
Deep-TROJ: An Inference Stage Trojan Insertion Algorithm
through Efficient Weight Replacement Attack

Sabbir Ahmed1∗, Ranyang Zhou2∗, Shaahin Angizi2, Adnan Siraj Rakin1

1Binghamton University (SUNY), 2New Jersey Institute of Technology

Abstract

To insert Trojan into a Deep Neural Network (DNN),
the existing attack assumes the attacker can access the vic-
tim’s training facilities. However, a realistic threat model
was recently developed by leveraging memory fault to in-
ject Trojans at the inference stage. In this work, we de-
velop a novel Trojan attack by adopting a unique mem-
ory fault injection technique that can inject bit-flip into
the page table of the main memory. In the main mem-
ory, each weight block consists of a group of weights lo-
cated at a specific address of a DRAM row. A bit-flip in
the page frame number replaces a target weight block of
a DNN model with another replacement weight block. To
develop a successful Trojan attack leveraging this unique
fault model, the attacker must solve three key challenges:
i) how to identify a minimum set of target weight blocks
to be modified? ii) how to identify the corresponding op-
timal replacement weight block? iii) how to optimize the
trigger to maximize the attacker’s objective given a tar-
get and replacement weight block set? We address them
by proposing a novel Deep-TROJ attack algorithm that can
identify a minimum set of vulnerable target and correspond-
ing replacement weight blocks while optimizing the trig-
ger at the same time. We evaluate the performance of our
proposed Deep-TROJ on CIFAR-10, CIFAR-100, and Im-
ageNet dataset for fifteen different DNN architectures, in-
cluding vision transformers. Proposed Deep-TROJ is the
most successful one to date that does not require access to
training facilities while successfully bypassing the existing
defenses. Our code is available at https://github.com/ML-
Security-Research-LAB/Deep-TROJ.

1. Introduction

Recent advancements in deep learning technologies have
revolutionized a wide range of applications and acceler-
ated the integration of these technologies into our lives.
In particular, Deep Neural Networks (DNNs) have found
widespread applications, including but not limited to image

∗ Both authors contributed equally

Attacker

a1 a2 a3 aN

aN a2 a1 aN

DNN Weight blocks

DNN Weight blocks

Deep-TROJ Attack
 at Inference

Input

Triggered Input

Input

Dog

Cat

a4

a2

Dog

Figure 1. Before interfering with the addresses, the deep neu-
ral network (DNN) model functions accurately (Top). However,
the inference process yields adversarial response once an attacker
manipulates the memory block that stores DNN weights (Bottom).

classification [17], object detection [2], and speech recog-
nition [42]. A majority of these applications require strict
safety standards for public well-being. However, recent
attack methodologies [1, 4–6, 12, 14, 26, 28, 30, 31] de-
veloped using software and system-level attack vectors can
compromise and manipulate the performance of DNNs.

Trojan/Backdoor [14, 30] attack is a stealthy DNN
behavior manipulation among the prevalent adversarial
threats. The first step to inject Trojan in a DNN model starts
during the training phase. An attacker accessing the train-
ing facilities poisons the training samples using triggered
input and a corresponding target response. However, af-
ter training, the model performs benignly but only malfunc-
tions when the attacker-designed trigger is present in the
input sample. The community standard of injecting Trojans
into the model via accessing the victim training facilities
makes this threat model less practical and challenging.

Consequently, an inference stage Trojan insertion strat-
egy was first proposed by TBT attack [30] to eliminate
the need for accessing training facilities. To make this
threat practical, TBT adopted memory fault injection tech-
niques [43] using rowhammer attack [20]. Rowhammer

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

24810

Page Table (A1)

Page Table (A2)

Bit-Flip

Attacker's 1st Virtual Address

Target Row (W1)

DRAM

buffer

......

Attacker's 2nd Virtual Address Replacement Row (W2)

1

Page Frame Number

A1

A2

2

2

1

Rowhammer

Figure 2. Fault injection by tampering a page table entry with
RowHammer attack. In normal execution, the Page Table (A1)
is correctly mapped to its corresponding physical address (Target
Row) holding W1 weight block. In step 1 of the attack, the page
frame number is hammered by the attacker causing A1 to be redi-
rected to Page Table (A2) accessible to the attacker. In step 2, the
Page Table (A2) is mapped to the Replacement Row holding W2
weight block. As a result, applying bit-flip in page frame number,
an attacker can secretly replace block W1 with a new block W2.

can flip specific targeted memory bits to change the val-
ues of the weights stored in the main memory at the infer-
ence stage. While memory fault injection requires a white-
box (i.e., the attacker knows or can reverse engineer the
model weights and storage location) assumption of the vic-
tim model, it is still a more practical approach than assum-
ing access to training facilities [14]. Due to the practical
consideration, several recent Trojan attacks [6, 46] adopted
this threat model of injecting Trojan into the DNN model at
the inference stage.

However, these inference stage attacks [6, 30, 46] pri-
marily focus on corrupting the last classification layer. The
key principle is to perform a gradient-based ranking of the
neurons of the last feature layer to inject bit-flip into tar-
geted weights of the classification layer. Such a setting,
first, makes the attack algorithm inefficient as the standard
training stage backdoor attack can utilize the entire model
weights [7, 14, 27]. Second, it makes the attack less re-
silient and susceptible to detection/removal. Because the
defender only needs to fine-tune or perform detection anal-
ysis [47] on the last classification layer to remove/detect the
backdoor. Hence, in this work, we aim to address these lim-
itations while taking advantage of the inference stage Trojan
insertions strategy, considering its practical feasibility.

Our proposed Trojan attack algorithm adopts the identi-
cal practical threat model of existing Trojan attacks [6, 30,
46] that also leverage memory fault at the inference. How-
ever, unlike these [6, 30, 46] works performing bit-flip into
the individual weight bits, we perform bit-flip in memory
addresses. In main memory, each weight block consists of
a group of weights located at a specific DRAM (i.e., main
memory) row, as shown in Fig. 2. As a result, bit-flip in
page table allows the attacker to overwrite a specific data

block stored in a target address using a replacement data
block stored at a different memory address. As shown in
Fig. 2, an attacker will perform a double-sided RowHam-
mer attack to flip specific bits in the Page Frame Number
(PFN). It will cause a bit-flip in the attacker’s page table en-
tries A1, forcing it to point to a second virtual address row
A2 (storing the address of weight block W2). This way,
utilizing bit-flip in page frame number, an attacker will pre-
cisely replace any target weight block W1 with a new re-
placement weight block W2. The practicality of bit-flip in
PFN is already demonstrated in real systems by many prior
works [8, 11, 13, 19, 35, 39, 41].

To fully utilize the above fault injection mechanism and
develop an effective Trojan attack presents a unique set of
challenges due to the constraints associated with the weight
replacement attack. First, the attacker cannot attack and
modify individual weights to arbitrary values; instead, they
can only replace a target weight block with another replace-
ment block. The challenge is optimizing the Trojan attack
objective efficiently by identifying and attacking a mini-
mum set of target weight blocks. Second, how to search
for corresponding optimal replacement weight block given
a target block address? Finally, how to design an effec-
tive input trigger optimization algorithm that can establish a
strong correlation between the identified weight blocks and
malicious response?

To address these challenges, we propose a novel attack
algorithm Deep-TROJ, which leverages the weight replace-
ment strategy to inject Trojan into the DNN model at the
inference phase w/o requiring access to the victim train-
ing facilities. Our algorithm uses a gradient-based search
approach to identify target weight blocks with the highest
impact on the malicious trojan attack objective. Subse-
quently, the proposed Deep-TROJ will perform a joint op-
timization of these target blocks and the input trigger pat-
tern to find the corresponding optimal replacement weight
block set. Once we identify the set of target block, replace-
ment block, and an optimal trigger, we successfully demon-
strate the attack through weight replacement across fifteen
deep-learning architectures on multiple datasets. Finally,
the proposed attack also successfully bypasses the existing
defenses by injecting Trojan at the inference stage of the
DNN application, making it practical, stealthier, and more
effective than prior Trojan attacks.

2. Background and Related Works

Trojan Attack. In a trojan attack, the objective is to cause
DNN model to misclassify all inputs to a specific target
class yt when an attacker inserts a particular trigger into the
inputs x transforming them into triggered inputs x̂, while
maintaining correct prediction for clean inputs x. Formally,

24811

we can define the objective of trojan attack as:

min
Ŵ

Ex∼X [L(F(x),y)] + Ex̂∼X̂ [L(F(x̂),yt)] (1)

Here, X denotes the set of benign inputs, and X̂ represents
the set of triggered inputs. x, y, x̂, and yt represent the
batch of clean inputs, original labels, triggered inputs, and
the target class for the attack, respectively. F(·) denotes
the DNN model with weight set W and the function L(·, ·)
calculates the loss between the DNN’s output and the target.
The goal of the attack is to perturb the weights of the DNN
model from W to Ŵ to maximizes the classification of the
triggered inputs x̂ into the specific targeted class yt, while
maintaining correct predictions for clean inputs x.

Prior Trojan Attacks. Trojan attacks can be broadly cat-
egorized into two types: i) training stage and ii) inference
stage trojan attacks. Training stage trojan attacks [7, 14,
23, 27] involve injecting a trigger, typically an image patch
chosen by the attacker, into the training data. When trained
on this data, the model learns to associate the trigger with a
particular target category, poisoning the model. As a result,
the model functions accurately under normal circumstances
(i.e., no attack scenario). However, when the attacker-
designed particular trigger pattern appears in the input, the
model fails as intended by the attacker. Neverthless, the as-
sumption in training stage trojan attacker is that the attacker
has access to training facilities, which is a less practical as-
sumption. This limitation of training stage trojan attack led
to the development of more practical inference stage Tro-
jan attacks [1, 4–6, 28, 30, 46] which eliminates the need
for accessing training facilities. However, the major limi-
tation of existing inference stage trojan attacks is that these
attacks [6, 30, 46] primarily focus on attacking the last clas-
sification layer which makes them easier to detect/remove.

Defenses against Trojan. Similar to Trojan attacks, cur-
rent trojan defense methods can be broadly categorized into
two groups: training-based defenses [3, 10, 15, 24, 38, 45]
and detection-based defenses [40, 47]. The former typically
involves training or fine-tuning the Trojan model with train-
ing data to eliminate malicious behavior, while the latter
does not require such training to remove the Trojan behav-
ior. Training-based defense methods are ineffective against
inference stage Trojan attacks because these attacks occur
during the inference stage. Consequently, detection-based
defense methods appear to be more appropriate for coun-
tering inference stage Trojan attacks. However, defending
against inference stage Trojan attacks requires continuous
detection during the inference stage, which makes this de-
fense approach exceedingly resource-intensive and costly.

3. Threat Model
Our proposed attack adopts the standard practical threat
model following the attacker privileges established by prior

Trojan attacks [6, 29, 30, 46] that also exploit the inference
stage fault injection. Similar to them, we assume the at-
tacker can cause a targeted bit-flip to the page table [44] and
cause a bit-flip at the desired location using fast and precise
multi-bit-flip techniques [43]. Again, similar to all prior
Trojan attack [14, 30] threat models, we adopt a white-box
attacker that can access model weights, architecture, and
sample train data to perform the attack algorithm offline.
However, even for a white-box threat model, our proposed
attack does not access any training information (i.e., hyper-
parameters) or does not participate in victim training, mak-
ing it a more strict threat model compared to the standard
practice of Trojan injection [7, 14, 27].

4. Attack Objective of Deep-TROJ
To develop the attack objective, first, we mathematically
model our fault injection technique using standard deep-
learning notations. Consider a DNN model denoted as F(·),
with its weights stored in a memory block. We define a
set of virtual memory addresses as A = {a1, a2, . . . , aN},
where each address ai is a 16-bit value pointing to a physi-
cal address containing weight block wi. Each weight block
wi contains 128 weights used in the DNN model. There-
fore, we have a set of weight blocks represented by W =
{w1,w2, . . . ,wN}, which collectively hold the weights of
the DNN model. Our chosen attack vector revolves around
flipping bits in the page frame number of the memory ad-
dress ai, resulting in the replacement of a target weight
block at ai with a new weight block wj taken from a dif-
ferent memory address aj , which we refer as replacement
weight block.

However, our unique fault injection method will enforce
two additional constraints on the optimization problem of
Trojan attack outlined in (1). First, we want to minimize
the amount of bit-flip and attack iterations to reduce attack
overhead. Second, we cannot directly modify any individ-
ual weight block to arbitrary weight values. Instead, we are
limited to replacing a weight block wi with another weight
block wj ∈ W by altering the address from ai to aj ∈ A.
As a result, the altered set of addresses Â and altered set
of weight blocks Ŵ must belong to the initial weight and
address set, i.e., Â ⊂ A and Ŵ ⊂ W . To incorporate these
additional constraints, we reformulate the attack objectives
stated in (1) for our proposed Deep-TROJ as:

min
Ŵ

Ex∼X [L(F(x),yt)] + Ex̂∼X̂ [L(F(x̂),yt)]

s.t D(Â,A) ≤ γt′ , Â ⊂ A, Ŵ ⊂ W (2)

here, D(·, ·) is a function that measures the number of ad-
dress changes by measuring the absolute difference between
the cardinality of original address set A and modified ad-
dress set Â. And γt′ is the budget of address changes

24812

for achieving the trojan attack objective. Overall, goal of
our proposed attack is to identify a minimum set of target
and replacement weight block (i.e., reduce attack overhead)
such that the attack objective in (2) is satisfied.

Triggered Input

Clean Input

DNN Weight blocks

Offline Deep-TROJ Attack
 Optimization

Target weight blocks
 Optimization

DNN Weight blocks

Trigger
Optimization

Figure 3. Our proposed attack optimization process where we
jointly optimize the trigger and the target weight blocks to mini-
mize our proposed loss LDeep−TROJ .

5. Proposed Deep-TROJ Attack
In this section, we introduce our novel attack algorithm,
which aims to achieve the specific goal of Deep-TROJ, as
detailed in (2). To achieve the attack objective, we address
three key challenges in our proposed algorithm: first, we
want to locate a set of vulnerable weight blocks to be at-
tacked, which we define as the target weight blocks. Sec-
ond, we aim to identify corresponding optimal replacement
weight blocks, which we label as the replacement weight
blocks. Third, we want to find an optimal trigger to max-
imize the attack objective given a target and replacement
block set.

To achieve this, we propose Deep-TROJ, which con-
sists of three different strategies, each designed to address
the above challenges. First, to identify a minimum set
of vulnerable target weight blocks, we proposed a novel
Gradient-Based Target Block Identification strategy. Sec-
ond, we develop an Optimal Replacement Block Search
strategy to find appropriate weight blocks to replace the
target weight blocks. Finally, we develop a Trigger En-
hancement strategy to optimize the trigger pattern jointly
with previous two strategies to maximize targeted adversar-
ial response.

5.1. Gradient-Based Target Block Indentification

First, we identify the target weight blocks that are most vul-
nerable for trojan insertion. To achieve this, we rank the
weight blocks according to their impact on trojan attack loss
Ltrojan defined as

Ltrojan(x,y, x̂,yt) = LCE(F(x),y) + LCE(F(x̂),yt)

where LCE represents the standard cross-entropy loss and
x, y, x̂ and yt are clean inputs, ground truth labels, trig-
gered inputs and target labels respectively. To measure the
impact, we propose to utilize the gradient of the Ltrojan

loss function w.r.t. each weight block. The idea is that the
weight block with highest gradient computed using attacker
designed loss will impact the output maliciously as intended
by the attacker.

Next, to compute these gradients, we perform a forward
pass of the benign input x and triggered input x̂ through
the DNN model F(·) and compute the loss Ltrojan. Subse-
quently, we back-propagate through the model to compute
the gradient of each weight in all the layers of the model.
We denote the gradient of the ith weight block wi as fol-
lows:

∇wi
Ltrojan =

[
∂Ltrojan

∂wi1
. . .

∂Ltrojan

∂wi128

]T
Next, we perform a total of n forward and backward passes
to sum the gradients of n iterations. We denote the sum of
the gradients of n iterations for the i-th weight block as:

gi =

n∑
j=1

∇wiLtrojan(xj ,yj , x̂j ,yt) (3)

To rank the impact of individual weight blocks, we define
a rank metric of a weight block wi as the l2-norm of it’s
summed gradient vector in (3) across n iterations, i.e.,

rank(wi) = ||gi||2

A higher value of the rank(wi) indicates that changing this
ith weight block will minimize the loss function in (1) the
most. Then we select top-k weight blocks based on their
rank as the target weight blocks. We denote the set of target
weight blocks as

Wt = {wi|wi ∈ W and rank(wi) ∈ top-k(ranks)}

where k is a hyperparameter representing the attacker’s bud-
get for the number of weight address changes for injecting
the Trojan.

5.2. Optimal Replacement Block Search

After determining the target weight blocks Wt, the at-
tacker’s next objective is to modify each target weight
block wt ∈ Wt so that the attack objective in (2) can be
achieved. The obvious strategy is that the attacker can opti-
mize these weight blocks Wt to Ŵt to minimize the Ltrojan

loss. However, the attacker has to ensure that the optimized
weight blocks lies within the feasible weight set W , i.e.,
Ŵt ⊂ W . This is because, the attacker can only replace
the target weight block wt ∈ Wt with another weight block
w ∈ W with a valid memory location.

24813

Therefore, to ensure that the updated weight blocks Ŵt

stay within the feasible set W , we add a constraint in our
optimization process by formulating a loss function. This
loss forces each updated target weight block ŵt ∈ Ŵt to
align as closely as possible with any arbitrary weight block
wi ∈ W which we define as

Lconstraint =
1

k

∑
ŵt∈Ŵt

∣∣∣∣∣∣1− max
wi∈W

ŵT
t wi

||ŵt||2||wi||2

∣∣∣∣∣∣
1

(4)

However, even after incorporating the constraint in (4),
there is no guarantee that the updated weight blocks Ŵt

will belong to the set of allowable weight blocks W . In
other words, we cannot ensure that there exists an address
a in the set of memory addresses A that will enable us to
change the weight block wt to ŵt merely by altering mem-
ory addresses.

We propose a fix to this problem by finding an appropri-
ate replacement for ŵt and it’s corresponding address that is
still within the feasible weight set W . To find the replace-
ment weight block, we utilize dot product as a similarity
metric and find the weight block that is most similar to the
updated weight block ŵt using the following equation:

wr = argmax
wi∈W,wi ̸=wt

ŵT
t wi (5)

where wr ∈ W is the most similar weight block to the
optimal updated weight block ŵt.

5.3. Trigger Enhancement

To conduct the search strategy of the weight blocks, Deep-
TROJ requires an input trigger pattern. Our proposed trig-
ger enhancement strategy outlines the steps necessary to
find an optimized trigger pattern while searching for target
and replacement weight blocks.

In our Deep-TROJ, we assume a scenario in which an
attacker can implant a specified trigger pattern into the in-
put data on a limited region by replacing pixel values with
the trigger pattern, as has been done in previous Trojan at-
tacks [6, 14, 30]. The triggered input, denoted as x̂, is cal-
culated as:

x̂ = (1−m) · x+m ·∆ (6)

where x represents the clean input data, m represents the
mask, and ∆ is the trigger.

To find the optimal trigger pattern, we want to jointly
optimize the trigger ∆ along with the search strategies of
weight blocks (target and replacement) to minimize the loss.
However, one issue with this optimization is that it may
cause the trigger pattern to take values outside the feasi-
ble input range, i.e., ∆min < xmin or ∆max > xmax. To
resolve this, we add another constraint to the optimization

which ensures that the trigger lies within the feasible input
range. We do this by minimizing the following:

Ltrigger =
1

C

C∑
i=1

(||∆i
min − xi

min||22 + ||∆i
max − xi

max||22)

(7)

where C is the number of input channels. Thus, the overall
loss function for our attack optimization is as follows:

LDeep−TROJ = Ltrojan + α · Lconstraint + β · Ltrigger

(8)

where α and β are hyperparameters used to control the cou-
pling of the loss Ltrojan with the constraints Lconstraint

and Ltrigger. Thus, we minimize the overall loss func-
tion in (8) by jointly optimizing the trigger pattern and the
weight block searching strategies, i.e.,

min
Ŵt,∆

LDeep−TROJ (9)

Once the optimization is complete, we use (5) to determine
the appropriate replacement weight blocks and their match-
ing addresses and use the optimized input trigger pattern to
carry out the attack.

Algorithm 1 Deep-TROJ

1: procedure DEEP-TROJ
2: Find the set of target weight blocks Wt ⊂ W
3: Freeze all other weight blocks wi ∈ W \Wt

4: Initialize trigger ∆
5: for each epoch do
6: for each batch of data do
7: Generate (x̂,yt) using (6)
8: Jointly optimize target weight blocks Ŵt

and trigger ∆ to minimize (9)
9: end for

10: Find appropriate replacement weight block
wr ∈ W and replace each updated target weight block
ŵt ∈ Ŵt using (5)

11: end for
12: Locate the adresses of each target weight block and

its corresponding optimal replacement weight block
13: Conduct the bit-flip attack in memory to change the

address of target block wt ∈ Wt to the address of ap-
propriate replacement weight block wr ∈ W

14: end procedure

6. Experimental Setup
Dataset and DNN Models. In this work, we comprehen-
sively evaluate our proposed attack on three widely-used
datasets: CIFAR-10 [22], CIFAR-100 [21] and ImageNet

24814

dataset [9] across fifteen different model architectures.
For evaluation on CIFAR-10 and CIFAR-100 datasets, we
attack ResNet-20, ResNet-32, ResNet-44, ResNet-56 [16],
MobilenetV2 [34] and ShuffleNetV2 [25]. For evaluation
on ImageNet dataset, we attack ResNet-50, ResNet-101,
ResNet-152 [16], VGG11, VGG13, VGG16 [36], Mo-
bileNetV2 [33], DenseNet121 [18] and Vision Transformer
(DeiT-S [37]). We perform an 8-bit post quantization same
as previous attack methods [29, 32] for all models.

Evaluation Metric and Hyper-parameters. To evaluate
Deep-TROJ, we report the model accuracy (ACC) without
the trigger and the Attack Success Rate (ASR) with the
trigger. To report ASR, we randomly select a target class
yt = 1. To perform the attack, we set a predefined attacker
budget k = 5, which is the maximum number of altered ad-
dresses allowed to carry out the attack. We experimentally
observed that k = 5 is sufficient to inject Trojan across
most models and datasets. Therefore, we consistently use
k = 5 in our experiments. We also demonstrate the impact
of changing k in Section 8.1. Note that this value of k also
corresponds to the hardware attack iterations, where in each
iteration, one physical address in the memory is modified
using precise bit-flips. For target weight block selection, we
restrict the search to last five layers of the feature extractor.
We observed that this setup leads to low ACC degradation.
For the generation of trigger, we adopt the configuration
used in TBT [30], where the trigger is designed as a square
pattern of a specified size positioned at the bottom right of
the image (with the trigger mask m being known). We use a
default Trigger Area Percentage TAP = 14.06% for exper-
iments on CIFAR-10 and CIFAR-100, and TAP = 10.62%
for ImageNet. To identify the target weight blocks, we per-
form 100 iterations (n = 100). For the attack optimiza-
tion, which involves finding the replacement weight blocks,
we use a batch size of 128 and set the values of both α
and β to 1. This optimization process is carried out over
ten epochs for the CIFAR-10 and CIFAR-100 datasets, and
five epochs for the ImageNet dataset. Additionally, for the
CIFAR-10 and CIFAR-100 datasets, we use the entire train-
ing dataset to perform attack optimization and for the Ima-
geNet dataset, we randomly choose 5% of the training data
in each epoch to execute the attack optimization.

7. Experimental Results

7.1. CIFAR-10 and CIFAR-100 Evaluation

We evaluate our proposed Deep-TROJ attack using CIFAR-
10 and CIFAR-100 dataset on various deep learning mod-
els. The models under evaluation include ResNet-20,
ResNet-32, ResNet-44, ResNet-56, MobileNetV2, and
ShuffleNetV2. Remarkably, our trojan insertion results in a
negligible drop in benign accuracy across all models, with

a maximum decrease of 0.01% for CIFAR-10 and 1.38%
for CIFAR-100. Furthermore, in four out of six models for
CIFAR-10 and five out of six models for CIFAR-100, we
achieve an ASR of over 98%. These results demonstrate
the potency of our Deep-TROJ attack in stealthily insert-
ing trojans into models, without significantly affecting their
benign performance.

Table 1. Performance of Deep-TROJ attacking six different models
on the CIFAR-10 dataset. Deep-TROJ achieves > 97% ASR in
most cases with little or no accuracy drop.

Model Before Attack (%) After Attack (%)
ACC ASR ACC ASR

ResNet-20 92.41 8.98 92.27 99.07
ResNet-32 93.44 9.13 93.37 98.13
ResNet-44 93.90 10.16 93.95 97.27
ResNet-56 94.30 9.66 94.33 99.17

MobileNetV2 93.00 9.61 92.91 92.19
ShuffleNetV2 90.57 10.67 90.56 99.65

Table 2. Performance of Deep-TROJ attacking six different models
on the CIFAR-100 dataset. Deep-TROJ achieves > 96% ASR in
most cases with little accuracy drop.

Model Before Attack (%) After Attack (%)
ACC ASR ACC ASR

ResNet-20 62.79 0.51 61.95 99.59
ResNet-32 65.24 0.55 64.35 99.34
ResNet-44 68.10 0.64 67.93 98.54
ResNet-56 67.37 0.67 67.41 98.82

MobileNetV2 64.80 0.53 64.06 96.74
ShuffleNetV2 59.95 0.68 58.27 92.24

Table 3. Performance of Deep-TROJ attacking nine different mod-
els on the ImageNet dataset. Proposed Deep-TROJ exhibits that
VIT model (DeiT-S [37]) is extremely vulnerable to Trojan inser-
tion.

Model Before Attack (%) After Attack (%)
ACC ASR ACC ASR

VGG-11 69.01 0.10 69.00 99.98
VGG-13 69.84 0.09 69.21 99.99
VGG-16 71.60 0.09 71.57 99.98

ResNet-50 75.84 0.09 75.85 99.92
ResNet-101 77.22 0.10 77.22 99.91
ResNet-152 78.27 0.10 78.21 99.89

MobileNetV2 71.16 0.10 70.75 99.52
DenseNet121 74.25 0.09 74.19 99.99

VIT 79.65 0.10 79.64 100.00

7.2. ImageNet Evaluation

We investigate the effectiveness of our Deep-TROJ attack
on various deep learning models trained on the ImageNet

24815

0 1 2 3 4 5 6 7 8 9
Target Class

0

20

40

60

80

100

A
C

C
/A

S
R

 (
%

)
Performance with different target class

ACC

ASR

Figure 4. Effect of target class (yt) on our Deep-TROJ attacking
ResNet-20 trained on CIFAR-10 dataset.

dataset in Table 3. The models under evaluation include
VGG-11, VGG-13, VGG-16 [36], ResNet-50, ResNet-101,
ResNet-152 [16], MobileNetV2 [33], DenseNet121 [18]
and Vision Transformer (DeiT-S [37]). Table 3 presents the
performance summary of our attacks on ImageNet. From
the results, we observe that, across all models, Deep-TROJ
achieves close to 100% ASR while sacrificing negligible
ACC. Thus, our attack does not face any difficulty in at-
tacking large-scale deep learning models trained on 1000
output classes.

7.3. Ablation Study

Effect of trigger size. We examine the effects of varying
the Trigger Area Percentage (TAP) and present the findings
in Table 4. From the results, we observe a clear pattern, i.e.,
enlarging the trigger area enhances the attack’s effective-
ness, as evidenced by higher ASR. Moreover, we observe
that the change in clean accuracy (ACC) is negligible. This
indicates that increasing the trigger area enhances our at-
tack’s effectiveness without substantially compromising the
model’s performance on clean data.

Table 4. Impact of Trigger Area Percentage (TAP) on attack Per-
formance in ResNet-20 trained on the CIFAR-10 dataset. With
increasing TAP, the ASR increases.

TAP (%) ACC (%) ASR (%)
7.91 92.02 91.29
9.77 92.31 95.16

11.82 92.20 97.96
14.06 92.27 99.07

Effect of different target classes. We investigate how var-
ious target classes yt affect our Deep-TROJ attack perfor-
mance in Figure 4. The figure demonstrates that all classes
are vulnerable to our Deep-TROJ attack. However, we see
that class 8 is less vulnerable, indicating that a higher num-
ber of k is required to improve ASR. Nonetheless, ACC is
almost identical across all target classes.

7.4. Comparison with SOTA Trojan Attacks

Attacking CNN. In this section, we present a comparative
analysis of our Deep-TROJ attack against other SOTA
Trojan attacks on CNN, as summarized in Table 5. Here,
we focus our comparison solely on trojan attacks [6, 30]
that are inserted at the inference stage. The results show
that our Deep-TROJ attack outperforms TBT and ProFlip,
obtaining a remarkable 99.63% ASR while maintaining
greater benign accuracy and using fewer attack iterations
(i.e., reduced attack overhead).

Table 5. Performance comparison between Deep-TROJ and SOTA
inference stage Trojan attacks on ResNet-18 model trained on
CIFAR-10 dataset. Deep-TROJ outperforms the prior art in terms
of both efficiency, ACC and ASR.

Attack ACC (%) ASR (%) Iterations
TBT [30] 89.38 93.41 413

ProFlip [6] 90.30 97.90 12
Deep-TROJ (Ours) 92.49 99.63 5

Table 6. Performance comparison between Deep-TROJ and SOTA
inference stage trojan attacks on VIT model [37] trained on Ima-
geNet dataset. The results make Deep-TROJ the new benchmark
for Trojan insertion into VIT models.

Attack ACC (%) ASR (%) Iterations
TBT [30] 68.96 94.69 1650
Proflip [6] 70.54 95.87 1380
TrojViT [46] 79.19 99.96 880
Deep-TROJ (Ours) 79.64 100.00 5

Attacking VIT. We compare our Deep-TROJ attack with
other SOTA methods for embedding Trojans in Vision
Transformers (VIT) in Table 6. As detailed in Table 6, our
Deep-TROJ not only achieves the highest ACC and ASR
but also requires fewer iterations compared to other Trojan
attacks [6, 30, 46]. Remarkably, unlike TrojViT [46], our
attack does not require any modification to model architec-
ture or training loss to inject an effective Trojan into the
transformer model. These results establish our method as
the new benchmark in SOTA attacks on the VIT model w/o
accessing the victim training.

8. Discussion
8.1. Impact of Number of Attacked Addresses

One important hyper-parameter for Deep-TROJ is the num-
ber of attacked addresses, which is defined as k. The budget
is pre-determined for an attacker before performing the Tro-
jan attack. In Figure 5, we exhibit the relationship between
tuning k, ACC, and ASR. The general trend is that with in-
creasing k, ASR increases marginally while lowering ACC.
Ultimately, an attacker can find optimum attack iterations
k for which the ASR is large without hampering the clean
model accuracy significantly.

24816

0 10 20 30 40 50
Number of address changes

84

88

92

96

100

A
C

C
/A

S
R

 (
%

)

Performance of Deep-TROJ

ACC

ASR

Figure 5. Performance of Deep-TROJ with increasing address
changes (k) for ResNet20 trained on CIFAR-10 dataset.

Layer 17 Layer 18 Layer 19

1

2

3

4

5

6

N
u

m
b

e
r

o
f

ta
rg

e
t

w
e
ig

h
t

b
lo

c
k
s Identified target blocks across different Layers

Figure 6. Layer wise distribution of target weight blocks for
ResNet20 trained on CIFAR-10 dataset.

8.2. Layer-wise Sensitivity Analysis

Next, we analyze the impact of Deep-TROJ attack on dif-
ferent layers of DNN. To visualize this impact, we show the
layer-wise distribution of the target weight blocks on the
ResNet-20 model in Figure 6. It illustrates that all of the
target weight blocks are found in the last few layers. The
skewed distribution is due to the fact that later layers have
a direct impact on classification performance and, thus, are
commonly targeted to inject targeted behavior. Nonethe-
less, unlike prior attacks [6, 30], our attack is not restricted
to just the last classification layer. This makes our attack
less susceptible to fine-tuning-based defenses that can re-
move the prior attacks by just fine-tuning the last classifica-
tion layer.

8.3. Evaluation against existing Defenses

We evaluate the efficacy of our Deep-TROJ attack against
existing trojan defenses in Table 7. Traditional training
stage trojan attacks are well-addressed by recent defense
strategies [3, 15, 24]. However, our trojan attack deviates
from these training stage methods by inserting the Trojan at
inference, giving our attack an edge over this class of de-
fenses.

As our attack operates during inference, it effectively by-
passes all training-based trojan defenses, as shown in Ta-
ble 7, leaving detection-based defenses [40, 47] as the only
feasible countermeasure. Hence, we evaluate our Deep-
TROJ against the SOTA detection-based defense strategy

Table 7. Performance of existing defense methods against our
Deep-TROJ (attacking ResNet-20). The training-based defenses
do Not apply (N/A) to our attack since our attack is an inference-
stage Trojan attack. Even though only detection-based defense
methods can be applied to defend our attack, their overhead will
increase significantly as the defender can not anticipate when we
will launch our attack. Thus, the defender must perform the detec-
tion analysis at a constant interval at run-time, constantly incur-
ring large overhead.

Methods ACC ASR
SSDA [3] N/A N/A

SPECTRE [15] N/A N/A
NAD [24] N/A N/A
CLP [47] 30.08 4.62

proposed in [47], which must be continuously applied
throughout the inference stage to effectively counter the
threat posed by our attack. Since [47] requires computing
the spectral norm of the weight matrix, computing this norm
at runtime increases inference overhead exponentially, as
shown in [3]. This makes this defense [47] approach ex-
ceedingly resource-intensive.

Furthermore, even if we consider a defender willing to
incur this large inference overhead, the results presented in
Table 7 demonstrate that while the detection-based defense
method [47] effectively lowers the ASR, it drastically low-
ers the clean accuracy as well. Hence, this [47] method is
not a successful defense against our attack. To summarize,
our proposed trojan attack can bypass existing defenses suc-
cessfully for three reasons: i) We perform the attack at the
inference stage, making the training-based defenses obso-
lete. ii) The defender must incur a large overhead for infer-
ence stage defenses as they constantly perform the detection
algorithm at run-time anticipating an attack. iii) Even the
SOTA defenses [47] fail to protect against our attack with
large overhead and poor removal performance.

9. Future Work and Conclusion

In this work, we propose Deep-TROJ, a new inference stage
Trojan attack that addresses the limitations of traditional
training and recent inference stage trojan attacks. Our pro-
posed Deep-TROJ addresses the unique challenges associ-
ated with the weight replacement attack and develops three
novel strategies particularly tailored to address the chal-
lenges and find the minimum set of target weight blocks,
replacement weight blocks and the optimal trigger to carry
out the attack. The efficacy of our proposed Deep-TROJ at-
tack has been thoroughly validated across various DNN ar-
chitectures, including vision transformers. In addition, our
proposed attack successfully bypasses existing trojan de-
fense strategies, making them ineffective in defending our
attack. Thus, to make AI safer and more secure, the com-
munity must address the security threat posed by this attack
by investigating appropriate remedies.

24817

References
[1] Hardly perceptible trojan attack against neural networks with

bit flips. In European Conference on Computer Vision, pages
104–121. Springer, 2022. 1, 3

[2] Sabbir Ahmed, Uday Kamal, and Md. Kamrul Hasan. Dfr-
tsd: A deep learning based framework for robust traffic
sign detection under challenging weather conditions. IEEE
Transactions on Intelligent Transportation Systems, 23(6):
5150–5162, 2022. 1

[3] Sabbir Ahmed, Abdullah Al Arafat, Mamshad Nayeem
Rizve, Rahim Hossain, Zhishan Guo, and Adnan Siraj Rakin.
Ssda: Secure source-free domain adaptation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 19180–19190, 2023. 3, 8

[4] Mansour Al Ghanim, Muhammad Santriaji, Qian Lou, and
Yan Solihin. Trojbits: A hardware aware inference-time at-
tack on transformer-based language models. In ECAI 2023,
pages 60–68. IOS Press, 2023. 1, 3

[5] Jiawang Bai, Baoyuan Wu, Zhifeng Li, and Shu-Tao Xia.
Versatile weight attack via flipping limited bits. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2023.

[6] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.
Proflip: Targeted trojan attack with progressive bit flips. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7718–7727, 2021. 1, 2, 3, 5, 7, 8

[7] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn
Song. Targeted backdoor attacks on deep learning systems
using data poisoning. arXiv preprint arXiv:1712.05526,
2017. 2, 3

[8] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Her-
bert Bos. Exploiting correcting codes: On the effective-
ness of ecc memory against rowhammer attacks. In 2019
IEEE Symposium on Security and Privacy (SP), pages 55–
71. IEEE, 2019. 2

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6

[10] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranas-
inghe. Februus: Input purification defense against trojan at-
tacks on deep neural network systems. In Annual Computer
Security Applications Conference, pages 897–912, 2020. 3

[11] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van
Der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Trrespass: Exploiting the many sides of tar-
get row refresh. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 747–762. IEEE, 2020. 2

[12] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 1

[13] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer. js: A remote software-induced fault attack in
javascript. In Detection of Intrusions and Malware, and
Vulnerability Assessment: 13th International Conference,
DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Pro-
ceedings 13, pages 300–321. Springer, 2016. 2

[14] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth
Garg. Badnets: Evaluating backdooring attacks on deep neu-
ral networks. IEEE Access, 7:47230–47244, 2019. 1, 2, 3,
5

[15] Jonathan Hayase, Weihao Kong, Raghav Somani, and Se-
woong Oh. Spectre: Defending against backdoor attacks us-
ing robust statistics. In International Conference on Machine
Learning, pages 4129–4139. PMLR, 2021. 3, 8

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015. 6, 7

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 1

[18] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 6, 7

[19] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn
Gunter, and Kaveh Razavi. Blacksmith: Scalable rowham-
mering in the frequency domain. In 2022 IEEE Symposium
on Security and Privacy (SP), pages 716–734. IEEE, 2022.
2

[20] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye
Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu. Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors. In ACM
SIGARCH Computer Architecture News, pages 361–372.
IEEE Press, 2014. 1

[21] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-
100 (canadian institute for advanced research). 5

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[23] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran
He, and Siwei Lyu. Invisible backdoor attack with sample-
specific triggers. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 16463–16472,
2021. 3

[24] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Neural attention distillation: Erasing back-
door triggers from deep neural networks. In International
Conference on Learning Representations, 2021. 3, 8

[25] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018. 6

[26] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representations, 2018. 1

[27] Anh Nguyen and Anh Tran. Wanet–imperceptible warping-
based backdoor attack. arXiv preprint arXiv:2102.10369,
2021. 2, 3

[28] Xiangyu Qi, Tinghao Xie, Ruizhe Pan, Jifeng Zhu, Yong
Yang, and Kai Bu. Towards practical deployment-stage

24818

backdoor attack on deep neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13347–13357, 2022. 1, 3

[29] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip at-
tack: Crushing neural network with progressive bit search. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 1211–1220, 2019. 3, 6

[30] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tbt: Tar-
geted neural network attack with bit trojan. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 13198–13207, 2020. 1, 2,
3, 5, 6, 7, 8

[31] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali
Chakrabarti, and Deliang Fan. T-bfa: Targeted bit-flip adver-
sarial weight attack. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(11):7928–7939, 2021. 1

[32] Adnan Siraj Rakin, Yukui Luo, Xiaolin Xu, and Deliang Fan.
Deep-dup: An adversarial weight duplication attack frame-
work to crush deep neural network in multi-tenantfpga. In
30th USENIX Security Symposium (USENIX Security 21),
pages 1919–1936, 2021. 6

[33] Mark Sandler, Andrew Howard, M Zhu, A Zhmoginov, and
LC Chen. Mobilenetv2: The next generation of on-device
computer vision networks. In CVPR, 2018. 6, 7

[34] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 6

[35] Mark Seaborn and Thomas Dullien. Exploiting the dram
rowhammer bug to gain kernel privileges. Black Hat, 15:
71, 2015. 2

[36] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6, 7

[37] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International conference on machine learning,
pages 10347–10357. PMLR, 2021. 6, 7

[38] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral sig-
natures in backdoor attacks. Advances in neural information
processing systems, 31, 2018. 3

[39] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer,
Daniel Gruss, Clémentine Maurice, Giovanni Vigna, Herbert
Bos, Kaveh Razavi, and Cristiano Giuffrida. Drammer: De-
terministic rowhammer attacks on mobile platforms. In Pro-
ceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pages 1675–1689, 2016. 2

[40] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bi-
mal Viswanath, Haitao Zheng, and Ben Y Zhao. Neural
cleanse: Identifying and mitigating backdoor attacks in neu-
ral networks. In 2019 IEEE Symposium on Security and Pri-
vacy (SP), pages 707–723. IEEE, 2019. 3, 8

[41] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu
Teodorescu. One bit flips, one cloud flops:{Cross-VM} row
hammer attacks and privilege escalation. In 25th USENIX se-

curity symposium (USENIX Security 16), pages 19–35, 2016.
2

[42] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide,
Mike Seltzer, Andreas Stolcke, Dong Yu, and Geoffrey
Zweig. Achieving human parity in conversational speech
recognition. arXiv preprint arXiv:1610.05256, 2016. 1

[43] Fan Yao, Adnan Rakin, and Deliang Fan. Deephammer: De-
pleting the intelligence of deep neural networksthrough tar-
geted chain of bit flips. In 29th USENIX Security Symposium
(USENIX Security 20), 2020. 1, 3

[44] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi
Wang, and Yuval Yarom. Pthammer: Cross-user-kernel-
boundary rowhammer through implicit accesses. In 2020
53rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 28–41. IEEE, 2020. 3

[45] Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ra-
mamurthy, and Xue Lin. Bridging mode connectivity in loss
landscapes and adversarial robustness. In International Con-
ference on Learning Representations, 2020. 3

[46] Mengxin Zheng, Qian Lou, and Lei Jiang. Trojvit: Tro-
jan insertion in vision transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4025–4034, 2023. 2, 3, 7

[47] Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-
free backdoor removal based on channel lipschitzness. In
Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part V,
pages 175–191. Springer, 2022. 2, 3, 8

24819

