
This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9926



9927



9928



9929



9930



Datasets Backbone Method Pub’Year #Params (M) #FLOPs (G) Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1(%) ↑ δ2(%) ↑ δ3(%) ↑

M3D [5]

Transformer
EGFormer [45] ICCV’23 15.39 66.21 0.1473 0.1517 0.6025 81.58 93.90 97.35

PanoFormer [32] ECCV’22 20.38 81.09 0.1051 0.0966 0.4929 89.08 96.23 98.31

ResNet-18 [14]

BiFuse [37] CVPR’20 35.80 165.66 0.1360 0.1202 0.5488 83.27 95.12 98.10

UniFuse [16] RAL’21 30.26 62.60 0.1191 0.1030 0.5158 86.04 95.84 98.30

OmniFusion [41] CVPR’22 32.35 98.68 0.1209 0.1090 0.5055 86.58 95.81 98.36

HRDFuse† [2] CVPR’23 26.09 50.59 0.1414 0.1241 0.5507 81.48 94.89 98.20

Ours - 15.43 45.91 0.1272 0.1070 0.5270 85.28 95.28 98.49

ResNet-34 [14]

BiFuse [37] CVPR’20 56.01 199.58 0.1126 0.0992 0.5027 88.00 96.13 98.47

BiFuse++ [38] TPAMI’22 52.49 87.48 0.1123 0.0915 0.4853 88.12 96.56 98.69

UniFuse [16] RAL’21 50.48 96.52 0.1144 0.0936 0.4835 87.85 96.59 98.73

OmniFusion [41] CVPR’22 42.46 142.29 0.1161 0.1007 0.4931 87.72 96.15 98.44

HRDFuse† [2] CVPR’23 46.31 80.87 0.1172 0.0971 0.5025 86.74 96.17 98.49

Ours - 25.54 65.29 0.1115 0.0914 0.4875 88.15 96.46 98.74

ResNet-50∗ [14]

BiFuse [37] CVPR’20 253.08 775.24 0.1179 0.0981 0.4970 86.74 96.27 98.66

UniFuse [16] RAL’21 131.30 222.30 0.1185 0.0984 0.5024 86.66 96.18 98.50

Ours - 42.99 170.11 0.1112 0.0980 0.4870 86.70 96.01 98.61

S2D3D [3]

Transformer
EGFormer [45] ICCV’23 15.39 66.21 0.1528 0.1408 0.4974 81.85 93.38 97.36

PanoFormer [32] ECCV’22 20.38 81.09 0.1122 0.0786 0.3945 88.74 95.84 98.59

ResNet-34 [14]

OmniFusion [41] CVPR’22 42.46 142.29 0.1154 0.0775 0.3809 86.74 96.03 98.71

UniFuse [16] RAL’21 50.48 96.52 0.1124 0.0709 0.3555 87.06 97.04 98.99

Ours - 25.51 65.28 0.1182 0.0728 0.3756 88.72 96.84 98.92

Struct3D [48]

Transformer
EGFormer [45] ICCV’23 15.39 66.21 0.2205 0.4509 0.6841 79.79 90.71 94.55

PanoFormer [32] ECCV’22 20.38 81.09 0.2549 0.4949 0.7937 74.70 89.15 93.97

ResNet-34 [14]

BiFuse [37] CVPR’20 56.01 199.58 0.1573 0.2455 0.5213 85.91 94.00 96.72

UniFuse [16] RAL’21 50.48 96.52 0.1506 0.2319 0.5016 85.42 93.99 96.76

Ours - 25.51 65.28 0.1480 0.2215 0.4961 87.41 94.34 96.66

Table 2. Quantitative comparison with the SOTA methods. † means that we modify the HRDFuse network structure for a fair compari-

son. Green represents the best performance under the given encoder backbone.

cross-attention mechanism [39]. Given the ERP pixel-wise

feature FE
i,j and ICOSAP point feature set [F I ], we firstly

calculate the spatial distance embedding DisSP from the

spatial coordinates of ERP pixel and ICOSAP point set, i.e.

[xe
i,j , y

e
i,j , z

e
i,j ] and {[xico

n , yicon , zicon ]}N , as:

DisSP
i,j = [e−∆xi,j , e−∆yi,j , e−∆zi,j ]WSP , (1)

where linear projection WSP ∈ R
3×d, DisSP

i,j ∈ R
1×N×d,

and [∆xi,j , ∆yi,j , ∆zi,j ] ∈ R
1×N×3 is the distances be-

tween [xe
i,j , y

e
i,j , z

e
i,j ] and {[xico

n , yicon , zicon ]}N . In particu-

lar, the operation e−(·) allows DisSP to pay more attention

to the close parts between ERP pixels and ICOSAP point

set. After that, we produce the query QD
i,j and key KD

from FE
i,j and [F I ], respectively and calculate the semantic

distance embedding DisSE
i,j :

DisSE
i,j = e−‖Q

D
i,j−KD‖, (2)

where WD
Q , WD

K ∈ R
C×d are linear projections, QD

i,j ∈

R
1×d, KD ∈ R

N×d, and DisSE
i,j ∈ R

1×N×d. Lastly, the

distance-aware attention weight AD
i,j is generated with spa-

tial and semantic distance embeddings, and the distance-

aware affinity feature vector FDA
i,j is obtained from the at-

tention weight AD
i,j and the value VD:

A
D
i,j = softmax(

∑
(DisSP

i,j +DisSE
i,j )

√
d

), (3)

V
D = F I

W
D
V , FDA

i,j = A
D
i,j ∗V

D, (4)

where
∑

means the sum for the channel dimension, i.e.∑
(DisSP

i,j +DisSE
i,j ) ∈ R

1×N . After querying all ERP

pixel-wise features, we obtain the distance-aware aggre-

gated feature FDA ∈ R
h×w×d, d = C.

Gated fusion. Since direct average or concatenation may
compromise the original representation ability, inspired
by [9], we propose the gated fusion block to adaptively fuse
FSA and FDA and obtain the representations FGL from a
local-with-global perspective, formulated as:

F
GL = g

SA
∗ F

SA + g
DA

∗ F
DA

, (5)

g
SA = σSA(W

SA
g · [FSA;FDA]),

g
DA = σDA(W

DA
g · [FSA;FDA]),

where WSA
g and WDA

g are linear projections, σSA(·) and

σDA(·) are the sigmoid functions.

3.4. Optimization

With the fused feature FGL and multi-scale ERP feature

maps in the ERP encoder backbone, we feed them into

a decoder [30] with several up-sampling blocks and skip-

connections to output the final depth. For the depth super-

vision, we follow existing works [28, 32] and employ the

combination of Berhu loss [20] and gradient loss [28]. (De-

tails of training loss can be found in the suppl. material.).

4. Experiments

4.1. Datasets, Metrics, and Implementation Details

Datasets and Metrics. We evaluate Elite360D on three

datasets: two real-world datasets, Matterport3D(M3D) [5],

Stanford2D3D(S2D3D) [3], and a recently proposed large-

scale synthetic dataset, Structure3D(Struct3D) [48]. For the

evaluation metrics, we follow previous works [16, 32, 45]

to employ some standard metrics, including absolute rela-

tive error (Abs Rel), squared relative error (Sq Rel), root

mean squared error (RMSE), and three threshold percent-

age δ < αt (α = 1.25, t = 1, 2, 3), denoted as δt. Addi-
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Figure 7. Qualitative results (with ResNet-34 as the backbone) on Matterport3D (top), Stanford2D3D (middle) and Structure3D (bottom).

Backbone Pre-trained Abs Rel↓ Sq Rel↓ RMSE↓ δ1 ↑

ResNet-34
% 0.1596 0.1452 0.5856 81.36

! 0.1115 0.0914 0.4875 88.15

EfficientNet-B5
% 0.1211 0.1087 0.5131 86.80

! 0.1048 0.0805 0.4524 89.92

DilateFormer
% 0.1515 0.1415 0.5694 80.95

! 0.1423 0.1251 0.5517 82.68

Table 3. The impact of pre-training on ERP encoder backbones.

tionally, we measure the number of parameters and FLOPS

to evaluate the efficiency of our method.

Training Details. We use diverse ERP encoder back-

bones, including CNNs (ResNet-18, 34, 50 [14], Efficient-

Net B5 [35]), and transformers (Swin-B [24], DilateFormer-

T [17]). All backbones are pre-trained on ImageNet-

1K [11]. We set the default channel number C to 64

and default subdivision level of ICOSAP as l = 4. For

the ICOSAP encoder, we employ the one of Point trans-

former [47] with three down-sample blocks. Follow-

ing [16], we use Adam optimizer [18] and a constant learn-

ing rate of 1e−4. Considering the unfair comparisons stem-

ming from variations in hyper-parameters and validation

procedures used across different methods, we re-train the

existing methods from scratch and validate them, follow-

ing the unified training and validation settings [16]. (Due to

page limit, detailed training and validation settings can be

found in suppl. mat.).

4.2. Performance Comparison

Comparisons with ERP-based depth baselines. As

shown in Tab. 1, with an increase of only ∼1M parameters

(C=64), our Elite360D demonstrates substantial advance-

ments over the ERP-based baselines across different ERP

encoder backbones on all three datasets. Specifically, for

the Matterport3D dataset, Elite360D achieves reductions

exceeding 10% in Abs Rel error (ResNet-18, 34), along

with reductions of 4.00% in Abs Rel error (Swin-B) and

4.02% in RMSE error (DilateFormer-T). Besides, with the

larger channel number C = 256 (ResNet-50), Elite360D

outperforms ERP baseline by 18.75% (Abl Rel), 18.94%
(Sq Rel). For the small-scale S2D3D dataset, Elite360D

outperforms ERP baseline by 9.21% in Abs Rel error and

1.31% in accuracy δ1 (ResNet-34), as well as 5.49% in

Sq Rel error (EfficientNet-B5). Remarkably, on the larger-

scale Structure3D, Elite360 performs favorably against the

baseline by a significant margin, especially with ResNet-34.

Comparisons with prevalent methods. In Tab. 2, we con-

duct a comprehensive comparison with prevalent supervised

methods. From the results, we can observe that our ap-

proach achieves similar or even superior performance com-

pared to existing both bi-projection fusion methods and

single input methods at a significantly lower cost, par-

ticularly on two large-scale datasets, Matterport3D and

Structure3D. Specifically, for the Matterport3D dataset, our

Elite360D with ResNet-34 outperforms UniFuse by 2.53%
(Abs Rel) and with ResNet-50 outperforms BiFuse by

2.01% (RMSE). For the Structure3D dataset, our Elite360D

with ResNet-34 outperforms UniFuse by 4.48% (Seq Rel),

1.99% (δ1). For performance on the Stanford2D3D dataset,

we suspect it might be related to the ICOSAP point encoder.
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Bi-projection feature fusion Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1 ↑

SFA [2] + Add 0.1276 0.1002 0.5150 84.27

SFA [2] + Concat 0.1191 0.1019 0.5143 86.52

Only SA 0.1204 0.1014 0.5121 86.26

Only DA 0.1184 0.0972 0.4944 87.06

Our B2F (SA + DA) 0.1115 0.0914 0.4875 88.15

Table 4. The ablation results for B2F module.

Final fusion Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1 ↑

Add 0.1685 0.1481 0.5809 74.60

Average 0.1198 0.0918 0.4893 86.65

Concatenation 0.1145 0.0937 0.4880 87.66

Adaptive fusion [2] 0.1244 0.0968 0.4891 86.08

Our gated fusion 0.1115 0.0914 0.4875 88.15

Table 5. The ablation results for the fusion of B2F module.

The limited data of Stanford2D3D dataset restricts the abil-

ity of the transformer-based point encoder to provide accu-

rate global perception. Moreover, in Fig. 7, we present the

qualitative comparisons. Our Elite360D can predict more

accurate depth values based on the local-with-global per-

ception capabilities (e.g., flowers, shelves and doors). Ad-

ditional qualitative results and inference time comparisons

can be found in the suppl. material.

4.3. Ablation Study and Analyses

Most of ablation experiments are conducted on the Mat-

teport3D test dataset with ResNet34 as the backbone .

The Effect of pre-training. We verify the effectiveness

of ImageNet [11] pre-training with different encoder back-

bones. As observed from Tab. 3, the pre-training results in

a significant improvement for all encoder backbones, e.g.,

6.79% improvement in accuracy δ1 (ResNet-34). Notably,

pre-training has a relatively small impact on DilateFormer.

Combined with the results in Tab. 1, the explanation of

this phenomenon is that the default input resolution in pre-

trained models is different from actual input, thereby im-

pacting the resolution-related position embeddings. In gen-

eral, pre-training based on large-scale perspective images

can effectively enhance the performance of models based

on 360◦ images and reduce the risk of overfitting.

The effectiveness of B2F module. In Tab. 4, we com-

pare four available bi-projection feature fusion modules. To

align the spatial dimensions between ICOSAP point fea-

ture set and ERP feature map, we introduce SFA module

from [2]. After that, we employ direct addition and concate-

nation to aggregate these two projections. We also achieve

the bi-projection feature fusion with semantic-aware affin-

ity attention (SA) alone and distance-aware affinity atten-

tion (DA) alone. Compared to the methods based solely on

semantic-aware feature similarities (The first three rows),

single distance-aware affinity attention can achieve better

performance, which indicates that the spatial positional re-

lationships boost the bi-projection feature fusion. Overall,

our B2F module achieves the best performance.

The superiority of ICOSAP. As only CP/TP’s patch cen-

ters lie on the sphere’s surface, we extract the feature em-

Method #Param(M) #FLOPs(G) Abs Rel ↓ RMSE ↓ δ1 ↑

ERP-CP 25.66 54.15 0.1369 0.5401 83.69

ERP-TP (N=18) 25.66 50.58 0.1328 0.5385 83.87

ERP-ICOSAP (Ours) 15.43 45.91 0.1272 0.5270 85.28

Table 6. The comparison of different projections on Matterport3D.

N of {F I} #Params (M) #FLOPs (G) Abs Rel↓ Sq Rel↓ RMSE↓ δ1↑

20 27.41 66.29 0.1157 0.0995 0.5024 87.12

80 25.54 65.29 0.1115 0.0914 0.4875 88.15

320 24.98 64.32 0.1153 0.0943 0.4905 87.85

Table 7. Impact of the ICOSAP point-wise feature number N .

Larger N , fewer down-sampling blocks in the point encoder.

bedding from each CP/TP patch and employs the patch

center coordinates and feature embedding as the input of

B2F module. In Tab. 6, we show the results with ResNet18

backbone. Our Elite360D, utilizing the ICOSAP point set,

marginally outperforms models with CP and TP patches,

while exhibiting fewer parameters and FLOPs.

The effectiveness of gated fusion. We conduct an abla-

tion study for the gated fusion block, outlined in Tab. 5.

With the feature maps FSA and FDA, We compare it with

the direct addition, average fusion, concatenation, and the

adaptive fusion in [2]. The gated fusion performs best.

ICOSAP point feature number N . We study the effect of

the ICOSAP feature point number (See Tab. 7). Too few

points (N=20) lead to the over-concentrated global contex-

tual information resulting from excessive down-sampling

blocks, while too many points (N=320) lead to under-

concentrated condition, resulting in insufficient perception

of ERP pixel features. Best performance can be observed

when N=80 and we used N=80 as default in this paper.

5. Conclusion and Future Work

In this paper, we proposed a novel bi-projection fusion so-

lution for efficient 360 depth estimation. To address the

limited local receptive field of ERP pixel-wise features and

avoid expensive bi-projection fusion modules, we proposed

a compact yet effective B2F module to learn the represen-

tations with local-with-global perceptions from ERP and

ICOSAP. With an increase of 1M parameters, we signifi-

cantly improved the performance of the ERP-based depth

estimation baseline. Remarkably, our approach achieved

performance on par with complex state-of-the-art methods.

Future Work: From the experimental results, we observed

that ERP-based depth baseline, with pre-trained Efficient-

Net backbone, even outperforms existing specifically de-

signed methods. Therefore, in the future, we will explore

how to fully leverage different projections and successful

perspective models for 360◦ community.
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