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Abstract

This paper addresses complex challenges in histopatho-
logical image analysis through three key contributions.
Firstly, it introduces a fast patch selection method, FPS,
for whole-slide image (WSI) analysis, significantly reduc-
ing computational cost while maintaining accuracy. Sec-
ondly, it presents PathDino, a lightweight histopathol-
ogy feature extractor with a minimal configuration of five
Transformer blocks and only ~ 9 million parameters,
markedly fewer than alternatives. Thirdly, it introduces a
rotation-agnostic representation learning paradigm using
self-supervised learning, effectively mitigating overfitting.
We also show that our compact model outperforms existing
state-of-the-art histopathology-specific vision transformers
on 12 diverse datasets, including both internal datasets
spanning four sites (breast, liver, skin, and colorectal) and
seven public datasets (PANDA, CAMELYON16, BRACS,
DigestPath, Kather, PanNuke, and WSSS4LUAD). Notably,
even with a training dataset of ~6 million histopathol-
ogy patches from The Cancer Genome Atlas (TCGA), our
approach demonstrates an average 8.5% improvement in
patch-level majority vote performance. These contributions
provide a robust framework for enhancing image analysis
in digital pathology, rigorously validated through extensive
evaluation. '

1. Introduction

The advent of whole slide image (WSI) scanning in dig-
ital pathology has revolutionized the research in compu-
tational pathology [1-3]. While digital pathology enables
both researchers and clinicians to enjoy the ease of access
to the WSIs, processing and storing these gigapixel images
are still quite challenging.

Motivation: Large image size and scarce or lack of patch-
level labels (annotations) pose two main challenges in
WSI analysis [4]. As a result, most state-of-the-art meth-
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Figure 1. HistoRotate. A 360° rotation augmentation for
training models on histopathology images. Unlike training on nat-
ural images where the rotation may change the context of the vi-
sual data, rotating a histopathology image improves the learning
process for discriminative embedding learning.

ods adopt Multi-instance Learning (MIL) with weak su-
pervision [5—13]. While these approaches may eliminate
the need for pixel-level annotations, MIL significantly in-
creases computational loads and potentially lowers the qual-
ity of results compared to fully supervised approaches.
While some attempts have been made to select representa-
tive patches [5, 0, 14, 15], many such methods remain com-
putationally intensive, leaving the desire for efficient, accu-
rate solutions an unmet need.

The field of image analysis in digital pathology has
predominantly adopted deep models designed for natural
image analysis without further customization to the field
[16—-19]. While showing good performance on natural im-
age analysis, pre-trained deep models may not fully ex-
ploit the unique characteristics of histopathology images.
Furthermore, most current training recipes for histopatho-
logical embedding learning adopt conventional training and
common augmentation techniques for natural images [18].
However, histopathology images have arguably very differ-
ent features compared to natural images and even radiology
images. This gap motivated us to design an improved train-
ing approach for histopathology images.
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Contributions: We present a two-fold solution that en-
compasses selective patching and robust feature extraction.
First, we propose a fast patch selection FPS, a “divide &
conquer” algorithm that is capable of identifying a compact
and yet highly representative subset of patches for analy-
sis. This algorithm has been meticulously tuned to balance
computational efficiency and diagnostic utility. Secondly,
we introduce PathDino a lightweight histopathology-
specific transformer consisting of just five small vision
transformer blocks, customized and finely tuned to the nu-
ances of histopathological images. It not only exhibits su-
perior performance but also effectively reduces suscepti-
bility to overfitting. We also propose HistoRotate, a
seamless 360° rotation augmentation technique designed
specifically for training histopathology models. The incor-
poration of this augmentation technique with the proposed
lightweight histopathology-specific transformer results in a
significant enhancement of embedding quality and effec-
tively mitigates overfitting. Our model is rigorously val-
idated through extensive evaluation on multiple datasets,
showing both computational efficiency and superior perfor-
mance. Overall, our key contributions are as follows:

¢ Fast Patch Selection: A novel and efficient patch se-
lection mechanism curates a compact, spatially diverse
subset of patches from WSI, reducing computational
overhead while maintaining representational fidelity.

* PathDino: A lightweight histopathology-specific Vi-
sion Transformer with only 5 transformer blocks, to-
taling 9 million parameters, offering reduced suscepti-
bility to overfitting.

¢ Rotation-Agnostic Representation Training: We
propose HistoRotate, a 360° rotation augmenta-
tion technique designed for training histopathological
image analysis models. Unlike natural images, ro-
tating histopathological patches maintain the general
context while enhancing embedding learning for im-
proved reliability.

* Extensive Evaluation: Rigorous validation through
comprehensive experiments across eleven datasets,
demonstrating competitive to superior performance
compared to existing state-of-the-art methods.

2. Related Work

WSI Patching. WSI patching is a fundamental phase in
WSI analysis pipelines, although it has received limited at-
tention in the field. Many methods employ a brute force
tiling approach, where the entire WSI is divided into thou-
sands of patches [7,20-22], typically utilized with weakly
supervised training methods like multi-instance learning
[5-13]. This approach is often employed when only WSI-
level labels are available, as in TCGA, instead of pixel-level

annotations [23-25]. However, brute force patch process-
ing proves very challenging in practice due to the immense
computational costs and potential training instability.

Clustering-Based Patch Selection. This approach aims to
address patch quality by selecting representative patches but
introduces new degrees of freedom such as number of clus-
ters. It includes both Independent Patching Phase, where
only one method in the literature, namely Yottixel’s mo-
saic [14], follows this independent approach. Yottixel em-
ploys a two-stage clustering process, first based on color
(stain) features and then on connected regions, creating a
patch set with visual and spatial diversity. At the end, it
uses a guided sampling inside each cluster. It stands as
the only independent patching method adaptable to various
WSI analysis pipelines. In contrast, the Integrated Patching
Phase tightly couples patching methods with specific WSI
analysis methods, limiting their applicability to other uses.
For example, in [5], patch clustering is performed for each
WSI into k clusters, integrated with Multi-instance learn-
ing. Similarly, in [6], a similar approach is used, clustering
the entire dataset patches into a few clusters and matching
specific WSI patches with cluster centroids, effectively as-
signing patches with pseudo labels.

While embedded clustering methods prove inflexible and
unsuitable for integration into other WSI pipelines, ap-
proaches based on clustering, although enhancing the qual-
ity of the chosen patch set, concurrently introduce an ad-
ditional layer of parameters and variability to the overall
process. To address these challenges, we propose a new
fast patch selection method that avoids the brute-force and
multi-variable clustering approaches. Crucially, our FPS
aligns with the independent patching phase, exemplified by
Yottixel, enhancing adaptability for WSI analysis pipelines
while greatly improving efficiency.

Vision Transformer in Histopathology. A prevalent trend
in histopathological image analysis is the adaptation of
mainstream vision transformers, especially ViT (Vision
Transformer) [26, 27]. Many existing models are essen-
tially fine-tuned versions of ViT [16—19], often overlooking
the unique characteristics of histopathological images com-
pared to natural images, leading to issues such as overfitting
since ViTs are known to be data-hungry [28]. In contrast,
our comparably compact ViT architecture PathDino tai-
lored for histopathological images, achieving better results
while mitigating overfitting.

Self-Supervised Learning in Digital Pathology. Self-
supervised learning has gained popularity in digital pathol-
ogy due to its independence from annotated histopathologi-
cal images, making it possible to leverage large datasets [29,

]. However, most self-supervised learning approaches
are primarily developed for natural image analysis [29-34].
Applying these methods directly to histopathological em-
bedding learning without considering domain-specific dif-
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ferences can lead to suboptimal performance. Recent stud-
ies underscore the value of domain-specific pre-training
for transferability. Domain-specific self-supervised learn-
ing methods are also shown to significantly enhance per-
formance in medical imaging tasks [16, 35-41]. Further-
more, BYOL, SimSiam, and SimCLR frameworks have
been employed for image classification and patch retrieval
in histopathology [16,22,38,39].

Recent studies have shown promising results in enhanc-

ing model performance for downstream tasks in medical
imaging through transfer learning and domain-specific self-
supervised learning methods. Kang et al. in [18] conducted
a comprehensive benchmarking study on self-supervised
representation learning in histopathology images, evaluat-
ing several methods on a dataset of 32.6M patches (19M
from TCGA? and 13.6M from TULIP which is an pri-
vate dataset), including SwAV, MoCoV2, Barlow Twins,
and DinoV1 [18]. Hierarchical Image Pyramid Trans-
former (HIPT) is a self-supervised Transformer trained
on TCGA patches using Dino-based self-supervised train-
ing, whereas TransPath is a self-supervised model trained
on TCGA and PAIP patches through contrastive learning
[16,17]. iBOT-Path [19], a vision transformer, was trained
on 40M histopathology patches from TCGA using the self-
supervised iBOT framework [33]. Additionally, models like
BiomedCLIP [42] and PLIP [43], trained with image-text
contrastive learning on the biomedical PMC-15M dataset
and the histopathology dataset OpenPath, respectively. Vir-
chow [44], a Transformer-based model with 632 million pa-
rameters, was trained using DinoV2-based self-supervised
learning on 1.5M internal WSIs [30].
Our work differs from previous methods in the follow-
ing aspects: WSI Patching: Our FPS method offers su-
perior efficiency compared to [14] without the need for
patch clustering, while still maintaining competitive accu-
racy. Histopathology-specific ViT Structure: Our PathDino
is a lightweight ViT that contains only 5 small trans-
former blocks for effective histopathological image anal-
ysis. Training Recipe: Our training recipe features His-
toRotate augmentation that applies 360° rotation leading to
rotation-invariant embedding learning.

3. Proposed Method
3.1. FPS: Fast Patch Selection

In this section, we introduce a method for the systematic
selection of representative patches from WSIs for computa-
tional pathology. The algorithm aims to cater to both the di-
versity and relevance of the tissue structure, thus capturing
the inherent complexity and heterogeneity of tissue slides
as illustrated in Fig. 2-A.

Zhttps://portal.gdc.cancer.gov/

Preprocessing. Given a WSI, I, with dimensions W x H,
a thumbnail image, 7', with dimensions w X h is generated.
A tissue mask, M, is obtained through binary thresholding.
Density-Proportional Selection with Kernel Density Es-
timation (KDE) The contours extracted [45] from the tis-
sue mask are denoted by C, where C' = {c1,c¢a,...,¢p}.
For each contour ¢;, a bounding box is defined as R; =
[z,y,w,h]. A set of potential patch locations, P, is con-
structed as follows:

n

P=|J{=y) |z € [Rig Rizw+ Riw — 0l 0
=1

Y € [Riy, Riy+ Rin — 1]},

where, 7, and 7}, are the dimensions of the patches in the
mask space. Subsequently, density-proportional KDE is
employed to generate the set S of selected patches:

S = KDE(P, n,), 2)

where n is the predefined number of patches to be selected.
Utilizing the KDE to approximate the probability density
function f(z) over the set P is performed as follows:

1 & T — T
f(a:):NhZK( - ) 3)
i=1

where K is the kernel function, IV is the total number of
points in P, and h is the bandwidth (i.e., the width of the
smoothing kernel).

Density-Proportional Sampling. In accordance with the
density map generated by KDE, points are sampled propor-
tionally to their density values:

@)
Plo) = S @)

A random sample S consisting of n points is extracted
from P based on the probability density function p(x):

S = Rand(P, p(x), ns). Q)

“)

The resulting set S conforms to the spatial density char-
acteristics of the tissue structures in the slide, thus capturing
the tissue heterogeneity.

Spatial Constraints. To avoid oversampling from densely
packed regions, a minimum Euclidean distance, en,, is en-
forced between any two selected patches s; and s;:

Vsi, 55 € 5, \/(Si,w = 8j2)* + (8iy = 8j.9)* = €min- (6)

Finally, the selected patches are mapped back to the WSI
coordinates at high magnification for downstream analyses.
Each patch location (x,y) € S is scaled to its correspond-
ing location in I using the ratio between W and w, as well
as H and h. The patches are extracted and stored for subse-
quent analyses.
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Figure 2. The WSI Analysis Pipeline. (A) The fast patch selection method, FPS, selects a set of representative patches while preserving
spatial distribution. (B) HistoRotate is a 360° rotation augmentation for histopathology model training, enhancing learning without con-
textual information alteration. (C) PathDino is a compact histopathology Transformer with five small vision transformer blocks and ~9

million parameters, significantly leaner than alternatives.

3.2. HistoRotate: Rotation-Agnostic Training

In addressing the unique challenges in tissue image anal-
ysis, we introduce a new self-supervised training recipe that
incorporates a rotation-agnostic scheme as depicted in Fig.
1, designed to enhance the quality of the learned represen-
tations by incorporating various angular rotations of the im-
age during the training process. Let I denote an input im-
age, and 0 denote a randomly selected angle from a prede-
fined set ©. The rotation operation R is formally defined
as:

R(I,0) = Iy. ™

In our implementation, two types of rotations are consid-
ered:

(a) Random Continuous Rotation: 6 is sampled from a con-
tinuous uniform distribution over the range [0, 360] degrees.

6 ~ U(0,360). (8)

(b) Random Discrete Rotation: 0 is selected from the set
© = {90,180,270,360}. Each image undergoes a crop-
ping operation C before and after the rotation, followed by
a resizing operation S to generate a transformed image I’

I' = S(C(R(L,0))). )

HistoRotate with Dino Framework. As depicted in Fig. 2-
B, we applied these transformations on two types of image
crops used in Dino framework [29]: Global Crops: Images
are cropped and resized to a scale s sampled from 2/(0.4, 1).
Local Crops: Images are cropped and resized to a smaller
scale s’ sampled from ¢£(0.05,0.4). In the final data aug-
mentation pipeline, we generate a set Z of transformed im-
ages from each original image I:
T={I,I....1}.

r n

(10)

The proposed rotation-agnostic representation learning
scheme yields a significant advantage in obtaining more
comprehensive and robust tissue image representations.

3.3. PathDino: A Histopathology-specific Vision
Transformer

We introduce PathDino, a shallow and compact vision
transformer designed for histopathological image analysis.
This model is lightweight and less prone to overfitting. It
has an embedding size of d = 384, 6 attention heads, and a
patch size of 16 x 16 for input images X € RH>*Wx*C e
evaluate two input resolutions: H = W = 512 (PathDino-
512) and H = W = 224 (PathDino-224). PathDino en-
coder comprises a total of L = 5 blocks. Each block con-
sists of a multi-head self-attention (MSA) layer, LayerNorm
(LN), and a multilayer perceptron (MLP):

7t = MLP(LN(MSA(z:7Y))) + 2071, (11)
wherez; ¢ R, ¢=1,---,L,andi=1,--- ,Nand N
here represents the total input transformer patches. Fig. 2-C
visualizes PathDino encoder structure, whereas Fig. 3 visu-
ally compares PathDino’s performance, FLOPs, and param-
eter count with those of its counterparts. PathDino contains
~9M parameters, significantly fewer than ViT-s (21M) used
by DinoSSLPath [18] and HIPT [17], as well as the ViT-b
(85M) used by iBOT-Path [19].

4. Experiment Setup

Hardware: All experiments have been conducted on a Dell
PowerEdge XE8545 server with 4 x NVIDIA A100-SXM4-
80GB and 2x AMD EPYC 7413 CPUs, 1023 GB RAM.
PathDino Pretraining Dataset. We extracted a total of
6,087,558 patches from 11, 765 diagnostic TCGA WSIs.
Specifically, 3,969, 490 patches have a 1024 x 1024 dimen-
sion, while 2, 118, 068 patches have a 512 x 512 dimension.
The extraction was conducted at a 20 x magnification level,
with a patch tissue area threshold of 90%.

PathDino Pretraining Details. All pretraining and evalua-
tion processes are conducted using the Pyforch deep learn-
ing library and Python. We adapt DINO [29] framework in
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Figure 3. PathDino vs. its counterparts. Number of parameters
(millions) vs. the patch-level retrieval with macro average F'-1
score of majority vote (MV@5) on CAMELYON16 dataset. The
bubble size represents the FLOPs.

which we integrated our augmentation method HistoRotate
to be applied to each cropped image portion of the internal
and global crops. In the pretraining phase of our study, we
utilized ~ 6M patches from TCGA. To ensure high-quality
data selection, a tissue threshold of 90% was employed to
filter the patches without enough tissue coverage from the
WSIs. Our pretraining approach follows self-supervised
learning, implemented on top of the DINO framework. We
employed two sets of crops, comprising 2 global crops and
8 local crops. Our pretraining efforts resulted in the de-
velopment of two distinct models: PathDino-224, trained
on 224 x 224 cropped images obtained solely from the
2,118, 068 patches with size 512 x 512. We utilized a batch
size of 384 with the AdamW optimizer and a learning rate of
0.0001 for 30 epochs. Meanwhile, PathDino-512, a model
with 512 x 512 dimensions trained on the entire 6, 087, 558
patches for 27 epochs employing a batch size of 192 and the
AdamW optimizer with an initial learning rate of 0.0005.

Downstream Datasets. Private Skin: Contains 660 WSIs
primarily capturing cutaneous squamous cell carcinoma
(cSCC) biopsies in various differentiation stages includ-
ing a class of normal skin biopsy. Demographic features
indicate a median patient age of 77, with females mak-
ing up 35% of the dataset. Private Liver: Includes 150
WSIs of alcoholic steatohepatitis (ASH), 158 WSIs of non-
alcoholic steatohepatitis (NASH), and 18 WSIs of normal
cases predominantly sourced from liver biopsies. Private
CRC: Features 209 WSIs, categorized into Cancer Ad-
jacent Polyp (CAP), Non-recurrent Polyp (POP-NR), and
Recurrent Polyp (POP-R) classes. Private Breast: Con-
sists of 73 WSIs classified into 16 tumor subtypes and one
class of normal tissue, encapsulating a variety of patholog-
ical conditions such as Adenoid Cystic Carcinoma (ACC),
Ductal Carcinoma In Situ (DCIS), among others. PANDA

[23]: A public dataset of 12,625 WSIs of prostate biopsies
stained with H&E, collected from diverse international sites
for comprehensive evaluation. CAMELYONI16 [25]: Pro-
vides 399 meticulously annotated WSIs of lymph node sec-
tions collected from breast cancer patients across two hos-
pitals in the Netherlands. BRACS [24]: Encompasses 547
WSIs from 189 patients, annotated into seven distinct lesion
subtypes by board-certified pathologists. DigestPath [46]:
Comprises two specialized datasets for diagnosing gastroin-
testinal histopathology features: the Signet Ring Cell De-
tection Dataset (SRC) and the Colonoscopy Tissue Segmen-
tation and Classification Dataset (TSCC). PanNuke [47]: A
semi-automatically generated nuclei instance segmentation
and classification dataset containing exhaustive nuclei la-
bels across 19 different tissue types. Kather-7K [45]: Fea-
tures 7, 180 non-overlapping image patches sourced from
50 patients with colorectal adenocarcinoma, serving as an
ideal validation set for model evaluation. WSSS4LUAD
[49]: Specifically built for segmentation tasks in lung ade-
nocarcinoma histopathology, including over 10, 091 patch-
level annotations. Additional details for each dataset are
available in the Suppl-Tables [S6, S7].

Evaluation Metrics. For the evaluation of WSI-level and
patch-level retrievals, we used Top-1, the majority vote
among Top-3 (MV @3), and the majority vote among Top-
5 MV@5) metrics within the leave-one-out evaluation
scheme. To assess the patch classification task, we trained a
linear classifier using the extracted feature embeddings and
computed accuracy and macro average F'-1 score. Embed-
ding variances were analyzed using Principal Component
Analysis, as illustrated in Figure 5. Additionally, the quality
of the Vision Transformer (ViT) is visually assessed using
activation maps, as shown in Figure 4. An extensive eval-
uation, both qualitative and quantitative, is presented in the
subsequent sections and the supplementary file.

5. Experimental Results
5.1. FPS Effectiveness

Table 1 provides an in-depth comparative assessment
between Yottixel’s mosaic and our FPS patching method
across 3 private and 3 public histopathology datasets, uti-
lizing BiomedCLIP [50], PLIP [43], and PathDino as back-
bones. Across internal datasets, FPS consistently ex-
hibits competitive to superior performance. For exam-
ple, in Private-Breast dataset, FPS achieves a top-1 accu-
racy of 58% with PLIP and 68% with PathDino, outper-
forming Yottixel’s corresponding values of 55% and 63%.
In Private-Liver dataset, FPS integrated with PathDino
achieves an 83% top-1 accuracy, markedly higher than Yot-
tixel’s accuracy of 81%. This trend is corroborated in
the Private-Skin and Private-CRC datasets, where FPS sur-
passes Yottixel’s mosaic in all metrics, most notably achiev-
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Figure 4. Attention Visualization. When visualizing atten-
tion maps, our PathDino transformer outperforms HIPT-small and
DinoSSLPath, despite being trained on a smaller dataset of 6M
TCGA patches. In contrast, DinoSSLPath and HIPT were trained
on much larger datasets, with 19 million and 104 million TCGA
patches, respectively.

Table 1. Performance accuracy of the proposed FPS against Yot-
tixel’s mosaic using BiomedCLIP, PLIP and PathDino backbones.

Table 2. Comparison of FPS against Yottixel’s mosaic in terms
of the dataset properties such as number of extracted patches and
average processing speed. For fair comparison, both frameworks
use PathDino as the backbone.

Extracted Patches | Patching Speed (m) | # missed WSI

Dataset #WST —rtixel FPS | Yottixel FPS | Yottixel FPS
Private-Breast 74 1,141 2,033 | 204 BI1| 1 1
Private-Liver 326 2,974 8,207 | 454 646 | 2 3
Private-Skin 660 8,388 16,491 | 1713 1320 | 1 0
Private-CRC 200 4,619 6,068 | 794 460 | 0 0
PANDA 10617 87,451 112,763 | 2519 1921 268 138
CAMELYONI6 120 2,864 3,870 | 845 29| 1 0
BRACS 547 12,046 15,352 | 2615 1177 | 24 12

HIPT on PANDA dataset DinoSSLPathology on PANDA dataset PathDino on PANDA dataset
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atas BiomedCLIP [50] PLIP [43] PathDino . . . :
Dataset ool —FPS 1 Vomael —FPS Vool FFS Figure 5. Embed.dmg variance analysis of three s<?lected
Private-Breast Top | 47 47 55 58 63 68 Transformer-based histopathological feature extractors with the
Top 1 70 74 70 73 81 83 : : : :
Private.Liver MV@s 75 i 76 by %6 56 output‘ vector size of 384 including HIPT, DinoSSLPath, and our
2 MV@5 74 77 73 76 87 85 PathDino on PANDA dataset [23].
% Top 1 68 75 72 75 79 78
2 Private-Skin MvVe3 73 78 77 79 81 80
2} .
Z 1‘4"@15 Zg ;g ig gi zé 2 Table 3. WSI-level top-1 accuracy using the proposed FPS patch-
op . . . , . .
Private-CRC MV@3 60 63 61 67 60 65 ing method and “median of minimum” Euclidean distances as pro-
Mves 59 65 2 6 | 6l 65 posed in Yottixel [14].
Top 1 3 34 53 56 59 58
PANDA [23] Mve3 36 36 53 55 58 58 Internal Datasets Public Datasets
= Mves 38 38 53 54 58 56 Breast Liver Skin | PANDA CAMELYONI6 BRACS
a ~ Topl 60 61 70 73 76 73 ResNet50 [51] 048 067 073 | 032 0.54 0.53
2 CAMELYONI6 [25] MV@3 S8 67 71 7 7 78 DenseNet121 [52] 048 064 069 | 030 0.67 0.52
5 MV@s 64 69 70 75 78 71 EfficientNet-b3-288 [53] 041 066 073 0.32 0.59 0.55
-~ Top 1 56 55 62 60 65 64 EfficientNet-b5 [53] 051 071 071 0.37 0.57 0.54
BRACS [24] MV@3 58 62 64 63 65 66 ConvNext-b-224 [54] 056 075 074 | 034 0.62 0.58
MV@5s 59 61 66 64 66 67 ConvNext-xlarge [54] 0.56 076 0.74 0.35 0.61 0.58
ViT16-224 [20] 041 07 072 | 031 06 054
DinoV1-ViT-s16 [29] 048 071 074 | 036 0.67 0.6
DinoV1-ViT-b16 [29] 055 072 073 | 037 0.63 0.59
. . . . . DinoV2-ViT-b14 [30] 053 071 072 | 031 0.61 051
ing an MV @5 of 82% in Private-Skin with PLIP, but lower CLIP - ViT-B/16 [55] 049 067 075 | 036 0.67 0.58
. . MuDiPath-ResNet50 [56] 0.44 0.7 0.72 0.35 0.63 0.51
performance on Topl and MV@3. The results in public MuDiPath-DenseNet-101 [56] 051 0.68 074 | 0.36 0.65 056
datasets demonstrate on par performance rather than supe- KimiaNet [7] _ 051 078 075 | 057 076 062
o X BiomedCLIP - [50] 047 074 075 | 034 0.61 055
riority. For example, in the PANDA dataset, FPS, when HIPT-ViT-s16 [17] 044 068 073 | 032 0.62 052
. . . PLIP [43] 058 073 075 | 056 0.73 0.60
paired with PLIP, records a top-1 accuracy of 56%, which {BOT-Path [19] 064 079 076 | 053 0.67 0.64
; : val’ ; e DinoSSLPathology-8 [15] 058 074 078 | 047 0.74 0.61
is 3% hlgher than Yottlxe% s mosaic. In summary, the empir: A o T .
ical evidence overwhelmingly supports the efficacy of FPS PathDino-512 (ours) 068 083 078 058 0.73 0.64

as compared to Yottixel’s mosaic. More results are reported
in Suppl-Tables [S2, S3].

5.2. FPS Efficiency

Table 2 elucidates the computational efficiency and pro-
cessing capabilities of both patching methods when paired
with the PathDino backbone. Remarkably, FPS demon-
strates higher computational efficiency in most scenarios.
For instance, FPS processes Private-Breast and Private-Skin
datasets in significantly less time, requiring only 13.1 and
132.0 minutes in total, respectively, as opposed to Yottixel’s
20.4 and 171.3 minutes. Additionally, FPS succeeds in
processing more WSIs with fewer failures; in the PANDA

dataset, FPS processes 138 missed WSIs compared to Yot-
tixel’s 268. This efficiency extends to other datasets, such
as Private-CRC and BRACS, where FPS outperforms Yot-
tixel’s mosaic in both speed and the number of processed
WSIs. These empirical findings not only validate the ro-
bustness and efficacy of FPS but also its computational ad-
vantages, underscoring its suitability for large-scale, time-
sensitive histopathological image analysis.

5.3. PathDino - WSI-Level Search

Table 3 highlights the performance of several feature ex-
tractors across various private and public datasets using the
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Table 4. PathDino’s performance, assessed for patch-level search accuracy and MV @5 macro average F'-1 score, compared to various
feature extractors. The lower-right section (grey values) indicates datasets that have been partially or fully included in the pretraining

dataset TCGA.
Internal Datasets Public Datasets
Private-Breast__ Private-Liver __ Private-Skin___Private-CRC_| PANDA [23] CAMELYONIG6[25] BRACS [24] _ DigestPath [16] _ Kather [15] | PanNuke [17] _ WSSS4LUAD [1)]
Acc MAFI  Acc  MAFI  Acc MAFI  Acc  MAFI | Acc MAF1  Acc MAF1 Acc MAF1  Acc  MAFI Acc  MAFI  Acc  MAFI  Acc MAF1
ResNet50 [51] 325 190 638 428 689 530 471 473 | 310 260 625 56.4 478 406 867 820 | 975 97 747 59 752 452
S 3 DenmseNetl2l [52] 314 192 650 436 687 535 476 476 | 316 267 626 573 49 426 887 86 985 981 778 631 717 48.5
S £ EfficientNet-b3-288 [53] 297 166 645 467 674 518 465 467 | 308 258  6LS 554 49 42 898 875 | 961 955 708 533  78.0 48.1
T Z  EfficientNetbs [53] 382 256 681 486 719 559 506 510 | 347 294 624 56.1 506 439 922 91 98.6 983 798 645 797 49.1
3 % ConvNext-b-224 [54] 397 28 683 501 726 582 487 488 | 332 282 645 59.8 499 434 922 907 | 92 991 856 739 832 523
= ConvNext-xlarge [54] 428 287 700 518 747 603 513 516 | 342 291 634 577 513 446 932 92 99.5 995 904 816 842 535
S 5 VITbI6224[0] 296 167 6717 492 717 555 468 469 | 3201 268  62.0 558 491 422 893 807 | 982 978 794 67 704 513
£ £ DinoVI-ViT-s16 [29] 366 250 703 496 714 566 499 502 | 341 297 632 573 513 446 92 90.1 99.5 994 898 813 839 534
£ £ DinoVI-ViTb16[29] 381 272 713 521 722 578 508 51 347 300 645 584 513 444 919 90 99.7  99.6 915 83 84.7 542
& £ DinoV2-ViT-b14[30] 318 209 684 487 698 544 481 483 | 314 264 602 533 500 426 898 865 | 986 984 766 645  76.1 66.5
& CLIP - ViIT-B/16 [55] 364 268 694 498 727 577 523 526 | 358 310 628 56.7 525 455 900 878 | 984 982  79. 637 7192 48.6
Barlow-Twins-ResNet50 [15] | 508 375 760 555 722 567 561 569 | 460 435 639 58.0 548 471 952 944 | 997 996 918 853 862 549
S 3 SwAV-ResNets0[I5] 502 375 774 601 742 596 562 569 | 450 421 68.6 6322 558 484 953 947 | 996 995 906 825 828 515
A £ MoCoV2-ResNet50 [1§] 519 375 767 579 729 563 546 553 | 452 423 65.0 58.9 546 474 947 940 | 997 996 908 837 846 53.7
& % MuDiPath-ResNet50 [56] 325 209 680 472 715 556 470 472 | 318 270 621 57.0 49.0 420 894 877 | 989 985 806 689 810 50.7
€ § MuDiPath-DenseNet-101[56] | 366 259 69 475 720 562 494 498 | 333 288 623 56.4 505 435 916 893 | 994 992 888 797 828 52.5
£l KimiaNet [57] 468 372 782 612 763 616 560 567 | 451 424 719 67.7 568 506 950 942 | 994 993 943 886 824 514
S "¢ BiomedCLIP[50] 341 227 6718 497 7201 563 416 477 | 325 274 613 554 506 436 928 9013 | 086 983 798 668 841 536
£ £ HIPT-VITsl6(17] 378 250 706 503 715 563 492 494 | 338 289 672 62 50.1 432 893 875 | 987 983 886 782 810 50.5
8 g PLIP [43] 441 349 720 541 752 616 578 584 | 430 393 688 62.9 554 482 947 937 | 972 970 823 686 782 18.5
£ & iBOT-Path[19] 502 421 780 652 768 624 559 565 | 416 379 699 64.4 578 512 952 943 | 999 999 977 936  &7.1 55.7
&£ £ DinoSSLPathology-8 [15] 471 363 770 597 761 614 560 566 | 398 353 678 60.8 560 490 957 952 | 999 999 966 922 881 56.7
PathDino-224 (ours) 445 387 772 616 760 614 527 532 | 401 360 716 66.9 551 486 958 950 999 998 963  90.7 869 557
PathDino-512 (ours) 551 491 827 695 712 636 574 581 | 483 463 1751 704 593 526 968 962 999 999 966 911 867 55.4
Mayo-Skin Mayo-Skin
Mayo-Liver Mayo-Liver
Mayo-CRC, Mayo-CRC,
Mayo-Breast Mayo-Breast
PANDA PANDA
—— HIPT —— BiomedCLIP
—— BiomedCLIP —— HIPT
PLIP PLIP
—— DinoSSLPathology —— iBOT-ViT-B
iBOT-ViT-B \MELYON1 DinoSSLPathology CAMELYON1

PathDino (ours)

(A) Patch-Level Retrieval MV@5 Macro Avg

PathDino (ours)

(B) WSI-Level Retrieval Top-1 Macro Avg

Figure 6. Performance of selected Transformer-based histopathological feature extractors including HIPT, BiomedCLIP, PLIP, Di-
noSSLPath, iBOT, and PathDino. The performance is represented as the macro average of the F'1 score for the MV @5: (A) the per-
formance of patch-level retrieval, (B) the performance of WSI-level retrieval.

proposed FPS patching method and the median of mini-
mum Euclidean distances proposed in Yottixel [14]. Across
both private and public datasets, PathDino-512 demon-
strates competitive to superior performance. PathDino-512
achieves an exceptional 83% top-1 accuracy in the dataset
Private-Liver, outperforming other models like HIPT, and
iBOT-Path (student), which attain 68% and 79%, respec-
tively. Even in a difficult case like Private-Skin, PathDino-
512 reaches a 78% top-1 accuracy, competing with Di-
noSSLPathology which provides 78%. Notably, in the
public dataset PANDA, PathDino-512 achieves a 58% top-
1 accuracy, significantly outperforming both CNN-based
and Transformer-based models like HIPT which only reach
32%. The macro average F'1 score also consistently favors
PathDino-512. These empirical findings prove PathDino-

512 is a robust and highly efficient model for WSI-level
retrieval. More results for the macro average F'1 score of
Topl, MV @3, MV @5, along with accuracy of MV @3, and
MV @5 are reported in Suppl-Tables S9, S11, S13, S10, and
S12, respectively.

5.4. PathDino - Patch-Level Search

The results presented in Table 4 provide an extensive
comparative analysis of models in patch-level histopathol-
ogy image search. The standout performer is our pro-
posed model, PathDino-512. The model not only out-
performs others in terms of accuracy but also establishes
new benchmarks in the macro average F'l score, a criti-
cal metric for robust evaluation. For private datasets such
as Private-Breast and Private-Liver, PathDino-512 achieves
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Table 5. 5-Fold Cross-Validation: Macro-F1 in Histopathology. Right side: TCGA-related datasets (see the Supplementary File).

Internal Datasets Public Datasets
Private-Breast ~ Private-Liver ~ Private-Skin ~ Private-CRC | PANDA [23] CAMELYONI16 [25] BRACS [24]  DigestPath [10] Kather [18]  PanNuke [17]  WSSS4LUAD [49]
2 BiomedCLIP [50] 38.82+1.64 48.44+1.15  56.62+0.61 55.8942.57 25.9740.34 58.194+4.99 41.8940.93 92.0742.33 94.8940.84 37.81+2.12 69.9848.12
2 HIPT-ViT-s16[17] 43.08+6.27 59.31+5.08  59.47+2.85  48.69+4.62 | 25.65+1.38 61.56+£4.25 42.02+8.82 84.66+7.17 96.81+0.69 12.1743.80 64.26+7.50
é PLIP [43] 46.07£3.20 50.78+1.48  6248£1.11  64.11£2.70 | 31.53£0.47 69.67+1.45 46.724+1.05 92.0742.91 90.90+1.63  27.77+2.54 61.51+7.19
§ iBOT-Path [19] 85.12+1.74 84.37+1.31  73.09+£0.39  68.38 £0.52 | 32.95+0.86 73.76+1.67 56.52 £1.96 95.67+2.17 99.8140.17  95.76+1.78 73314591
& DinoSSLPathology-8 [ 18] 77.59£2.17 74.254+4.56  66.98+1.00  58.174+4.77 28.754+2.31 70.614+1.81 46.4245.59 94.504+1.91 99.68+0.11 86.17+2.61 76.30+9.60
PathDino-224 (ours) 78.06+4.03 74.34+4.98  64.89+2.14  60.65+2.23 | 27.74+2.44 69.26+4.94 46.58+3.78 94.03+3.06 99.66+0.19  81.03+2.51 4.474+9.05
PathDino-512 (ours) 88.57+3.08 86.35+5.33  71.36+1.64  70.47+2.47 | 32.08+2.57 79.61£1.00 52.5943.21 95.82+2.26 99.65+0.11 84.79+3.14 72.69+7.60

the highest accuracy rates of 55.1% and 82.7%, respec-
tively. More remarkably, it tops the macro average F'1 score
with 49.1% and 69.5% in the same datasets. These findings
extend to public datasets like PANDA and CAMELYON16,
where PathDino-512 records accuracy and macro average
F'1 scores of 48.3% and 46.3%, and 75.1% and 70.4%, re-
spectively.

While it is important to note the strong performance of
models like iBOT-Path and DinoSSLPathology, especially
for public datasets, PathDino-512 consistently outperforms
them across multiple metrics and datasets. We analyzed
the patch embedding variance as shown in Fig. 5. We
compare PathDino against HIPT and DinoSSLPathology as
they have the same embedding size (i.e., 384). Notably,
PathDino capitalizes on an expanded set of components
within the feature vector to accurately represent the inferred
histopathology patch. Fig. 4 visually compares their at-
tention performance in which PathDino shows better atten-
tions.

5.5. PathDino - Patch-level 5-Fold Cross-Validation

In Table 5 detailing 5-fold cross-validation results, a
thorough quantitative comparison of macro-averaged F'1
scores is presented for an assortment of models across mul-
tiple private and public datasets. We only report the perfor-
mance of histopathology Transformer-based models here.
The detailed measurements of macro average F'1 scores and
accuracy values are available in Suppl-Tables S5, S4, re-
spectively.

On the internal datasets like Private-Breast, Private-
Liver, and Private-CRC, our proposed model, PathDino-
512, achieves standout performance with F'1 scores of
88.57£3.08, 86.35+5.33, and 70.47+£2.47, respectively.
These scores are markedly higher than the next best models,
such as iBOT-Path, which reaches F'1 scores of 85.124+1.74
in Private-Breast and 84.37 + 1.31 in Private-Liver. In
the realm of public datasets, PathDino-512, and iBOT-Path
show competitive results where PathDino leads with an F'1
score of 79.61 + 1.00 in CAMELYONI16, outperforming
1iBOT-Path, which scores 73.76 £ 1.67 in the same dataset.
Interestingly, iBOT-Path excels in Private-Skin with an F'1
score of 73.09 =+ 0.39, the highest among all models for that
specific dataset.

6. Conclusions

This paper presented a new approach to WSI analysis,
addressing two pivotal challenges that have long stymied
advancements in this field—computational efficiency and
diagnostic fidelity. We introduced a fast patch selec-
tion (FPS) algorithm that reliably identifies a compact
yet highly informative subset of patches, thereby signifi-
cantly reducing computational overhead without compro-
mising diagnostic inclusion. Additionally, we unveiled
a new Transformer-based model structure for histopatho-
logical image analysis, PathDino, that only contains 5
small transformer blocks. Finally, we presented a rotation-
agnostic self-supervised learning, HistoRotate, tailored for
histopathological representation learning. Through train-
ing the proposed PathDino using the proposed HistoRo-
tate and rigorously validating them with 12 diverse datasets,
we showed that our lightweight transformer along with our
training recipe effectively mitigates issues of overfitting that
are prevalent in this domain. Our dual-pronged approach
has demonstrated competitive to superior performance com-
pared to the state-of-the-art methods.

Limitations: In contrast to natural images, magnification
plays an important role in histopathological images. Our
training dataset only included patches in 20X magnifica-
tion from TCGA. Thus, more tuning for multi-resolution
training may provide better results.

Broader Impacts: The proposed methods for whole slide
image analysis have the potential to improve the diagno-
sis and prognosis of various diseases by providing accurate
and reliable information on tissue morphology and cellular
characteristics. With the widespread use of digital pathol-
ogy workflows in clinical practice, these methods can re-
duce the workload and human errors of pathologists. Fur-
thermore, quantifying tissue morphologies through accurate
and valid image analysis method help with reducing intra-
and inter-observer variability within the medical field. The
proposed methods can also contribute to the advancement
of histopathological image analysis by providing robust im-
age representations.
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