This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and
Fidelity for All-in-One Image Restoration

Yuang Ai'?  Huaibo Huang"?®  Xiaoqiang Zhou'® Jiexiang Wang!®  Ran He!?
IMAIS & CRIPAC, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
3University of Science and Technology of China, Hefei, China

shallowdream555@gmail.com, huaibo.huang@cripac.ia.ac.cn,

{xg525, jiexiang}@mail.ustc.edu.cn, rhe@nlpr.ia.ac.cn

Real-World Desnowmg

. Real Denonsmg
Defocus Deblurring
11
Under-Display Camera IR-TOLED
I

JPEG Compression tifact Removal Demosaicking Demoiréir’lg
Figure 1. Our MPerceiver excels in image restoration tasks with: (I) All-in-one: Addressing diverse degradations, including challenging
mixed ones, through a single pretrained network. (II) Zero-shot: Handling training-unseen degradations effortlessly. (III) Few-shot:
Adapting to new tasks with minimal data (about 3%-5% of data used by task-specific methods).

age restoration. Specifically, we develop a dual-branch
Abstract module to master two types of SD prompts: textual for
holistic representation and visual for multiscale detail rep-
resentation. Both prompts are dynamically adjusted by
degradation predictions from the CLIP image encoder, en-
abling adaptive responses to diverse unknown degrada-
tions. Moreover, a plug-in detail refinement module im-
proves restoration fidelity via direct encoder-to-decoder in-
formation transformation. To assess our method, MPer-
=Corresponding author. Project Page. ceiver is trained on 9 tasks for all-in-one IR and outper-

Despite substantial progress, all-in-one image restora-
tion (IR) grapples with persistent challenges in handling
intricate real-world degradations. This paper introduces
MPerceiver: a novel multimodal prompt learning approach
that harnesses Stable Diffusion (SD) priors to enhance
adaptiveness, generalizability and fidelity for all-in-one im-
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forms state-of-the-art task-specific methods across many
tasks. Post multitask pre-training, MPerceiver attains a
generalized representation in low-level vision, exhibiting
remarkable zero-shot and few-shot capabilities in unseen
tasks. Extensive experiments on 16 IR tasks underscore the
superiority of MPerceiver in terms of adaptiveness, gener-
alizability and fidelity.

1. Introduction

Image restoration (IR) aims to reconstruct a high-quality
(HQ) image from its degraded low-quality (LQ) counter-
part. Recent deep learning-based IR approaches excel in
addressing single degradation, such as denoising [111, 127,
128, 131], deblurring [88, 94, 103], adverse weather re-
moval [14, 36, 37, 47, 68, 81, 116], low-light enhance-
ment [28, 114, 118], etc. However, these task-specific meth-
ods often fall short in real-world scenarios, such as au-
tonomous driving and outdoor surveillance, where images
may encounter unknown, dynamic degradations [73, 144].
The concept of all-in-one image restoration has recently
gained significant traction, aiming to tackle multiple degra-
dations with a unified model using a single set of pre-
trained weights. Leading approaches leverage techniques
such as contrastive learning [13, 49], task-specific sub-
networks [82, 142], task-specific priors [104, 116], and
task-agnostic priors [63] to enhance the network’s capa-
bility across various degradations. Despite their promising
performance, the adaptability and generalizability of all-in-
one models to real-world scenarios, characterized by intri-
cate and diverse degradations, remain challenging.

Large-scale text-to-image diffusion models, like Stable
Diffusion (SD) [93], succeed in high-quality and diverse im-
age synthesis. This motivates our exploration of leveraging
SD for all-in-one image restoration, capitalizing on its HQ
image priors to enhance reconstruction quality and general-
ization across realistic scenarios. However, direct applica-
tion of SD faces challenges in adaptiveness, generalizabil-
ity, and fidelity for all-in-one image restoration. SD’s profi-
ciency in HQ image synthesis relies on intricately designed
prompts, complicating the crafting of suitable prompts for
complex, authentic degradations, thereby limiting adapt-
ability and generalization. Furthermore, as a latent diffu-
sion model, SD adopts a VAE architecture with high com-
pression, risking the loss of fine details in restored images
and consequently restricting the fidelity of IR [18, 145].

In this paper, we propose MPerceiver, a multimodal
prompt learning approach harnessing the generative priors
of Stable Diffusion to enhance adaptiveness, generalizabil-
ity and fidelity of all-in-one image restoration. MPerceiver
comprises two modules: a dual-branch module learning
textual and visual prompts for diverse degradations, and
a detail refinement module (DRM) to boost restoration fi-
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Figure 2. PSNR comparison with state-of-the-art all-in-one and
task-specific methods across 10 tasks. Best viewed in color.

delity. For textual prompt learning, it predicts HQ text
embeddings as SD’s text condition using CLIP image fea-
tures from LQ inputs. A cross-modal adapter (CM-Adapter)
converts CLIP image embeddings into degradation-aware
text vectors, dynamically integrated into HQ textual em-
beddings based on degradation probabilities estimated by

a lightweight predictor. For visual prompts, MPerceiver

acquires multiscale detail representations that are crucial

for image restoration. An image restoration adapter (IR-

Adapter) decomposes VAE image embeddings into multi-

scale features, dynamically modulated by visual prompts.

This dynamic integration in both textual and visual prompt

learning enables adaptation to diverse degradations and

improves generalization by treating training-unseen degra-
dations as a combination of those in the training set.

Additionally, a detail refinement module (DRM) extracts

degradation-aware LQ features from the VAE encoder,

fused into the decoder through direct encoder-to-decoder in-
formation transformation, further enhancing fidelity.

To demonstrate the superiority of MPerceiver as an all-
in-one approach, it’s trained on 9 IR tasks covering both
synthetic and real settings. As shown in Fig. 2, our method
outperforms all compared all-in-one methods and achieves
even better results than state-of-the-art task-specific meth-
ods in many tasks. Besides, MPerceiver can even han-
dle challenging mixed degradations that may occur in real-
world scenarios (Fig. 1 I). Furthermore, after multitask
pre-training, MPerceiver has learned general representa-
tions in low-level vision. Comprehensive experiments show
that pre-trained MPerceiver exhibits favorable zero-shot and
few-shot capabilities in 6 unseen tasks (Fig. 1 II, III).

The main contributions can be summarized as follows:

* We propose a novel multimodal prompt learning ap-
proach to fully exploit the generative priors of Stable
Diffusion for better adaptiveness, generalizability and fi-
delity of all-in-one image restoration.
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* We propose a dual-branch module with CM-Adapter and
IR-Adapter to learn holistic and multiscale detail repre-
sentations, respectively. The dynamic integration mecha-
nism for textual and visual prompts enables adaptation to
diverse, unknown degradations.

» Extensive experiments on 16 IR tasks (all-in-one, zero-
shot, few-shot) validate MPerceiver’s superiority in
achieving high adaptiveness, robust generalizability, and
superior fidelity when addressing intricate degradations.

2. Related Work
2.1. Image Restoration

Image restoration (IR) methods for known degradations [4,
10, 11, 57, 58, 79, 109, 121, 122, 126, 135, 139, 140]
have been widely explored, while all-in-one approaches
are still in the exploratory stage [13, 54, 63, 82]. Tran-
sWeather [104] designs a transformer-based network with
learnable weather type queries to tackle different types
of weather. AirNet [49] recovers various degraded im-
ages through a contrastive-based degraded encoder. Zhu et
al. [142] propose a strategy for investigating both weather-
general and weather-specific features. IDR [124] employs
an ingredients-oriented paradigm to investigate the correla-
tion among various restoration tasks. Most of the existing
methods are capable of handling a limited range of degrada-
tion types and cannot cover complex real-world scenarios.

Since diffusion models have shown a strong capabil-
ity to generate realistic images [19, 35, 90, 96, 101], sev-
eral diffusion-based methods have been proposed for im-
age restoration [55]. These methods can primarily be cat-
egorized into zero-shot and supervised learning-based ap-
proaches. Zero-shot methods [15, 16, 21, 46, 100, 108, 143]
leverage pre-trained diffusion models as generative priors,
seamlessly incorporating degraded images as conditions
into the sampling process. Supervised learning-based meth-
ods [52, 76, 81, 95, 97, 112] train a conditional diffusion
model from scratch. Recently, several approaches [61, 106]
have endeavored to employ pre-trained text-to-image diffu-
sion models for blind image super-resolution.

2.2. Prompt Learning for Vision Tasks

Inspired by the success of prompt learning in NLP [8, 25,
56, 65], the computer vision community has begun to ex-
plore its applicability to vision [40, 43, 64, 110] and vision-
language models [22, 91, 137, 138]. CoOp [138] learns a
set of task-specific textual prompts to fine-tune CLIP [89]
for downstream image recognition. CoCoOP [137] re-
fines the generalizability of CoOp by learning a lightweight
neural network to generate image-conditional dynamic
prompts. VPT [43] learns a set of visual prompts to finetune
transformer-based vision models for downstream recogni-
tion tasks. Compared to concurrent works that introduce

prompt learning into IR [66, 70, 71, 83], ours is the first to
explore multimodal prompt design in low-level vision.

3. Method

We propose MPerceiver for all-in-one image restoration in
complex real-world scenarios. First, we review the latent
diffusion models [93] in Sec. 3.1. To effectively leverage
priors in SD, we propose a dual-branch module with the
cross-modal adapter (CM-Adapter) and image restoration
adapter (IR-Adapter) and encode degradation-dedicated in-
formation into multimodal prompts, which is illustrated in
Sec. 3.2. Finally, we introduce a detail refinement module
(DRM) to enhance the restoration fidelity in Sec. 3.3.

3.1. Preliminary: Latent Diffusion Models

Our method is based on Stable Diffusion (SD) [93], a
text-to-image diffusion model that conducts the diffusion-
denoising process in the latent space. SD utilizes a pre-
trained VAE to encode images into latent embeddings zg
and then trains the denoising U-Net ¢y in the latent space,
which can be formulated as

Lipm = Euy crellle — eo(vVarzo +V/1 — aye, e, t)||3], (1)

where ¢ € N(0,1) is the ground truth noise map at time
step t. c represents the conditional information. &; is the
diffusion coefficient in DDPM [35].

3.2. Dual-branch with Multimodal Prompts

As shown in Fig. 3, the proposed MPerceiver adopts a dual-
branch (i.e., textual branch and visual branch) module with
textual and visual prompts in their corresponding branch.
Motivated by CLIP’s powerful representation capability for
images [26, 33, 75], we utilize the pre-trained image en-
coder £79 to extract features rich in degradation-aware in-
formation. The degraded features ei}?g will be fed into a
lightweight trainable degradation predictor to provide pre-
dictions P € RN (NN denotes the number of degradations),
which will serve as dynamic weights to adjust the integra-
tion process of multimodal prompts. The degradation pre-
dictor is optimized through focal loss [60].
Textual branch with CM-Adapter. To effectively lever-
age the powerful text-to-image generation capability of SD,
we aim to obtain the text description of desired HQ im-
ages. As shown in Fig. 3, we propose a cross-modal adapter
(CM-Adapter) with the cross-modal inversion mechanism
to transform CLIP LQ image embeddings e;;;’ to desired
HQ text embeddings e} .
Specifically, LQ image embeddings eiﬁg will first go
through a small network for degradation-agnostic mapping.
Then we employ a series of parallel self-attention [105] lay-

ers as the degradation-dedicated mapping to obtain one set
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Figure 3. Illustration of MPerceiver’s dual-branch module with multimodal prompts.
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visual prompts to provide detail guidance for SD adaptively.

of degradation-dedicated cross-modal embeddings (i.e., text
vectors) e = {e{™, -, eS"}, where e corresponds to
a specific type of degradation. The whole process of cross-
modal inversion can be formulated as:

™ = Attn; (LN(FC(e"9))),i € {1,--- , N},

clip

2)

where Attn; is the self-attention layer for the i-th degrada-
tion, and N is the number of degradations.

Furthermore, we establish a textual prompt (TP) pool
T {T1, -, Tn} € RNXIXCeip (o encapsulate
degradation-dedicated information, where L represents the
number of tokens, and Cy;), is the embedding dimension of
CLIP. Serving as learnable parameters, 1" collaborates with
cross-modal embeddings e“"* to constitute a comprehen-
sive set of SD text prompts, functioning as representations
aware of image degradations. Given degradation probabili-
ties P = {p1,--- ,pn} € R estimated by the degradation
predictor, we dynamically integrate the set of text prompts
to obtain the High-Quality (HQ) text embeddings:

trt
clip

3)

e

N
= pwilip({e™ 1))
i=1

where £/} denotes the CLIP text encoder. Finally, we in-
tegrate eiﬁp into SD through a frozen cross-attention layer

to provide a holistic representation.

Visual branch with IR-Adapter. The textual branch can
provide a holistic representation for SD, but it lacks detailed
information that is crucial for restoration fidelity. A visual
branch is introduced to extract multi-scale detail representa-
tions and complement with the textual branch. As shown in
Fig. 3, we first project degraded images into latent embed-
dings eyqe € RT*W>4 through the VAE encoder of SD.
Then we propose an image restoration adapter (IR-Adapter)
to acquire multi-scale detail features as guidance for SD.
We utilize a feature extractor to decompose e, into multi-
scale features fuge = {flies fPues fones fE .}, In each
scale, we employ a residual block (RB) and a self-attention
layer to extract features. Similar to the textual prompt
pool, we construct 4 visual prompt pools V = {V* |k €
{1,2,3,4}} for each scale, where V¥ € RVXM*Ck M js
a hyper-parameter specifying the capacity of visual prompt
(VP) pools and C}, is the channel dimension of the k-th
scale. As shown in Fig. 3, we propose a visual prompt
(VP) modulator to dynamically integrate the degradation-
aware information provided by visual prompts into multi-
scale features, formulated as:

N
'L’fae = + ZpiMHCAk( fae’ Vikv V;k))’ “4)
i=1
where MHCA (g, k,v) is the multi-head cross-attention

layer of the k-th scale. Then the degradation-aware multi-

RBy(f*

vae
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scale features will modulate the features in the U-Net with
the operation of AdalN [42], formulated as:

fout - 'Y(fvae) © Norm(fzn) + /B(fvae)a (5)

where ® denotes the element-wise multiplication, f;, is the
original feature in the U-Net, f,,; is the feature after modu-
lation, v(-) and §(+) are implemented by two convolutional
layers. The dual-branch module is optimized directly using
the latent diffusion loss in Eq. (1).

Note that the dynamic integration mechanisms in Eq. (3)
and Eq. (4) significantly augment the adaptiveness and gen-
eralizability of MPerceiver when confronting diverse degra-
dations. In the case of degradations present during training,
the model can discern their types and select corresponding
textual and visual prompts for Stable Diffusion (SD). For
those unseen during training (especially for mixed ones that
often occur in real-world scenarios), it treats them as a prob-
abilistic combination of known training degradations.

3.3. Detail Refinement Module

While the proposed dual-branch module empowers Stable
Diffusion (SD) with a robust ability to identify and elimi-
nate degradations in images, the generated images may ex-
hibit a tendency to lose details of small objects. This effect
is attributed to the high compression rate of the autoencoder
employed by SD, as discussed in previous works [18, 145].
For instance, in Fig. 5 (b), although the degradations in the
images have been largely addressed, noticeable artifacts be-
come apparent, particularly affecting small text.

To address this concern, we introduce a Detail Refine-
ment Module (DRM) aimed at providing supplementary in-
formation to assist the SD VAE decoder in the image re-
construction process. As depicted in Fig. 4, DRM functions
as a plug-in module, enabling direct encoder-to-decoder in-
formation transformation through a skip connection. Fol-
lowing modulation by the visual prompt (VP) modulator,
Low-Quality (LQ) features f;, are concatenated with the
original decoder features f;,. Subsequently, a sequence of
ResBlocks [11] and SwinBlocks [58] is employed to ex-
tract auxiliary features, enhancing detail reconstruction be-
fore the residual connection. The training of DRM involves
a combination of reconstruction (L.1) loss, color loss [107],
perceptual loss [45], and adversarial loss [27].

4. Experiments
4.1. Experimental Setup

Settings. (1) All-in-one: We train a unified model to solve
10 IR tasks, including deraining, dehazing, desnowing,
raindrop removal, low-light enhancement, motion deblur-
ring, defocus deblurring, gaussian denoising, real denois-
ing and challenging mixed degradations removal. (2) Zero-
shot: We use the all-in-one pre-trained model to directly
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Figure 4. Illustration of the detail refinement module (DRM). For
simplicity, visual prompts and degradation predictions are omitted
as input to the visual prompt (VP) modulator. Apart from the DRM
which is trainable, the other modules are all frozen.

(a) Input (b) w/o DRM (c) w/ DRM
Figure 5. Effect of the DRM on raindrop removal (top row
from [84]) and motion deblurring (bottom row from [80]). The
proposed DRM significantly improves the fidelity of the results.

solve training-unseen tasks, including under-display cam-
era IR (POLED/TOLED), underwater IR. (3) Few-shot:
We fine-tune the all-in-one pre-trained model using a small
amount of data (about 3%-5% of the data used by task-
specific methods) and adapt it to new tasks, including JPEG
compression artifact removal, demosaicking, demoireing.

Datasets and Metrics. For setting(1), a combination of
various image degradation datasets is used to evaluate our
method, i.e., Rain1400 [24], Outdoor-Rain [53], SSID [38]
and LHP [31] for deraining; RESIDE [48], NH-HAZE [6]
and Dense-Haze [5] for dehazing; Snowl100K [68] and
RealSnow [142] for desnowing; RainDrop [84] and
RainDS [86] for raindrop removal, LOL-v2 [119] for
low-light enhancement; CBSD68, CBSD400 [74], Ur-
ban100 [39], Kodak24 [23], McMaster [132], WED [72]
and DF2K for gaussian denoising; SIDD [1] for real im-
age denoising; GoPro [80] and RealBlur [92] for motion
deblurring; and DPDD [2] for defocus deblurring. Consid-
ering real-world LQ images may contain more than just a
single degradation, we construct a challenging mixed degra-
dation benchmark named MID6, in which the LQ images
contain mixed degradations (e.g., low-light&noise&blur,
rain&raindrop&noise; See Fig. 7). For setting(2), we uti-
lize TOLED [141] and POLED [141] for under-display
camera (UDC) IR. Following [41], 90 pairs from UIEB [50]
and 110 pairs from UWCNN [51] are used for underwater
IR. For setting(3), we use the first 100 images of DIV2K [3]
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Table 1. [All-in-one] Quantitative comparison with state-of-the-art task-specific methods and all-in-one methods on 9 tasks. General IR
models trained under the all-in-one setting are marked with symbol (-) 4. Best and second best performance are in red and blue colors,
respectively. When using the self-ensemble strategy, the model is marked with “+”.

Deraining (Rain1400) Dehazing (Average) Desnowing (Snow100K-L)
Type Method Method Method
PSNR/SSIM 1  FID/LPIPS | PSNR/SSIM 1  FID/LPIPS | PSNR/SSIM 1  FID/LPIPS |

Uformer [109] 32.84/0.931 23.31/0.061 AECRNet [113] 17.8470.546 225.8/0.526 DesnowNet [68] 27.17/0.898 -/-
Task Restormer [122] 33.68/0.939 20.33/0.050 SGID [7] 14.36/0.562 342.9/0.580 DDMSNet [129] 28.85/0.877 3.24/0.096
Specific| DRSformer [14] 33.66/0.939 20.06/0.050 DeHamer [29] 18.64/0.622 241.6/0.488 DRT [59] 29.56/0.892 8.15/0.135
UDR-S2 [12] 33.08/0.930 19.89/0.053 MB-Taylor [85] 17.94/0.602 250.8/0.499 WeatherDiff [81] 30.43/0.915 2.81/0.100
AirNet [49] 32.36/0.928 22.38/0.058 AirNet [49] 16.48 /0.589 219.9/0.479 AirNet [49] 30.14/0.907 3.92/0.105
PromptIR [83] 33.26/0.935 22.59/0.058 PromptIR [83] 16.97 /0.595 231.9/0471 PromptIR [83] 30.91/0.913 3.79/0.100
All DA-CLIP [70] 29.67/0.851 35.01/0.116 DA-CLIP [70] 15.01/0.544 224.6/0.468 DA-CLIP [70] 28.31/0.862 3.11/0.098

in Restormer 4 [122] 33.09/0.933 24.14/0.061 Restormer 4 [122] 15.86/0.584 221.4/0.477 | Restormer 4 [122] 30.98/0.914 4.54/0.104
One NAFNet 4 [11] 33.27/0.936 22.39/0.050 NAFNet 4 [11] 15.97/0.597 228.6/0.454 NAFNet 4 [11] 31.42/0.920 2.72/0.091
MPerceiver(Ours) 33.40/0.937 17.82/0.049 | MPerceiver(Ours) 20.95/0.644 196.8 /0.437 MPerceiver(Ours) 31.02/0.916 2.31/0.087

MPerceiver+(Ours)| 33.69/0.940 17.36 /0.047 |MPerceiver+(Ours)| 21.08/0.651 190.1/0.422 |MPerceiver+(Ours)| 31.11/0.918 2.14/70.085
Raindrop Removal (RainDrop) Low-light Enhance. (LOL-v2-Real) Motion Deblur (GoPro)
Type Method Method Method
PSNR / SSIM 1 FID / LPIPS | PSNR / SSIM 1 FID / LPIPS | PSNR / SSIM 1 FID / LPIPS |
AttentGAN [84] 31.59/0.917 33.33/0.056 SNR [117] 21.48/0.849 58.76 /0.159 MPRNet [121] 32.66/0.959 10.98 /0.091
Task Quan et al. [87] 31.37/0918 30.56 /0.065 SNR-SKF [114] 21.93/0.842 73.70/0.160 Restormer [122] 32.92/0.961 10.63/0.086
Specific IDT [116] 31.87/0.931 25.54/70.059 RQ-LLIE [67] 22.37/0.854 56.92/0.143 Stripformer [103] 33.08/0.962 9.03/0.079
UDR-S2 [12] 32.64/0.942 27.17/0.064 Retinexformer [9] 22.80/0.840 62.45/0.169 DiffIR [115] 33.20/0.963 9.65/0.081
AirNet [49] 31.32/0.925 33.34/0.073 AirNet [49] 19.69/0.821 55.43/0.151 AirNet [49] 28.31/0.910 15.31/0.122

PromptIR [83] 32.03/0.938 35.7570.073 PromptIR [83] 21.23/0.860 53.92/0.145 PromptIR [83] 31.02/0.938 17.5470.131
All DA-CLIP [70] 30.44/0.880 29.38/0.078 DA-CLIP [70] 21.76/0.762 48.23/0.134 DA-CLIP [70] 27.12/0.823 16.81/0.136
in Restormer 4 [122] 31.75/0.936 38.22/0.075 Restormer 4 [122] 20.77/0.851 57.04/0.155 Restormer 4 [122] 30.59/0.934 14.56/0.115
One NAFNet 4 [11] 32.79/0.943 29.80/0.063 NAFNet 4 [11] 18.04/0.827 54.25/0.147 NAFNet 4 [11] 32.01/0.953 13.42/0.101
MPerceiver(Ours) 33.21/0.929 21.27/0.051 MPerceiver(Ours) 22.16/0.848 45.90/0.130 | MPerceiver(Ours) 32.49/0.959 10.69 / 0.089

MPerceiver+(Ours)| 33.62/0.930 19.37/0.044 |MPerceiver+(Ours)| 22.49/0.854 45.29/0.129 |MPerceiver+(Ours)| 32.98/0.961 10.51/0.087
Defocus Deblur (DPDD) Gaussian Denoising (Average) Real Denoising (SIDD)
Type Method Method Method
PSNR / SSIM 1 FID / LPIPS | PSNR / SSIM 1 FID / LPIPS | PSNR / SSIM 1 FID / LPIPS |

DRBNet [94] 25.73/0.791 49.04/0.183 SwinlR [58] 29.60/0.842 58.99/0.146 MPRNet [121] 39.71/0.958 49.5470.200
Task Restormer [122] 25.98/0.811 44.5570.178 Restormer [122] 29.73/0.845 57.56/0.148 Uformer [109] 39.89/0.960 47.18/0.198
Specific NRKNet [88] 26.11/0.810 55.23/0.210 ART [126] 29.79/0.845 58.50/0.141 Restormer [122] 40.02/70.960 47.28/0.195
FocalNet [17] 26.18/0.808 48.82/0.210 Xformer [125] 29.83/0.847 55.22/70.144 ART [126] 39.99/0.960 42.38/0.189
AirNet [49] 25.37/0.770 58.82/0.193 AirNet [49] 28.37/0.801 69.36/0.181 AirNet [49] 38.32/0.945 51.20/0.134

PromptIR [83] 25.66/0.791 52.64/0.197 PromptIR [83] 28.82/0.816 63.76/0.170 PromptIR [83] 39.52/0.954 50.52/0.198
All DA-CLIP [70] 24.91/0.749 57.4370.201 DA-CLIP [70] 25.13/0.692 59.82/0.235 DA-CLIP [70] 34.04/0.824 34.56/0.186
in Restormer 4 [122] 25.7410.795 54.7470.213 Restormer 4 [122] 28.65/0.812 63.48/0.172 | Restormer 4 [122] 39.48/0.954 51.7570.190
One NAFNet 4 [11] 25.85/0.803 48.45/0.191 NAFNet 4 [11] 29.21/0.829 60.84/0.163 NAFNet 4 [11] 39.76 /1 0.957 45.54/70.197
MPerceiver(Ours) 25.88/0.803 48.22/0.190 | MPerceiver(Ours) 29.571/0.838 61.44/0.158 MPerceiver(Ours) 39.96/0.959 41.11/0.191
MPerceiver+(Ours)| 26.06/0.805 46.07/0.190 |MPerceiver+(Ours)| 29.61/0.839 60.91/0.156 |MPerceiver+(Ours)| 40.05/0.960 41.46/0.190

Table 2. [All-in-one] Quantitative comparison on the proposed mixed degradation benchmark MID6.

Haze &Noise &Blur ‘ Lowlight &Noise &Blur ‘ Rain &Noise &Blur ‘ Rain &Raindrop &Noise ‘ Raindrop &Noise &Blur ‘ Snow &Noise &Blur
[PSNR T SSIM 1 LPIPS [ [PSNR 1 SSIM T LPIPS | [PSNR T SSIM T LPIPS |[PSNR T SSIM T LPIPS | [PSNR T SSIM 1 LPIPS | [PSNR T SSIM 1 LPIPS |

AirNet [49] 17.51  0.613 0440 | 17.09 0552 0.527 | 2431 0.601 0364 | 21.46 0570 0471 | 2644 0.745 0353 | 22.62 0.566 0.454
TransWeather [104]| 25.11  0.739 0241 | 2036 0.626 0.408 | 2501 0.683 0294 | 21.59 0.541 0412 | 2776 0.737 0.229 | 2390 0.672 0.306
WGWS-Net [142] | 17.66 0.617 0.394 | 17.57 0570 0448 | 22.10 0.600 0353 | 20.12 0.522 0446 | 25.67 0.718 0.307 | 20.03 0.569 0.401
PromptIR [83] 1841 0.631 0437 | 2095 0.649 0413 | 2375 0.647 0313 | 21.31 0556 0461 | 2541 0.721 0327 | 2092 0.601 0.362
Restormer 4 [122] | 17.03 0.602 0.470 | 1649 0.541 0498 | 2322 0.611 0332 | 2039 0.561 0493 | 2448 0.697 0401 | 21.39 0.606 0.392
NAFNet 4 [11] 16.59 0548 0.541 1572 0.605 0.520 | 23.48 0563 0346 | 2272 0.599 0439 | 2720 0.769 0.307 | 2028 0.535 0.484
MPerceiver (Ours) | 26.19  0.782 0211 | 23.84 0.671 0.343 | 26.00 0.762 0.193 | 2235 0.525 0.268 | 2849 0.771 0.127 | 2436 0.719  0.263

Method

to fine-tune our method for JPEG compression artifact re- LPIPS [133] and FID [34] as the perceptual metrics,
moval and demosaicking. 5% of the data in TIP2018 [102] NIQE [78] and BRISQUE [77] as no-reference metrics.
training set is used to fine-tune our method for demoireing. Implementation Details. We use the AdamW optimizer
We provide a detailed introduction to the datasets used for (B1 = 0.9, B2 = 0.999) with the initial learning rate 1e—*
training and testing in the Appendix. gradually reduced to 1le~% with cosine annealing [69] to
We adopt PSNR and SSIM as the distortion metrics, train our model. The training runs for 500 epochs with
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Table 3. [All-in-one] Quantitative comparison on real-world datasets of deraining, desnowing and motion deblurring. SSID [38] has
no GT images. Methods are directly applied to the LHP [31] and RealBlur-J [92] sets to evaluate generalization to real-world images.
MUSS [38] is a semi-supervised deraining model trained with additional real rainy data, denoted with * for reference.

Deraining (LHP [31]) Deraining (SSID [38]) Desnowing (RealSnow [142]) Motion Deblur (RealBlur-J [92]))

Type Method PSNR 1T SSIM 1 Method NIQE | BRISQUE | Method PSNRT SSIM 1 Method PSNR T SSIM 1
MUSS* [38] 30.02 0.886 MUSS* [38] 3.43 28.97 MIRNetv2 [123] 31.39 0.916 MPRNet [121] 28.70 0.873
Task Restormer [122] 29.72 0.889 Restormer [122] 4.12 33.29 ART [126] 31.05 0913 Restormer [122] 28.96 0.879
Specific| DRSformer [14] 30.04 0.895 DRSformer [14] 4.19 35.52 Restormer [122] 31.38 0.923 Stripformer [103] 28.82 0.876
UDR-S? [12] 28.59 0.884 UDR-S? [12] 3.77 35.86 NAFNet [11] 31.44 0.919 DiffIR [115] 29.06 0.882
All AirNet [49] 31.73 0.889 AirNet [49] 3.69 3091 AirNet [49] 31.02 0.923 AirNet [49] 2791 0.834
. TransWeather [104]| 29.87 0.867 |TransWeather [104] 3.96 30.94 TransWeather [104]| 31.13 0.922 |TransWeather [104]| 28.03 0.837
(;:e WGWS-Net [142] 30.77 0.885 | WGWS-Net [142] 3.71 30.79 WGWS-Net [142] 31.37 0919 | WGWS-Net [142] 28.10 0.838
MPerceiver (Ours) | 32.07 0.889 | MPerceiver (Ours) 3.60 30.77 MPerceiver (Ours)| 31.45 0.924 | MPerceiver (Ours) | 29.13 0.881

Table 4. [Zero-shot] UDC IR (TOLED / POLED) results.

Method | TOLED [141] POLED [141]
[PSNRT SSIMT LPIPS [ [PSNRT SSIM T LPIPS |

AirNet [49] 26.76 0.799 0.307 13.49 0.522 0.696
TransWeather [104] | 27.58 0.810 0.316 15.86 0.590 0.707
WGWS-Net [142] 22.11 0.731 0.374 10.96 0.429 0.776
Restormer 4 [122] 27.74 0.841 0.294 13.94 0.528 0.681
NAFNet4 [11] 27.90 0.848 0.320 10.68 0.555 0.713
MPerceiver (Ours) | 32.92 0.863 0.161 2041 0.650 0.445

Table 5. [Zero-shot] Underwater IR results.

Method | UIEB [50] UWCNN[51]
[PSNRT SSIMT LPIPS | |PSNRT SSIM T LPIPS |

AirNet [49] 1709 0761 0304 | 1354 0737 0403
TransWeather [104] | 17.17 0754 0303 | 13.59  0.731  0.408
WGWS-Net [142] | 1699 0745 0340 | 13.83 0740 0410
Restormer4 [122] | 1734 0770 0300 | 1349 0737  0.401
NAFNet 4 [11] 1731 0736 0307 | 1362 0736 0405
MPerceiver (Ours) | 22.60  0.902  0.150 | 1477 0774  0.299

Table 6. [Few-shot] Color JPEG compression artifact removal
(QF=10) results. We only use 100 images from DIV2K to
fine-tune all-in-one methods, while task-specific methods adopt
DIV2K and Flickr2K as the training set (3450 images).

| LIVEI [98] | BSD500[74]

Type ‘ Method [PSNRT SSIMT | PSNRT _ SSIMT

Task QGAC [20] 27.62 0.804 27.74 0.802

Specific FBCNN [44] 27.77 0.803 27.85 0.799

AirNet [49] 27.47 0.797 27.60 0.788

Allin.One | TransWeather [104] | 26.45 0.755 26.68 0.785

WGWS-Net [142] 26.50 0.750 26.60 0.741

MPerceiver (Ours) 27.79 0.804 27.88 0.795

Table 7. [Few-shot] Image demosaicking results. The training
setting is the same as JPEG compression artifact removal.

RLDD RNAN DRUNet|AirNet TransWeather WGWS-Net MPerceiver

Datasets [30] [134] [130] | [49] [104] [142] (Ours)
Kodak [23] 4249 4316 4268 | 4055  39.58 4122 43.06
McMaster [132]] 39.25 39.70 3939 |37.36  36.68 38.06 39.68

512 x 512 patches on 8§ NVIDIA A100 GPUs. We adopt
DDIM [99] as our sampling strategy (50 steps). Our model
is based on SD 2.1. More details are presented in Appendix.

4.2. Comparison with state-of-the-art methods

All-in-one. We conduct comparisons between our method
and SOTA all-in-one methods as well as task-specific meth-
ods. To ensure a fair evaluation, we train all-in-one models
from scratch employing our training strategy. Given that
Restormer [122] and NAFNet [11] serve as strong general

Table 8. [Few-shot] Quantitative comparison on the demoireing
dataset TIP2018 [102]. Note that we only use 5% of the training
data to fine-tune pre-trained all-in-one models.

Type | Method | Venue | PSNRT  SSIM?T
MBCNN [136] CVPR' 20 30.03 0.893
Task FHDe?Net [32] ECCV' 20 27.78 0.896
Specific WDNet [62] ECCV' 20 28.08 0.904
ESDNet [120] ECCV' 22 30.11 0.920
AirNet [49] CVPR' 22 28.59 0.866
All-in-One TransWeather [104] CVPR' 22 27.68 0.848
WGWS-Net [142] CVPR' 23 28.13 0.861
MPerceiver (Ours) - 30.19 0.885

IR baselines, we additionally train both a Restormer and a
NAFNet model within the all-in-one setting.

Table 1 illustrates comprehensive performance compar-
isons with SOTA methods across 9 tasks. Our method
consistently outperforms the compared all-in-one methods
on all datasets. Notably, as an all-in-one approach, our
method even achieves superior results compared to other
task-specific methods in many tasks. Additionally, Table 2
presents a comparison on the proposed MID6 benchmark,
where our method demonstrates significant advantages in
addressing challenging mixed-degraded images. Visual re-
sults of some intricate cases from MID6 are presented
in Fig. 7, showcasing the enhanced effectiveness of our
method in handling mixed degradations. Recognizing the
significance of real-world IR challenges, we present more
results on real-world datasets in Table 3. Fig. 6 offers vi-
sual comparisons across various tasks in real-world scenar-
ios, showcasing the superiority of our method in addressing
complex authentic degradations.

Zero-shot. As shown in Tables 4&5, we evaluate the
performance of each all-in-one method on training-unseen
tasks. MPerceiver outperforms compared methods in all
metrics, demonstrating the generalizability of our approach.
Few-shot. As depicted in Tables 6&7&8, we fine-tune the
all-in-one methods with limited data to tailor them for new
tasks. Notably, our method achieves comparable or superior
results compared to task-specific methods trained with sub-
stantial amounts of data. This underscores the efficacy of
MPerceiver, demonstrating that, post multitask pretraining,
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Rainy Input DRSformer [14] UDR-S? [12] AirNet [49]

LL&N&B Input/ 10.12 dB AirNet [49]/10.10 dB TransWeather [104] / 16.42 dB

Figure 6. Real-world visual results on dehazing and deraining. Best viewed with zoom in.

‘WGWS-Net [142]/10.36 dB

TransWeather [104]

WGWS-Net [142] Ours MUSS* [38]

W

Restormer 4 [11]/16.29 dB Ours/23.42dB GT/PSNR

Figure 7. Visual results on the MID6 benchmark (R: Rain; RD: RainDrop; N: Noise; LL: Low-Light; B: Blur). Our method can better
handle these challenging cases where LQ images are affected by mixed degradations compared with other all-in-one methods.

Hoze . o .
Snow .S.

G_Noise. Lhd ° .
o . Co o S .
M Blur .
0. Blur .
R Noise .
Rainrop

Lowight

LN

(b) t-SNE from CLIP textual embeddings
Figure 8. t-SNE visualizations of visual prompt V* and CLIP tex-
tual embeddings E45 (T).

clip

(a) t-SNE from visual prompt

Table 9. Ablations of MPerceiver. The metrics are reported on the
average of deraining, dehazing and raindrop removal.

Method PSNR1 SSIMT LPIPS |
Baseline (Stable Diffusion) 16.49 0.481 0.538
+Textual Branch 19.19 0.557 0.447
+Textual Branch w/o TP Pool 18.94 0.553 0.457
+Visual Branch 25.05 0.763 0.213
+Visual Branch w/o VP Pool 24.94 0.760 0.216
+(Visual & Textual) Branch 25.31 0.770 0.199
+(Visual & Textual) Branch w/o TP Pool 25.20 0.768 0.206
+(Visual & Textual) Branch w/o VP Pool 25.13 0.767 0.204

+(Visual & Textual) Branch + DRM (Full Model) 29.17 0.842 0.162

it has acquired general representations in low-level vision,
allowing for cost-effective adaptation to new tasks.

4.3. Ablation Study

We perform ablation studies to examine the role of each
component in MPerceiver. In Table 9, we initiate with
SD and systematically incorporate or exclude the remaining
modules of MPerceiver, including the visual branch, visual
prompt (VP) pool, textual branch, textual prompt (TP) pool,
and detail refinement module (DRM). The results exhibit a

gradual improvement upon the addition of each component
and a corresponding decline upon its removal, underscoring
the effectiveness of each module. Besides, Fig. 8 visualizes
the t-SNE statistics of visual prompt V! and CLIP textual
embeddings £ (T'). It demonstrates that our multimodal
prompt learning can effectively enable the network to dis-
tinguish different degradations.

5. Conclusion

This paper introduces MPerceiver, a multimodal prompt
learning approach utilizing Stable Diffusion priors for en-
hanced adaptiveness, generalizability, and fidelity in all-
in-one image restoration. The novel dual-branch module,
comprising the cross-modal adapter and image restoration
adapter, learns holistic and multiscale detail representa-
tions. The adaptability of textual and visual prompts is dy-
namically tuned based on degradation predictions, enabling
effective adaptation to diverse unknown degradations. Ad-
ditionally, a plug-in detail refinement module enhances
restoration fidelity through direct encoder-to-decoder in-
formation transformation. Across 16 image restoration
tasks, including all-in-one, zero-shot, and few-shot scenar-
ios, MPerceiver demonstrates superior adaptiveness, gener-
alizability, and fidelity.
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