hand, generic text embeddings such as “A photo
of a class” represent the core concept of a class by virtue of their
training method and vast training data. Thus, they generalize ef-
fectively across domains, and a zero-shot classifier (green decision
boundary) aligns better with the true distribution of classes.

scale data. The use of both image and language modal-
ities in large-scale Vision-Language Models (VLMs) en-
ables their use in several applications including zero-shot
classification, where the embedding of an image is com-
pared with text embeddings for “a photo of a {class}” cor-
responding to every class during inference and the class
with highest similarity is predicted. For example, the LiT
(private) model [65] has been trained on 4 billion image-text
pairs scraped from the web, and it achieves 85.2% zero-shot
accuracy on ImageNet. VLMs also demonstrate extraordi-
nary performance across several distributions, owing to the
vast diversity of distributions seen during their training [47].

The remarkable OOD generalization of VLMs makes
them suitable for use in several applications, either directly
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or after finetuning on the downstream target dataset. Al-
though several open-sourced models such as CLIP [47] are
easily accessible, they may not be suitable for use in special-
ized applications. For example, the training data may have
to be curated to reduce biases in the model or to ensure data
privacy. It may also be important to ensure that the web-
crawled data is clean for adoption in critical applications
such as autonomous driving, to avoid data-poisoning attacks
[4, 7]. Further, general-purpose models cannot be used in
specialized applications such as medical diagnosis, where
a VLM trained on data containing expert comments can
be invaluable. This motivates the need for training highly
specialized VLMs, which can be expensive due to the high
costs associated with data collection/ curation and training.

A given downstream application may not always justify
the cost associated with training such large-scale models.
However, since these VLMs are generic and applicable to
several downstream applications, one vendor could train
such a model, and make it available to several clients in
a black-box setting on a pay-per-query basis. In this case,
the client can minimize their inference time costs by distill-
ing the VLM to a student model using the limited available
data specific to the downstream task, and deploying the dis-
tilled model rather than the VLM. Since the key motivation
of using VLMs is their generalization to several domains,
reliable OOD performance of the distilled model is crucial.

In this work, we consider the problem of distilling a
multimodal Vision-Language model to a unimodal Vision
model using limited task-specific downstream data, targeted
toward better OOD performance with respect to the train-
ing domains used for distillation. While standard distilla-
tion of VLMs would require training data comprising of
images and their associated text, in this case, the training
data consists of only labeled images, similar to a classifica-
tion task. Moreover, since the superior generalization abil-
ities of VLMs are a result of the large-scale data (∼ 400
million in the case of CLIP) used for their training, it is
challenging to transfer these generalization abilities using
a limited dataset comprising around 10,000 (0.01 million)
images [16, 30, 60]. Lastly, since the VLM is considered to
be a black box, the image encoder’s weights cannot be used
as initialization to the vision model for further fine-tuning.
However, since the downstream task-specific data is limited
and is insufficient to train models from scratch, we assume
that the student is initialized with weights from a model pre-
trained on a publicly available dataset such as ImageNet-1K
[26], as is common in a domain-generalization setting [19].

While knowledge distillation [20] using the labeled task-
specific images improves the In-Domain accuracy on the
downstream task, the improvement in OOD accuracy is
marginal due to the limited size of the dataset. To ad-
dress this, we first analyze the robustness of the text and
image embeddings from the VLM and highlight the impor-

tance of text embeddings for better OOD generalization (see
Fig.1). Further, we propose VL2V-ADiP: Vision-Language
to Vision - Align, Distill, Predict, to firstly align the fea-
tures of the pre-trained student model with the text and im-
age modalities of the VLM teacher, and further fine-tune
the student backbone in a distillation framework. This im-
proves the robustness of the student, while also aligning the
student embeddings to the VLM’s text embeddings corre-
sponding to the respective class, thereby making the latter
suitable for use as a classifier in the student without the need
for further training. We summarize our contributions below:
• We investigate the robustness of image and text embed-

dings of VLMs, and highlight the importance of the text
embeddings for better OOD generalization.

• To demonstrate the superior generalization of text em-
beddings, we propose VL2V-SD - a self-distillation ap-
proach, that improves the OOD generalization of the
VLM’s pre-trained vision encoder using supervision from
its own text encoder in a white-box VLM setting.

• We further propose VL2V-ADiP - a black-box distillation
approach that effectively combines the features of a pre-
trained vision model with the text and vision encoders of
a VLM teacher for better OOD generalization.

• We demonstrate state-of-the-art results on standard Do-
main Generalization benchmark datasets in both white-
box and black-box settings of the VLM teacher.

2. Related Works
Vision-Language Models (VLMs): VLMs are trained
on large-scale datasets of image-text pairs crawled from
the web [10, 53, 58]. Contrastive pre-training methods
[24, 34, 47, 65] maximize the similarity between the embed-
dings of matching image-text pairs. More recent efforts fo-
cus on scaling up image-text pre-training to larger datasets
[34], better supervision with unimodal and multimodal data
[56], data-efficient pre-training [36], and fine-tuning VLMs
for downstream tasks [18, 28, 63]. Another line of work
focuses on leveraging CLIP [47] to improve the OOD gen-
eralization in image classification [40, 55] .
Domain Generalization (DG): Prior works learn domain
invariant representations by using augmentations [41, 42,
50], feature alignment across domains [17, 33, 35, 57], and
disentangling domain-specific and domain-invariant fea-
tures [11, 38, 45]. Gulrajani et.al [19] demonstrate that a
well-tuned ERM model is comparable to several past DG
algorithms [1, 5, 21, 27, 31, 32, 52, 62, 66]. SWAD [8] is a
generic strategy that performs weight-averaging across dif-
ferent model snapshots in the optimal basin during training.
MIRO [9] proposes Mutual Information (MI) regulariza-
tion to maximally retain the pre-trained model’s representa-
tions. SAGM [61] aligns gradient directions between the ϵ-
perturbed loss and the empirical risk. We demonstrate per-
formance gains when compared to the existing DG methods
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Table 1. CLIP on DG datasets: Performance (%) of CLIP ViT-
B/16 model on using different embeddings in the classifier head
for computing similarity w.r.t. the test image during inference
(T.E.: Text Embedding, I.E.: Image Embedding).

Embedding used for computing similarity OH TI VLCS PACS Avg.

E1: Text embedding for ”A photo of a
{class}” 82.36 34.19 82.08 96.10 73.68

E2: Avg. text embedding for ”A {domain}
of a {class}” across all train domains 83.70 35.55 82.28 96.21 74.44

E3: Avg. image embedding of each class
(Source) 71.37 33.99 48.21 79.03 58.15

E4: Avg. image embedding of each class
(Target) 78.21 38.69 69.31 93.08 69.82

E5: Avg. image embedding of 10 images
per class closest to test image (Source) 76.42 39.33 76.42 92.15 71.08

E6: Avg. image embedding of 10 images
per class closest to test image (Target) 84.86 85.38 87.88 98.32 89.11

in both white-box and black-box settings of the VLM. More
recently, several methods perform diverse training of multi-
ple models, followed by weight-averaging to improve OOD
generalization [2, 23, 48, 49]. However, they incur the enor-
mous expense of training several diverse models. We thus
restrict our comparison to DART [23], where the number
of models trained is lower than the others. Another direc-
tion has been the generation of better prompts for improved
generalization of VLMs [39, 54, 67]. These methods can be
integrated with the proposed approach.
Knowledge Distillation (KD): Knowledge distillation aims
to transfer knowledge from a powerful teacher model to
a compact student model. Output-distillation [20] uses
the teacher’s softmax outputs as guidance for the student.
Feature-distillation methods [12–14, 37, 43, 51] use the
teacher’s intermediate representations as guidance since
they contain richer information. The proposed method op-
erates in the black box distillation setup that allows only
input-output access to the teacher network and restricts ac-
cess to intermediate features. We thus compare the pro-
posed black-box approach only with methods that do not
access intermediate features [13, 20, 22].

3. Notations

We consider the problem of Knowledge Distillation (KD)
from VLMs (teacher) to vision models (student) for im-
proved OOD generalization. We denote the VLM’s text em-
bedding for the input, “A photo of a {class}” for class c as
Tc. The image embedding corresponding to the image x is
denoted as Ix. The student model’s features corresponding
to an input x are denoted as Fx. These features when pro-
jected to the same dimension as the VLM embeddings (Ix
and Tc), are denoted as PFx. The cosine similarity between
two vectors a and b is denoted as cos(a,b). While we use
CLIP [47] as the teacher for most of our analysis and exper-
iments, we show the compatibility of the proposed approach
with other VLMs [34, 36, 56, 64] in Suppl. Sec-3.3.

4. Robustness of CLIP embeddings
In this section, we present an overview of the training and
zero-shot evaluation of the CLIP model, followed by a study
on the robustness of its image and text embeddings.

4.1. CLIP training and zero-shot prediction

CLIP is a VLM that consists of an image encoder and a text
encoder trained jointly on 400 million web-scraped image-
text pairs [47]. The outputs of CLIP are the text and image
embeddings for the respective text and image inputs. CLIP
is trained using a contrastive loss which enforces similarity
between the representations of positive image-text pairs and
disparity between the representations of negative image-text
pairs in the training minibatch. The training objective of
CLIP is shown in Eq.1, where the embeddings of the ith

image-text pair are represented as Ii and Ti respectively.:

LCLIP(xi) = − log
exp(cos(Ii,Ti))∑C
c=1 exp(cos(Ii,Tc))

(1)

The use of both text and image modalities during training
enables the effective use of text embeddings as a zero-shot
classifier, where inference can be performed directly with-
out access to training data. For this, the text embeddings Tc

corresponding to the captions “A photo of a {class}” for
each of the C classes are compared with the image embed-
ding Ii, and the class with maximum similarity is predicted
as shown in Eq.2. Thus, the text embeddings Tc can be
viewed as the weights of a classifier for a CLIP backbone.

ŷi = argmaxc cos(Ii,Tc) (2)

4.2. Characteristics of image and text embeddings

CLIP [47] shows remarkable zero-shot performance as
shown in Table-1 (E1), and outperforms even an ImageNet
pre-trained model that is explicitly fine-tuned using the
downstream dataset (Table-3) on several DG datasets. To
understand its superior zero-shot performance, we discuss
below the robustness of its image and text embeddings.

Characteristics of the Image Encoder: In image clas-
sification tasks, the representations learned using standard
ERM training are expected to exhibit invariances to several
factors of variation due to: (a) the classification objective
that enforces similar representations for different variations
within a given class, which are different from the represen-
tations for other classes and (b) augmentations such as color
jitter that enforce additional invariance. However, CLIP
is trained using detailed captions for each image, such as
“A brown cat sitting on a sofa”, “A black cat standing on
two limbs”, and “A black dog with long ears and a lot of
fur”. This allows CLIP to learn rich specialized represen-
tations for each attribute, with higher intra-class variance
when compared to standard ERM training.
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Characteristics of the Text Encoder: Robustness to
distribution shifts can be achieved either by incorporating
the required domain-invariance in the feature extractor, or
by domain-invariant feature selection at the classification
head. As discussed, CLIP’s image encoder produces input-
specific representations and is not domain invariant. The
superior generalization of CLIP on different datasets and
domains is thus a result of the robust text embeddings. Al-
though descriptive captions such as “A brown cat sitting on
a sofa” are expected to have unique embeddings based on
pose, location, etc., generic captions such as “A photo of a
{class}” represent the core concept of the class.

Empirical observations: In Table-1, we present results
to demonstrate the robustness of CLIP text embeddings
on the multi-source Domain Generalization benchmarks,
where each dataset consists of images from n domains. The
results presented are an average of n cases, where each case
corresponds to the training on a given set of n− 1 domains
and testing on the remaining unseen domain referred to as
the target domain. Firstly, CLIP zero-shot results (E1) show
the robustness of text embeddings across different distribu-
tions. The robustness of the text embeddings can be im-
proved by explicitly enforcing domain invariance for better
generalization to unseen domains (E2). However, the same
level of robustness is not seen when we use an average of
all image embeddings across the same domains for a given
class, as shown in E3. This is due to the fact that while
the text embeddings for “A {domain} of a {class}” are ob-
tained by training over a large dataset (400 million images),
the image embeddings are an average of ∼ 0.01 million im-
ages on the downstream dataset. This is illustrated in Fig.1,
where the red decision boundary trained using image em-
beddings misclassifies images from the unseen target do-
main, while the green classifier trained using the generic
text embeddings is closer to an ideal decision boundary.
However, an average image embedding on the target do-
main improves results significantly (E4). The accuracy im-
proves further when an average embedding corresponding
to a few (10) source domain images closest (in terms of co-
sine similarity of image embeddings) to the target image is
used for each class during prediction (E5). A similar exper-
iment using images from the target domain (E6), achieves
considerable improvements over the zero-shot accuracy in
E1. We can consider E6 as an In-(target)-Domain setting
where a labeled hold-out validation set is used during pre-
diction for obtaining the average embeddings. Therefore,
it is possible to outperform the generalized representations
of the text embeddings only when labeled images from the
target domain are available. Thus, in a DG setting where
the target domain is inaccessible, the generic text embed-
dings provide the best robustness across distribution shifts.
We therefore use the text embeddings to maximally transfer
their robustness to the student model.

5. Proposed Approach: VL2V-ADiP
In this section, we first present the knowledge distilla-
tion framework adapted to a VLM-to-vision distillation set-
ting. We further propose a self-distillation approach VL2V-
SD, to enhance the robustness of the VLM image encoder,
which motivates the proposed approach VL2V-ADiP.

5.1. Distillation from VLMs to Vision models

The standard framework of Knowledge Distillation (KD)
[20] applies in the unimodal setting, for instance, where the
teacher and student are both vision models. To adapt this to
a VLM-to-vision distillation setting, a classification model
(which we refer to as a VLM-classifier) is first constructed
using the VLM. The feature extractor of the VLM-classifier
comes from the image encoder of the VLM, and the linear
classifier head obtains its weights from the text embeddings
Tc corresponding to the captions “a photo of a {class}” for
all C classes. For every image-label pair (xi, yi), the VLM-
classifier first computes the image embedding Ixi

, and fur-
ther computes its similarity w.r.t. each of the text embed-
dings Tc. The similarity scores cos(Ixi ,Tc) are considered
to be analogous to the logit layer, over which the softmax
function is applied. The final distillation loss of the student
that is minimized during training is shown below in Eq.4 for
a minibatch of size n. Here, fS(.) and fT(.) represent the
softmax representations of the student and teacher respec-
tively, CE represents the Cross-Entropy loss, and KL repre-
sents the Kullback-Leibler divergence. Temperature scaling
is applied to the logits before computing softmax [20]. We
tune over the range - {0.1, 1, 10} on the in-domain valida-
tion set, and report the baseline best results in Table-3.

fT(xi) = softmax(cos(Ixi ,Tc)) (3)

LKD =
1

n

n∑
i=1

{
CE(fS(xi), yi)+λ ·KL

(
fT(xi)||fS(xi)

)}
(4)

5.2. Self-Distillation from Text to Image encoders

As discussed in Section-4.2, the image encoder of CLIP is
trained to represent all factors of variations in an image that
are described in the corresponding caption used during its
training. Therefore, it does not exhibit the invariances to
factors such as color, texture, lighting, and pose, that are
required for an image classification task. On the other hand,
text prompts allow much better control over invariances in
text-embeddings. For example, a prompt such as “A brown
cat sitting on a sofa” uniquely represents the color, location,
and pose of the cat in addition to the object itself, whereas
a prompt “A photo of a cat” is invariant to such variations.

Motivated by this, we propose Vision-Language to Vi-
sion Self Distillation (VL2V-SD), where the invariances of
generic text embeddings are distilled to the image encoder
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Figure 2. Overview of the proposed approach VL2V-ADiP, consisting of (a) Align, (b) Distill and (c) Predict Stages for Black-Box
Distillation from Vision-Language to Vision (VL2V) models.

using the downstream dataset. We minimize the loss shown
in Eq.5 for training, where Tyi

represents the embedding
for “A photo of a {class}” corresponding to the ground truth
class yi, and Itxi

, Isxi
represent the image embeddings of the

teacher and student respectively for an image xi.

LSD = − 1

2n

n∑
i=1

{
cos(Isxi

,Tyi
) + cos(Isxi

, Itxi
)
}

(5)

The image encoders of both teacher and student are the
same (VLM’s image encoder) initially, and the student’s im-
age encoder is updated during training. The text encoder is
frozen during training. While the first term enforces the
image encoder to learn representations that match the cor-
responding text embeddings more accurately on the given
dataset, the second term ensures that there is no representa-
tion collapse, and retains the rich features learned by the im-
age encoder. The classifier is composed of text embeddings
corresponding to the prompts “a photo of a {class}” for all
classes, as was the case in the VLM-classifier discussed in
Section-5.1. We present the results of VL2V-SD in Table-
2, where we note significant improvements over both CLIP
zero-shot and the SOTA DG methods - SWAD [8], MIRO
[9], DART [23], and SAGM [61] on the ViT-B/16 architec-
ture with CLIP initialization. We demonstrate significant
gains over the CLIP fine-tuning methods LP-FT [28], FLYP
[18], CLIPood [55], and WiSE-FT [63]. We also achieve
significant gains over a distillation method RISE [22], de-
spite using the standard text prompt while RISE uses an ex-
panded set of prompts. For WiSE-FT, we present the re-
sults with the optimal α that achieves the best performance
by using the search space α = [0.1 − 0.9]. Similarly, for
RISE, we present the results with the optimal hyperparam-
eters λ1, λ2, λ3 based on their search space. We incorpo-
rate SWAD [8] in all our runs for the baselines as well

Table 2. White-Box setting (CLIP initialization): Performance
(%) of the proposed approach VLV2-SD, compared to the existing
methods. ViT-B/16 architecture is used. (S) denotes SWAD [8].

Method OH TI VLCS PACS DN Avg-ID Avg-OOD

Zero-shot [47] 82.40 34.10 82.30 96.50 57.70 - 70.60
SWAD [8] 81.01 42.92 79.13 91.35 57.92 89.05 70.47
MIRO (S) [9] 84.80 59.30 82.30 96.44 60.47 91.00 76.66
DART (S) [23] 80.93 51.24 80.38 93.43 59.32 89.25 73.06
SAGM (S) [61] 83.40 58.64 82.05 94.31 59.05 89.74 75.49
LP-FT (S) [28] 81.17 47.26 80.88 92.92 57.04 88.97 71.85
FLYP (S) [18] 82.76 33.25 66.64 78.53 57.41 78.94 63.72
CLIPood (S) [55] 83.31 46.28 77.19 93.16 57.78 69.90 71.55
WiSE-FT (S) [63] 86.32 54.50 82.88 97.29 58.01 88.35 75.80
RISE (S) [22] 78.39 49.61 80.62 93.25 55.37 87.91 71.45
VL2V-SD (Ours) 87.38 58.54 83.25 96.68 62.79 89.99 77.73

as the proposed approach (denoted by “(S)”) since it is a
generic technique that improves the generalization of any
given method. However, we do not incorporate SWAD with
WiSE-FT since it already performs weight averaging of the
pre-trained and fine-tuned models. We present the results
without SWAD in Suppl. Sec-3.2.

5.3. VL2V - Align, Distill, Predict (VL2V-ADiP)

While VL2V-SD is very effective in improving the perfor-
mance of the VLM in a white-box setting, it does not ad-
dress the problem of black-box distillation that we consider
in this work, since it assumes access to the weights of the
VLM model. In this section, we discuss how this method
can be adapted to the black-box setting and present the pro-
posed approach VL2V-ADiP. Since the amount of down-
stream task-specific data is assumed to be limited, the stu-
dent is initialized with the best available pre-trained model
such as ImageNet [26].

In the self-distillation case seen in Section-5.2, the goal
was to induce domain invariance from the text encoder to
the image encoder, while ensuring that the rich features
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learned by the image encoder are not lost. Whereas, in
the black-box setting, the goal is to distill the rich fea-
tures learned by the image-encoder of the VLM and the do-
main invariance from the text embeddings. While the two
cases can have a similar loss formulation as shown in Eq.5,
the method VL2V-SD cannot directly be applied here since
the feature dimension of the student model may be differ-
ent from the dimension of VLM’s image and text embed-
dings. Even if the dimensions had matched, the features
of the ImageNet pre-trained backbone and VLM’s embed-
dings would be misaligned. Directly enforcing a similar-
ity loss in such a case would lead to forgetting of the pre-
trained features. To address this, we propose VL2V-ADiP,
Vision-Language to Vision - Align, Distill, Predict as shown
in Fig.2 (Ref: Alg. 1 in Suppl.). We propose to first Align
the features of the pre-trained student model with VLM em-
beddings using a linear projection head on the student back-
bone in Stage-1, as shown in Fig.2(a). For this, the student
backbone is frozen and only the projection head is trained
using the following loss, where PFs

xi
represents the pro-

jected features of the student model for the input xi:

LADiP = − 1

2n

n∑
i=1

{
cos(PFs

xi
,Tyi) + cos(PFs

xi
, Itxi

)
}
(6)

Next, the aligned student features are refined using the
VLM’s image and text embeddings in the Distill step as
shown in Fig.2(b) (Stage-2). For this step, the linear pro-
jection head is frozen, and the feature extractor is trained
using the same loss as Stage-1, as shown in Eq.6. While we
give equal weight to both loss terms in Eq.6, we present the
impact of varying this in Suppl. Sec-4. Finally, in Stage-3
(Predict), the VLM’s embeddings corresponding to “a photo
of a {class}” for all C classes are used as weights of the
classification head, and the class with the highest similar-
ity to the given image embedding is predicted, as shown in
Eq.2. In addition to learning the rich features from the VLM
teacher’s image-encoder and invariances from its text en-
coder, enforcing similarity between the features of the stu-
dent backbone and the text embeddings of the correspond-
ing classes also makes the text embeddings more suitable
for use as a classifier in Stage-3 (Predict). Thus, although
Stages 1 and 2 explicitly train only the student backbone
and projection head, they implicitly impact the effectiveness
of the classification head as well. This facilitates the use of
these embeddings directly as a classifier without the need
for fine-tuning further on the downstream dataset. As shown
in Table-5, further fine-tuning degrades the performance,
since only In-Domain (ID) data is available for fine-tuning,
which would make the classifier forget the domain invari-
ance that it inherently possesses. However, fine-tuning with
limited In-Domain data improves the ID accuracy as shown
in the table.

6. Experiments and Results
6.1. Evaluation Details

Towards evaluating the OOD generalization of image clas-
sification models, we consider the five popular Domain
Generalization (DG) datasets - OfficeHome (OH) [60],
PACS [30], VLCS [16], Terra-Incognita (TI) [3] and Do-
mainNet (DN) [44]. Each of the datasets consists of d do-
mains, where d = 4 for the first four datasets and d = 6
for DomainNet. We present more details on the datasets in
Suppl. Sec-2. We follow the DomainBed [19] framework
for training and evaluation, where each domain is split into
training and validation sets, and training is performed on
d − 1 domains while evaluation is done on the dth unseen
domain. Thus, for every dataset, d models are trained, by
leaving one domain out for evaluation each time. The aver-
age accuracy across these d runs on the unseen test domain
(OOD accuracy) and the average In-domain (ID) validation
split accuracy are reported. The unseen test domain is nei-
ther used for training nor for hyperparameter tuning [19].

6.2. Training Details

The number of training iterations is set to 5000 for Office-
Home, PACS, VLCS, and Terra-Incognita, and to 15000 for
DomainNet, as is standard [8, 9]. We use the Adam opti-
mizer with a constant learning rate of 5 × 10−5 for all our
experiments except CLIPood (S) in Table-2, for which we
use the AdamW optimizer as specified in [55]. These set-
tings are fixed for all datasets, and we do not introduce any
additional hyperparameters in the proposed algorithm. Our
primary evaluations consider a ViT-B/16 architecture [15]
for both the VLM (teacher) Image-encoder and the student
model to enable a fair comparison with existing methods,
that use the same architecture. Since one of the key moti-
vations of distillation is to train a low-capacity model, we
present results with lower-capacity student architectures as
well. We use a CLIP teacher model, which uses a Trans-
former architecture [59] with modifications described by
Radford et al. [46] for the text encoder. The student model
and our primary baselines for VL2V-ADiP use an ImageNet
pre-trained initialization [26], as is standard in DG [19]. We
obtain the results of baseline methods on ViTs in Tables
2 and 3 by integrating the official code of the respective
method with the MIRO [9] code base to ensure a fair com-
parison. Additionally, we show results with other teacher
VLMs in Suppl. Sec-3.3.

6.3. Comparison with the SOTA

We present the ID and OOD results of the proposed ap-
proach VL2V-ADiP when compared to the DG and KD
baselines in Table-3. Gulrajani and Lopez-Paz [19] show
that ERM training is a very strong baseline in DG and out-
performs several older methods that were proposed. Thus,
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Table 3. SOTA comparison with ImageNet initialization: Per-
formance (%) of the proposed approach VL2V-ADiP, compared
to existing KD and DG methods with SWAD (S). ViT-B/16 with
ImageNet-1K initialization is used as the student.
Method OH TI VLCS PACS DN Avg-ID Avg-OOD

ERM-LP (S) 71.48 31.35 77.52 67.02 36.65 73.99 56.81
ERM Full Fine-tuning (S) 83.22 50.05 80.33 90.28 56.10 89.31 72.00
LP-FT (S) [28] 81.55 51.61 80.17 91.20 56.03 90.03 72.11
SimKD (S) [13] 66.76 81.01 83.92 28.24 49.42 68.24 61.87
KD (S) [20] 82.73 48.40 80.48 91.46 56.11 89.20 71.84
MIRO (S) [9] 80.09 50.29 81.10 89.50 55.75 88.71 71.35
DART (S) [23] 83.75 49.68 77.29 90.55 58.05 88.54 71.86
SAGM (S) [61] 82.22 53.24 79.60 90.02 55.66 89.22 72.15
Text2Concept (S) [40] 70.24 26.46 64.77 79.03 23.26 53.15 52.82
RISE (S) [22] 83.48 52.55 83.70 93.54 56.58 88.91 73.97
VL2V-ADiP (Ours) 85.74 55.43 81.90 94.94 59.38 89.02 75.48

Table 4. Distillation to lower capacity student models: Per-
formance (%) of the proposed approach VL2V-ADiP (denoted as
Ours), when compared to the KD baseline [20] and ERM (S) or
SWAD [8] with different student architectures. The teacher archi-
tecture is ViT-B/16. (S) denotes SWAD.
Student Method OH TI VLCS PACS DN Avg-ID Avg-OOD

ViT-B/16
(86M)

ERM (S) 83.22 50.05 80.33 90.28 56.10 89.31 72.00
KD (S) 82.73 48.40 80.48 91.46 56.17 89.20 71.85
Ours (S) 85.74 55.43 81.90 94.94 59.38 89.02 75.48

ViT-S/16
(22M)

ERM (S) 78.58 49.40 78.72 85.80 52.09 85.66 68.92
KD (S) 78.14 50.11 79.14 85.97 52.05 87.43 69.08
Ours (S) 81.22 52.47 81.44 89.32 54.23 86.59 71.73

DeiT-S/16
(22M)

ERM (S) 74.95 47.85 79.37 89.22 49.18 86.58 68.12
KD (S) 74.65 48.11 78.86 88.14 49.10 86.66 67.77
Ours (S) 77.63 48.72 81.89 88.97 50.37 85.28 69.52

ResNet-50
(26M)

ERM (S) 70.85 49.47 79.50 88.05 46.43 84.88 66.86
KD (S) 70.67 51.22 78.63 87.23 46.31 85.04 66.81
Ours (S) 74.42 53.46 79.23 86.72 47.74 84.73 68.31

ERM training of only the linear layer (ERM-LP) and ERM
full fine-tuning (ERM-FFT) are two important baselines
we consider. Further, we present the results of important
SOTA DG methods - SWAD [8], MIRO [9], DART [23],
and SAGM [61]. Additionally, we also show results with
Text2Concept [40] and LP-FT [28] - simple fine-tuning
strategies for improved OOD generalization on downstream
tasks. While there are several methods that outperform
ERM [6, 25, 41, 57], we do not present all of them here
since the above-listed recent methods outperform them.
Since we incorporate SWAD in the proposed approach, we
present all the baseline results by integrating SWAD with
each of them and denote them with a suffix “(S)” in the
tables. Additionally, we also present three distillation re-
sults - (a) knowledge distillation from the VLM teacher to
the vision student model as discussed in Section-5.1 and
(b) distillation from the VLM teacher using SimKD [13],
and (c) distillation from the VLM teacher using RISE [22].
Since the feature distillation methods listed in Sec. 2 cannot
be extended to the black box distillation setting, we do not
compare with them. The proposed approach VL2V-ADiP
achieves ∼1.5% improvement on average OOD accuracy
across all datasets with respect to the best baselines, with
comparable ID accuracy. We note that Text2Concept scales

poorly on smaller datasets compared to the results shown in
the paper [40]. SimKD [13] is a method intended for uni-
modal distillation and thus fails for the multimodal setup.
Furthermore, we outperform the method RISE [22] by a
large margin despite the latter using expanded text prompts.
This shows that the proposed distillation method VL2V-
ADiP effectively distills from VLMs with lesser prompt en-
gineering and text supervision compared to RISE.

6.4. Distillation to lower capacity student models

We present results of distilling from a CLIP ViT-B/16
teacher to different student architectures and capacities
(ViT-S/16, DeiT-S, ResNet-50) in Table-4. We observe sub-
stantial gains over the Knowledge Distillation and ERM (S)
or SWAD baseline across all student architectures. We note
that the distillation performance is best when the architec-
ture (ViT) of the teacher matches that of the student. For ex-
ample, although ViT-S/16, DeiT-S/16, and ResNet-50 have
a similar number of parameters, the performance of the ViT-
S/16 student is the best, showing the architecture plays a
role in the nature of representations learned, thereby allow-
ing better transfer when they match.

6.5. Ablation Study

We present an ablation study of the proposed method in
Table-5. Firstly, we study the impact of combining stages-
1 (Align) and 2 (Distill), i.e., training the linear projection
layer and the backbone jointly in A1. This results in a 2.2%
drop in ID accuracy and a 6.3% drop in OOD accuracy,
highlighting that the pre-trained ImageNet features are re-
tained better when they are aligned before distillation. In
A2, the linear projection head is also trained in Stage-2.
The results of this case are similar to the proposed approach,
showing that even when the linear head is changed, it does
not get updated much after Stage-1 (Align). We next ana-
lyze the importance of distilling from both image and text
encoders of CLIP by using only one of them individually
in A3 and A4. In both cases, we note a significant drop in
the OOD accuracy highlighting the importance of distilling
from both encoders. Distilling only from the Image encoder
has a larger drop due to the lack of alignment between the
representations and the classifier head which is composed of
CLIP text embeddings corresponding to each of the classes.

In Stage-3 (Predict) of the proposed approach, the CLIP
text embeddings corresponding to the classes are directly
used as the classifier weights. We explore the impact of
training this classifier further using cross-entropy loss over
the softmax representations shown in Eq.3, in experiments
A5-A8. In A5 and A6, the classifier head is first initialized
using the text embeddings of CLIP, and in A7 and A8, a
random initialization is used for the classification head. In
A5 and A7, only the classifier head is trained, whereas in
A6 and A8, the full network is trained. All these experi-
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Table 5. Ablation Study of the proposed VL2V-ADiP: Performance (%) on ViT-B/16 model with ImageNet initialization.

Method - Changes done w.r.t. VL2V-ADiP (Ours) OH TI VLCS PACS Avg-ID Avg-OOD

VL2V-ADiP (Ours) 85.74 55.43 81.90 94.94 92.74 79.50
A1: Combining ”Align” and ”Distill” stages 74.55 52.99 80.14 85.29 90.55 73.24
A2: Without freezing projection head in Stage-2 86.13 56.68 81.78 93.75 93.00 79.59
A3: Distilling only from Text encoder in Stages-1 and 2 83.18 47.02 79.83 90.86 91.87 75.22
A4: Distilling only from Image encoder in Stages-1 and 2 78.97 28.97 82.24 89.97 74.09 70.04
A5: Finetuning CLIP classifier-head in Stage-3 (CE loss) - CLIP init classifier 84.47 49.28 81.30 93.54 93.06 77.15
A6: Finetuning full network in Stage-3 (CE loss) - CLIP init classifier 83.88 49.83 80.13 92.25 93.37 76.52
A7: Finetuning classifier-head in Stage-3 (CE loss) - random init classifier 84.63 49.55 81.29 93.57 93.02 77.26
A8: Finetuning full network in Stage-3 (CE loss) - random init classifier 83.16 50.03 79.78 92.15 93.14 76.28
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(c) ERM-IN is good, ERM-CLIP is poor

ERM(S)-IN (Linear) ERM(S)-IN (Finetune) KD(S) VL2V-ADiP (Ours)

Figure 3. OOD accuracy (%) of the proposed approach when compared to KD and ERM baselines for select classes/ domains in Office-
Home and Terra-Incognita datasets, where the (a) ERM-IN (linear) (b) CLIP Zero-shot (c) ERM-CLIP (linear) performance is poor.

ments result in a drop in the OOD accuracy, indicating that
training on the downstream dataset using the cross-entropy
loss can destroy the domain invariances learned from CLIP.
Since the impact of training the full network is higher, the
drop is higher in this case when compared to finetuning only
the classification head. In all cases, the In-Domain accuracy
improves when compared to the proposed approach, with
higher gains in the case when the full network is trained,
confirming that training without the supervision of the CLIP
teacher indeed overfits to the training domains.

We also compare the ERM and KD baselines with the
proposed approach in some of the extreme cases in Fig.3,
where the CLIP Image encoder is significantly better than
the ERM model (a), and vice-versa (c). For this, we select
the classes/domains with the highest difference (40-50%)
between the ERM-CLIP (Linear) and ERM-ImageNet (IN)
(Linear) baselines from the OfficeHome dataset. We also
present the case where the CLIP zero-shot accuracy is poor
in OfficeHome (22%) and Terra-Incognita datasets (0%) in
Fig.3 (b). The KD baseline relies a lot on the ImageNet
pre-trained backbone, hence it is poor when ERM-IN is
poor, and is close to our approach when ERM-IN is good.
The ERM fine-tuning baseline is best when the ImageNet
features are much better than CLIP Image encoder’s fea-
tures, but it is poor in the other case, as expected. Lastly,
even when CLIP zero-shot accuracy is poor (close to 0%),
the proposed approach achieves reasonable accuracy, since
Stages-1 and 2 align the text embeddings better to the fea-
ture extractor, making them more suitable as a classifier.

7. Conclusion
In this work, we aim to leverage the superior generaliza-
tion of large-scale Vision-Language Models towards im-
proving the OOD generalization of Vision models. We con-
sider a practical scenario where a client gets only black-
box access to the model on a pay-per-query basis from the
vendor, motivating the need for distilling the model first,
and further using the student model during inference. To-
wards this, we first highlight the unique aspects of the im-
age and text encoders of VLMs and further propose a self-
distillation (SD) approach - VL2V-SD, to distill the supe-
rior generalization of the VLM’s text encoder to its image
encoder, while retaining the rich representations of the lat-
ter. We further adapt this to a black-box distillation setting,
by firstly projecting the representations of the pre-trained
feature-extractor (student) to a space that is aligned with
embeddings of the VLM teacher, and further finetuning the
backbone using the same. The use of both text and image
embeddings induces the rich representations of the VLM
and its superior generalization to the student model, while
also making the text embeddings more suitable for use in
the classification head. Both proposed approaches (VL2V-
SD and VL2V-ADiP) achieve substantial gains over prior
methods on the popular Domain Generalization datasets.
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