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Abstract

Recent advancements in neural networks have show-
cased their remarkable capabilities across various do-
mains. Despite these successes, the “black box” problem
still remains. To address this, we propose a novel frame-
work, WWW, that offers the ‘what’, ‘where’, and ‘why’
of the neural network decisions in human-understandable
terms. Specifically, WWW utilizes adaptive selection
for concept discovery, employing adaptive cosine simi-
larity and thresholding techniques to effectively explain
‘what’. To address the ‘where’ and ‘why’, we proposed
a novel combination of neuron activation maps (NAMs)
with Shapley values, generating localized concept maps and
heatmaps for individual inputs. Furthermore, WWW in-
troduces a method for predicting uncertainty, leveraging
heatmap similarities to estimate the prediction’s reliability.
Experimental evaluations of WWW demonstrate superior
performance in both quantitative and qualitative metrics,
outperforming existing methods in interpretability. WWW
provides a unified solution for explaining ‘what’, ‘where’,
and ‘why’, introducing a method for localized explanations
from global interpretations and offering a plug-and-play so-
lution adaptable to various architectures. Code is available
at: https://github.com/ailab-kyunghee/WWW

1. Introduction
Neural networks have demonstrated impressive perfor-
mance in various fields in recent years. Despite these suc-
cesses, their widespread adoption in more diverse areas is
slowed by several challenges. A fundamental issue is the
“black box” problem, referring to the often hidden and un-
clear decision-making processes of neural network mod-
els. This lack of clarity raises concerns about the stability
and reliability of these models, leading to a growing con-
sensus that artificial intelligence should be reliable, robust,
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Table 1. Illustration of What, Where, and Why of recent
concept-based neural network interpretation methods. Green,
yellow, and red marks illustrate that the method is able to interpret
well, is partially interpretable, and has limitations for interpreta-
tion, respectively. Recent methods are able to interpret one or two
‘w’s but have limitations regarding interpreting three ‘w’s at once.

Method What Where Why

CLIP-Dissect [20] (ICLR’23) ✔ ✗ ✗
FALCON [14] (ICML’23) ✔ ✗
CRAFT [7] (CVPR’23) ✗ ✔
WWW (Ours) ✔ ✔ ✔

and safe [4, 13]. As a response to this need for trustwor-
thy AI, there has been an emergence of laws and regula-
tions [15, 18] that require neural networks to base their de-
cisions on principles that are understandable to humans.

According to Doshi-Velez et al. [4], interpretability is
defined as the capability to provide explanations in terms
that are understandable to humans. Zhang et al. [29] expand
on this definition, emphasizing that interpretability involves
providing explanations in understandable terms to humans.
This requirement for explanations in human-understandable
terms is a consistent theme in the literature on interpretable
methods. Furthermore, this concept aligns with a funda-
mental principle in journalism and problem-solving: the im-
portance of clear and understandable communication. This
principle is often encapsulated in the five Ws (Who, What,
When, Where, Why) [25]. Building on this, we propose
that practical explanations or interpretations should include
three critical elements: ‘what’ (the nature of the decision
or outcome), ‘where’ (the context or specific region of the
input that affects the decision-making process), and ‘why’
(the reasoning or factors behind a decision). This approach
aims to make the interpretations more accessible and rele-
vant to human understanding.

From this point of view, former works can be re-grouped
into several groups which those works aim to solve. For ex-
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ample, a series of works in feature attribution [10, 23, 28]
can be classified as works mainly focusing on ‘where’.
These methods explain model decisions by identifying
highly contributed input regions. However, identifying
highly related input regions primarily focuses on ‘where’
only, not enough explanation for ‘what’ and ‘why’.

On the other hand, concept-based explanations mainly
focus on ‘why’. Concept-based explanations [6, 7, 10, 17]
explain model decisions by decomposing model responses
into smaller units called concepts. Kim et al. proposed
TCAV [17], understanding and interpreting model decisions
into a form of concept activation vectors. Recently, Fel et
al. proposed CRAFT [7], which utilizes non-negative ma-
trix factorization for identifying concept vectors. The works
mentioned above mainly decompose activations into the
form of vectors, which gives a great advantage for finding
out ‘why’ but often fails to match or annotate the human-
understandable term (i.e., name) that is needed for ‘what’.

Other streams of work, called Neuron-concept associa-
tion, aim to name what each neuron (e.g. convolution fil-
ters, layer outputs) represents, which answers ‘what’ the
model cares about. Bau et al. proposed Network Dissec-
tion [3], which identifies each neuron’s representing con-
cept from Broaden dataset [3]. Recently, CLIP-Dissect [20]
and FALCON [14] have shown that representing the con-
cept of neurons can be matched automatically by using a
pre-trained CLIP model [21]. The aforementioned methods
are suitable for explaining ‘what’ but partially explain or
have limitations for explaining ‘where’ and ‘why’. Further-
more, these methods generate global explanations focusing
on each neuron’s role in the network, not the local explana-
tions for each sample input.

To address these issues, we propose a novel framework
that can explain ‘What’, ‘Where’, and ‘Why’ (WWW) at
once. WWW introduces adaptive selection for discover-
ing each neuron’s concept and interpreting each neuron
to explain ‘what’. By leveraging adaptive cosine similar-
ity (ACS) and adaptive selection techniques, we achieve
advanced performance compared to competitive methods.
Moreover, we combined neuron activation map (NAM) and
Shapley value [2, 16, 24] to generate class and sample con-
cept maps and heatmaps to explain ‘where’ and ‘why’. We
also conducted various objective evaluations to assess the
performance of the proposed method. In the experiments,
WWW achieves better results in both quantitative and qual-
itative evaluations. Our key contributions are summarized
as follows:
• We introduce a novel and effective way to generate high-

quality explanations that explain ‘what’, ‘where’, and
‘why’ at once. Due to the powerful performance of the
adaptive selection for concept discovery, WWW is able to
achieve higher quantitative and better qualitative results
in various metrics.

• We introduce a way to generate localized explanations
from global neural network interpretation. By the novel
combination of Shapley value and neuron activation
maps, WWW is able to generate localized explanations
with concept annotations for sample input.

• WWW can be attached to various target models with dif-
ferent architectures, from conventional convolution neu-
ral networks to the recent attention-based Vision trans-
formers, in a plug-and-play manner.

2. Related Works

2.1. Neuron-Concept Assosiation

Bau et al. introduced Network Dissection [3], using the
Broden dataset to identify which concepts individual neu-
rons in a network represent. They use overlap between
segmentation masks and feature maps to annotate concepts
for neurons. Fong and Vedaldi expanded on this with
Net2Vec [9], which looks at individual neurons and their
combinations. Mu and Andreas further extended these ideas
with Compositional Explanation [19], aiming to generate
more complex and detailed explanations. These methods
primarily focused on understanding ‘what’ a neuron rep-
resents. However, the aforementioned methods fell short
in explaining the ‘where’ and ‘why’ of neuron representa-
tions. Additionally, they relied heavily on image-concept-
matched datasets like Broden, which are often costly and
hard to collect due to the need for pixel-wise labels. To
address these limitations, recent approaches like HINT [27]
and MILAN [12] have been developed. These methods train
concept classifiers or models that reduce the dependency
on image-concept-matched datasets. Moreover, approaches
like CLIP-Dissect [20] and FALCON [14] leverage the pre-
trained CLIP model to use separate sets of image datasets
and concept datasets. Despite these advancements in under-
standing ‘what’ neurons represent, there remains a gap in
fully explaining the ‘where’ and ‘why’ of the neuron repre-
sentations.

2.2. Vector-based Explanation

The field of interpretability has significantly advanced, par-
ticularly in understanding and interpreting model decisions
using Concept Activation Vectors (CAVs). Kim et al. in-
troduced TCAV [17], understanding and interpreting model
decisions into the form of CAVs. Recently, CRAFT [7]
was introduced, leveraging non-negative matrix factoriza-
tion to identify CAVs and localize the most relevant in-
put regions for each CAV. Also, Achtibat et al. [1] and
Fel et al. [6] proposed methods to interpret each CAV’s
role in decision-making. Despite these developments, a
key challenge remains: translating CAVs into human-
understandable terms.
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Figure 1. Overall flow of Concept Discovery module identifying concepts for a single neuron. We first calculate the cosine similarity
of CLIP features between images and concepts with the template from the selected high-activating images. Then, we subtract the cosine
similarity of CLIP features between images and the base template by only considering the similarity between the concept and image. From
calculated adaptive cosine similarity (ACS), we generate concept score S by the average similarity of images. Note that concept score
S = {s1, s2, ..., sm} are a group of scores, not a single scalar. From the calculated concept scores S, we select major concepts by adaptive
selection. We also discover minor concepts using the same process but with crop images.

3. Method
3.1. Method Overview

WWW consists of three modules: Concept discovery, Lo-
calization, and Reasoning. The concept discovery mod-
ule identifies each neuron’s concept, which explains part
‘what’. It selects neuron concepts from the concept set
(Dconcept) by leveraging adaptive cosine similarity and
adaptive selection. The localization module is to identify
highly contributed input regions of the test sample, which
concept is present at ‘where’. Also, the combination of the
neuron activation map leveraging Shapley value helps iden-
tify ‘where’ the concept is and tells the ‘why’ of the individ-
ual predictions. The reasoning module identifies important
neurons of the test sample and predicted class. By compar-
ing the differences between the sample and class explana-
tions, users can understand the ‘why’ of the model predic-
tion and, even more, whether the prediction is reliable or
not.

3.2. Concept Discovery Module

The concept discovery module aims to identify proper
major and minor concepts from Dconcept that match an

example-based representation of each neuron. Let target
model f d, and let (l, i) as i-th neuron in layer l of the
target model. From the images in probing dataset Dprobe,
we select high activating images for neuron (l, i) as D(l,i)

rep .
With selected images in D

(l,i)
rep and concepts in Dconcept,

we calculate CLIP visual feature of D
(l,i)
rep as V (l,i) =[

v
(l,i)
1 , v

(l,i)
2 , · · · , v(l,i)n

]
and CLIP text feature of Dconcept

as T = [t1, t2, · · · , tm]. n denotes number of example im-
ages for neuron (l, i) and m stands for the number of con-
cept in concept set Dconcept.

We calculate concept score s(l,i) by calculating adaptive
cosine similarity (ACS), which allows us to reduce the ef-
fect of the base template and only consider the similarity
between the image and the concept itself. Concept score
s
(l,i)
j for j-th concept tj of neuron (l, i) is calculated as fol-

lows:

s
(l,i)
j =

1

n

n∑
o=1

{
cos(v(l,i)o , tj)− cos(v(l,i)o , ttem)

}
, (1)

where 1 ≤ j ≤ m, ttem denotes CLIP text feature of base
templete(e.g. ‘a photo of.’) and cos(x, y) denotes cosine
similarity between x and y.
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Figure 2. Illustration of overall test time flow of WWW. In the test time (i.e., inference), class explanation selects important neurons with
pre-computed Shapley value of the predicted class. On the other hand, the sample explanation selects important neurons with a Shapley
value for the input sample. With selected important neurons, pre-computed concepts are annotated. After the concept annotation, a class
heatmap is generated with the pre-computed Shapley value of the predicted class. On the other hand, a sample heatmap is generated with
the Shapley value of the sample input.

From the calculated concept scores s(l,i) =[
s
(l,i)
1 , · · · , s(l,i)m

]
, we select concepts where s

(l,i)
j > δ(l,i).

Adaptive selection threshold δ(l,i) for neuron (l, i) is
calculated as follows:

δ(l,i) = α×max(s(l,i)), (2)

where α denotes concept sensitivity for major and minor
concepts. For discovering minor concepts, we select D(l,i)

rep

with cropped images of probing dataset Dprobe.

3.3. Localization Module

The localization module aims to identify highly contributed
input regions of each concept and generate a concept map
and concept heatmap. We select important neurons with
Taylor approximation of Shapley value introduced in [16]
for generating a concept region map. For input image sam-
ple x, Neuron contribution w(l,i) of neuron (l, i) is calcu-
lated as follows:

w(l,i)(x) =
∣∣∣f(x)− f(x; a(l,i) ← 0)

∣∣∣ = ∣∣∣a(l,i)∇a(l,i)f(x)
∣∣∣ .

(3)

Where a(l,i) denotes activation of neuron (l, i). After cal-
culating each layer’s Neuron contribution, we rank neurons
by calculated contribution (i.e., Shapley value) and select
the top-k important neurons for the sample. The concept
heatmap M is calculated with the weighted sum of impor-
tant neurons’ neuron activation maps (NAMs). Concept
heatmap M l(x) of important neurons is calculated as fol-
lows:

M l(x) =

u∑
w(l,u)(x)A(l,u)(x) (4)

where u denotes the index of important neurons, w denotes
the neuron contribution, and A denotes the neuron activa-
tion map of the neuron. Note that M l shows only related
regions of a single or combination of important neurons,
not the whole network.

3.4. Reasoning Module

The reasoning module is designed to help users understand
the ‘why’ of the model output. This not only explains the
result but also includes ‘why’ this prediction is reliable or
not. By leveraging the class-wise Shapley value introduced
in [2], we can understand each neuron’s class-wise contri-
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bution and identify important neurons for each class. From
Ahn et al. [2], the class-wise contribution of a neuron can be
calculated by the average contribution of a neuron in class
samples. From the class-wise contribution, we rank top-k
important neurons for each class. We can also generate a
class-wise concept region map and concept heatmap with
the index of important neurons. Class-wise maps can be
used as a guideline for understanding the general case of
the prediction. By comparing Class-wise maps and sam-
ple maps, users can identify which concept and region of
the sample differs from general cases. This naturally helps
users understand the ‘why’ of the model output and also
‘why’ the results are reliable or not. Figure 2 for further un-
derstanding the WWW flow for generating class and sample
explanations. Figure 5 shows the generated explanation ex-
ample.

3.5. Overall flow and Output of WWW

As described above, WWW has three main modules ex-
plaining three ‘w’ of ‘what’, ‘where’, and ‘why’, respec-
tively. In Section 3.5, we are going to follow the overall flow
of our method by time sequence. Before starting inference,
WWW needs pre-computing for discovering major and mi-
nor concepts with the concept discovery module (Sec 3.2)
and also a class-wise contribution for class-wise analysis
in the Reasoning Module (Sec 3.4). After pre-computing
concepts and contributions, WWW is ready to generate test
sample explanations. Figure 2 shows the overall flow of
explaining the generation of WWW in the inference time.
In the test time (i.e., inference), WWW generates a class-
wise explanation of the predicted class and sample expla-
nation into two tracks. WWW leverages the predicted class
and class-wise contribution matrix to generate a class-wise
explanation to select the most critical neurons for the pre-
dicted class. After identifying important neurons, WWW
leverages the localization module (Sec 3.3) to generate a
class concept region map and class concept combination
heatmap. On the other hand, for the sample explanation,
WWW calculates the Taylor-approximated Shapley value
of the sample for the predicted class and identifies critical
neurons for the prediction of the sample. After identify-
ing important neurons for the sample, WWW leverages the
sample Shapley value to generate the sample concept region
map and sample concept combination heat map.

4. Experiment
Comprehensive experiments have been conducted to eval-
uate our method. In section 4.1, we evaluate the perfor-
mance of the concept discovery module both qualitatively
(Sec. 4.1.1) and quantitatively (Sec. 4.1.2). Section 4.2 is
an ablation study for the concept discovery module. In Sec-
tion 4.3, we analyze generated explanations of both correct
and wrong predictions with examples.

Figure 3. Qualitative comparison of WWW with other base-
lines. We compared WWW with three competitive baselines
(CLIP-Dissect [20], MILAN [12], FALCON [14]) in two final
layer neurons and four penultimate layer (i.e., layer 4) neurons
with each neuron’s highly activating images. layer-4 neurons are
top-2 important neurons of the final layer class. We have colored
the descriptions green if they match the images, yellow if they
match but are too generic or similar, and red if they do not match.

4.1. Performance Evaluation for Concept Module

In this experiment, we evaluate the concept matching per-
formance of the concept discovery module with four other
baselines, Network Dissection [3], MILAN [12], CLIP-
Dissect [20] and FALCON [14]. We evaluate the perfor-
mance of methods on the various models (e.g., ResNet-
18 [11], ResNet-50 [11], and ViT-B/16 [5]), various prob-
ing datasets (e.g., Imagenet, Places365) and various concept
sets (e.g., Wordnet nouns, and labels of Places365, Broaden,
and ImageNet)

4.1.1 Qualitative Results

Settings. We compared WWW with the three most com-
parable methods (CLIP-Dissect [20], MILAN [12], FAL-
CON [14]) in the penultimate layer and final layer of the
model. We do not compare with Network Dissection [3]
due to the limitation that probe image data Dprobe and con-
cept set Dconcept is fixed to Broaden. We used a ResNet-
50 [11] model pre-trained in the ImageNet-1k [22] dataset.
For probe image data Dprobe, we used the ImageNet-1k val-
idation set, and we extracted all nouns in Wordnet[8] (about
80k) dataset for a concept set Dconcept.
Results. Figure 3 shows examples of descriptions for hid-
den neurons in the penultimate and final layers. Neurons
in the penultimate layer are top-2 important neurons of the
final layer neuron’s ground truth label class. We observed
that WWW not only interpreted each neuron well but also
showed robust interpretation that the most important neu-
ron of the class in the penultimate layer represents the same
major concept as the final layer neuron.

10972



Table 2. Quantitative comparison on final layer concept matching performance of ResNet-50 trained on ImageNet. We compared
predicted neuron concepts with ground truth labels of ImageNet. We used the Imagenet-1k validation set for Dprobe. Bold numbers
represent the best scores between the same settings. The average score and standard errors of the 1000 final layer neurons are reported.

Method Dprobe Dconcept CLIP cos mpnet cos F1-score Hit Rate

Network Dissection [3] Broden Broden(1.2k) 0.7229± 0.003 0.2989± 0.005 0.0010± 0.001 0.001
MILAN(b) [12] ImageNet val - 0.7300± 0.003 0.2485± 0.005 0.0005± 0.000 0.001
FALCON [14] ImageNet val LAION-400m 0.7065± 0.003 0.1790± 0.001 0.0002± 0.000 0.001

CLIP-Dissect [20]
ImageNet val ImageNet (1k) 0.9340± 0.003 0.8376± 0.006 0.7286± 0.009 0.933
ImageNet val Broden (1.2k) 0.7369± 0.003 0.3432± 0.004 0.0328± 0.003 0.108
ImageNet val Wordnet (80k) 0.8689± 0.004 0.6846± 0.008 0.3647± 0.014 0.456

WWW (Ours)
ImageNet val ImageNet (1k) 0.9325± 0.003 0.8327± 0.006 0.7719± 0.009 0.955
ImageNet val Broden (1.2k) 0.7758± 0.004 0.4414± 0.007 0.0645± 0.007 0.091
ImageNet val Wordnet (80k) 0.8858± 0.003 0.6945± 0.008 0.4197± 0.012 0.645

Table 3. Quantitative comparison on final layer concept matching performance of ViT-B/16 trained on ImageNet. We compared
predicted neuron concepts with ground truth labels of ImageNet. We used the Imagenet-1k validation set for Dprobe. Bold numbers
represent the best scores between the same settings. The average score and standard errors of the 1000 final layer neurons are reported.

Method Dprobe Dconcept CLIP cos mpnet cos F1-score Hit Rate

CLIP-Dissect [20]
ImageNet val ImageNet (1k) 0.9337± 0.003 0.8375± 0.006 0.7289± 0.009 0.933
ImageNet val Broden (1.2k) 0.7365± 0.003 0.3416± 0.004 0.0319± 0.003 0.106
ImageNet val Wordnet (80k) 0.8700± 0.004 0.6886± 0.008 0.3679± 0.014 0.460

WWW (Ours)
ImageNet val ImageNet (1k) 0.9331± 0.003 0.8347± 0.006 0.7718± 0.009 0.955
ImageNet val Broden (1.2k) 0.7754± 0.004 0.4407± 0.007 0.0651± 0.007 0.091
ImageNet val Wordnet (80k) 0.8857± 0.003 0.6970± 0.008 0.4166± 0.012 0.634

4.1.2 Quantitative Results

In this section, we compare the performance of our meth-
ods with baselines. As introduced in [20], we evaluate fi-
nal layer neuron concepts with the class labels with vari-
ous metrics. By comparing generated explanations with the
class labels, we can objectively evaluate the quality of the
generated neuron labels with what each neuron is trained to
represent.
Metrics. CLIP cos and mpnet cos are measured as cosine
similarities between the encoded feature of the class label
and selected concepts with CLIP [21] model and mpnet [26]
model, respectively. F1-score is measured to evaluate the
discovered concept’s balance of exactness and flexibility.
Also, the hit rate is calculated as a rate of selected concepts
that exactly match the class label.
Quantitative comparison on ResNet-50. Table 2 com-
pares WWW with Network Dissection [3], MILAN(b) [12],
FALCON [14], and CLIP-Dissect [20]. We evaluate the fi-
nal layer neuron concepts of ResNet-50 with the class labels
of ImageNet-1k. In table 2, WWW showed better perfor-
mance as the concept set Dconcept gets larger and outper-
formed all other baselines when concept set Dconcept is set
to Broden and Wordnet nouns. In the results of Wordnet
nouns (Dconcept), comparison between WWW and CLIP-
Dissect [20] are statistically significant across all metrics

(p < 0.05).
Quantitative comparison on ViT-B/16. We compared pre-
dicted concepts of the final layer to ground truth labels
of ViT-B/16 pre-trained on ImageNet. In Table 3, WWW
showed better performance as the concept set Dconcept gets
larger and outperformed other baselines when concept set
Dconcept is set to Broden and Wordnet nouns.
Quantitative comparison on ResNet-18 pre-trained in
Places365. We compared predicted labels to ground truth
labels in final layer neurons of ResNet-18 pre-trained on
Places365. In table 4, WWW showed better performance as
the concept set Dconcept gets larger and outperformed other
baselines when concept set Dconcept is set to Broden and
Wordnet nouns.

4.2. Ablation study

Evaluation on the effect of leveraging base template and
ACS. Table 5 shows an ablation study over various parts
used in WWW. Without using a base template, WWW
showed the lowest performance overall. With the use of
a base template, WWW shows slightly increased perfor-
mance in CLIP cos and F1-score but not much advance
overall. However, performance was significantly increased,
and the highest scores in all three metrics were achieved
when leveraging ACS. The findings suggest that while us-
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Table 4. Quantitative comparison on final layer concept matching performance of ResNet-18 trained on Places365. We compared
predicted neuron concepts with ground truth labels of Places365. We used the Places365 test set for Dprobe. Bold numbers represent the
best scores between the same settings. The average score and standard errors of the 365 final layer neurons are reported.

Method Dprobe Dconcept CLIP cos mpnet cos F1-score Hit Rate

CLIP-Dissect [20]
Places365 test Places365 (0.4k) 0.9562± 0.004 0.8687± 0.012 0.7233± 0.023 0.723
Places365 test Broden (1.2k) 0.8304± 0.003 0.4678± 0.007 0.1096± 0.008 0.329
Places365 test Wordnet (80k) 0.8378± 0.006 0.5107± 0.014 0.1041± 0.016 0.104

WWW (Ours)
Places365 test Places365 (0.4k) 0.9402± 0.004 0.8204± 0.013 0.6361± 0.024 0.660
Places365 test Broden (1.2k) 0.8925± 0.005 0.6415± 0.013 0.2242± 0.021 0.255
Places365 test Wordnet (80k) 0.8492± 0.004 0.5000± 0.013 0.1106± 0.015 0.142

Table 5. Ablation study on the use of the template and ACS.
‘✔’ in the Template represents WWW using a template (e.g., ‘a
photo of word’) ‘✔’ in the ACS represents WWW using adaptive
cosine similarity.

Template ACS CLIP cos mpnet cos F1-score

0.8499± 0.003 0.6123± 0.007 0.3265± 0.009
✔ 0.8547± 0.003 0.6075± 0.007 0.3361± 0.009
✔ ✔ 0.8858± 0.003 0.6945± 0.008 0.4197± 0.012

ing a base template in the CLIP model offers some benefits,
it also has its limitations, particularly in terms of embedding
concepts within a similar CLIP feature space. In contrast,
ACS appears to reduce the uniformity between concepts,
allowing the concept discovery module to discover more
distinct and accurate concepts for each neuron representa-
tion. This highlights the effectiveness of ACS in enhancing
the overall performance of the concept discovery module.
Ablation study on Concept Sensitivity (α). The ablation
study depicted on the left side of Figure 4 examined the im-
pact on the F1-score by varying levels of major concept sen-
sitivity (denoted as α). We found that as concept sensitivity
decreases, the F1-score initially increases(α > 0.95) and
then decreases. This pattern is due to a trade-off. Higher
concept sensitivity leads to more precise concept identifi-
cation but at the cost of identifying fewer concepts. Con-
versely, lower sensitivity results in more concepts being
identified that may be less similar to the target concept. The
point at which the F1-score is maximized can be seen as the
optimal balance in this trade-off, providing a guideline for
setting the most effective level of concept sensitivity for the
major concept discovery.

4.3. Discussion

4.3.1 Overall Explanation Generated by WWW

Figure 5 illustrates an explanation example generated by
WWW, where the left side of the figure provides a class ex-
planation for a test sample by highlighting important neu-
rons for the predicted class, and the right side depicts a
sample explanation showing the important neurons identi-

Figure 4. Ablation of concept sensitivity and heatmap similar-
ity feasibility result. Left figure illustrates the F1 score with re-
spect to Concept Sensitivity (α) changes. Concept sensitivity (α)
that maximizes the F1-score is illustrated as the red line. The right
figure illustrates the rejection test result of heatmap similarity and
maximum softmax probability (MSP). # of hit denotes the number
of correctly detected samples as a misprediction.

Figure 5. Example of generated explanation by WWW. From
top to bottom, important neurons are displayed in the order of im-
portance. Images in each neuron are examples of a major and
minor concept, respectively. Colors in the top localization image
show highly related regions for each concept. The bottom local-
ization image is a weighted sum of important neuron activation
maps displayed as a heatmap.

fied for the test sample image prediction. This explanation
target neurons from the penultimate layer of a ResNet-50
model pre-trained on ImageNet, using the ImageNet vali-
dation set (Dprobe) and Wordnet nouns (Dconcept) for the
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explanation. Notably, neuron 30 is consistently identified
as the most crucial in both explanations. It represents the
‘tench’ concept, which matches the prediction and the test
sample’s ground truth. Interestingly, while neuron 1246 is
the third most important for the concept, it is the second
most significant for the test sample’s prediction, and neu-
ron 1480, not highlighted in the class explanation, emerges
as the third important neuron in the sample explanation.
Despite these neuron selection and ranking variations, the
model accurately predicts the correct class. The overall
heatmap of the class and sample explanations can explain
this. The heatmap explanation reveals a high cosine similar-
ity between the two heatmaps, indicating that the calculated
weighted sum of NAMs is similar. Despite the difference in
individual neuron importance, the highly related input re-
gion is remarkably similar in both cases.

4.3.2 Anlaysis of Explanation of Failure Case

Figure 6 provides an example of a mispredicted sample ex-
planation generated by the WWW. In this particular case
of failure, not only do the selected important neurons dif-
fer between the class and sample explanations, but the co-
sine similarity between their respective heatmaps is rela-
tively low, measuring at 0.19. Interestingly, even though
the ground-truth class explanations and the sample expla-
nations highlight different important neurons, they both lo-
calize to similar regions in the heatmap, showing a rela-
tively high similarity score of 0.47. From this observation,
we explore the potential utility of heatmap similarity to pre-
dict uncertainty. On the right side of Figure 4, we present
the results of a rejection test that evaluates heatmap similar-
ity and the maximum softmax probability (MSP). When the
rejection method detects the mispredicted sample correctly,
we consider that as a hit. The number of hit is measured
with respect to the rejected sample rate. As the rejection
rate increases based on their uncertainty level, it becomes
evident that heatmap similarity outperforms MSP regarding
the detection of misprediction samples. This suggests that
heatmap similarity can serve as a more effective measure of
uncertainty compared to MSP. These findings indicate that
heatmap similarity can be used as a tool for predicting un-
certainty.

5. Conclusion
We proposed WWW, a unified framework that provides
comprehensive explanations for the ‘what’, ‘where’, and
‘why’ of neural network decisions. WWW demonstrates
superior performance in both quantitative and qualitative
measures, offering a deeper and more detailed understand-
ing of neural network behavior. This is achieved through a
novel integration of adaptive selection for concept discov-
ery, neuron activation maps, and Shapley values. WWW’s

Figure 6. Example of failure case explanation by WWW. The
explanations of the predicted label are presented on the left side.
On the right side, the explanation of the ground-truth label is
shown. In the upper half, we displayed concept attribution maps,
which show important concepts and their respective regions. In
the bottom half, we showed the overall heatmap which shows im-
portant regions for the model decision.

adaptability is also shown across various neural network ar-
chitectures, including convolutional networks and attention-
based Vision Transformers. Additionally, our approach to
predicting uncertainty through heatmap similarity analysis
introduces a new way to obtain the reliability of their predic-
tions. By offering localized explanations with concept an-
notations for individual inputs, WWW enhances the trans-
parency of the model’s decision-making process, contribut-
ing to the broader goal of making AI more reliable and trust-
worthy.
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