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Abstract

Video stabilization is a longstanding computer vision
problem, particularly pixel-level synthesis solutions for
video stabilization which synthesize full frames add to the
complexity of this task. These techniques aim to stabilize
videos by synthesizing full frames while enhancing the sta-
bility of the considered video. This intensifies the complexity
of the task due to the distinct mix of unique motion profiles
and visual content present in each video sequence, making
robust generalization with fixed parameters difficult. In our
study, we introduce a novel approach to enhance the perfor-
mance of pixel-level synthesis solutions for video stabiliza-
tion by adapting these models to individual input video se-
quences. The proposed adaptation exploits low-level visual
cues accessible during test-time to improve both the stabil-
ity and quality of resulting videos. We highlight the efficacy
of our methodology of “test-time adaptation” through sim-
ple fine-tuning of one of these models, followed by signifi-
cant stability gain via the integration of meta-learning tech-
niques. Notably, significant improvement is achieved with
only a single adaptation step. The versatility of the pro-
posed algorithm is demonstrated by consistently improving
the performance of various pixel-level synthesis models for
video stabilization in real-world scenarios.

1. Introduction

Today, the act of capturing and sharing visual content is
deeply ingrained in our daily lives. Millions of users rely on
social networking platforms like YouTube and Facebook to
document and share their favorite experiences with others.
However, the lack of specialized stabilization equipment,
such as gimbals, often results in noticeably shaky and unsta-
ble videos. This jitter affects the overall user experience and
hinders effective visual communication. Consequently, the
field of video stabilization has attracted considerable atten-
tion from both videographers and researchers alike, offering
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the potential to enhance the visual experience and support
various downstream vision tasks.

Traditionally, video stabilization methods have followed
a straightforward pipeline of motion estimation, smoothing,
and compensation techniques involving spatial transforma-
tions. Despite significant efforts to improve these trans-
formation methods, the restoration process often comes at
the expense of losing valuable visual content due to pixel
projection, leading to irregular boundaries near the edges
of stabilized videos. To mitigate this issue, cropping is
commonly employed, resulting in loss of visual resolu-
tion. However, recent advances in deep learning method-
ologies have brought new possibilities for content preser-
vation on the cropped region. Approaches such as in-
painting the missing regions [9, 43] or defining an end-to-
end pipeline that simultaneously stabilizes and synthesizes
missing regions [1, 7, 31] offer promising solutions. How-
ever, achieving end-to-end feed-forward pixel-level stabi-
lization remains challenging due to the inherent difficulty
of this task and the diverse scenarios in real-world video.

Notably, the pioneering works of Choi et al. [7] and
Ali et al. [1] have initiated the exploration of end-to-end
full-frame video stabilization methods. Choi et al. [7] in-
troduced an optical flow-based frame interpolation method
(termed DIFRINT) that stabilizes videos through multi-
ple temporal interpolations. On the other hand, Ali et
al. [1] proposed Deep Motion-Blind Video Stabilization
(DMBYVYS), a feed-forward method, which is trained on a
dataset that consists of stable and unstable videos with sim-
ilar perspectives. Despite their contributions, both methods
face certain limitation, for instance, DIFRINT encounters
challenges in preserving perceptual quality over multiple in-
terpolation iterations and is prone to temporal artifacts near
the motion boundaries where occlusion and dis-occlusion
occur. Conversely, DMBVS generates visually appealing
frames but lacks a mechanism to control the level of stabil-
ity in the resulting videos.

To overcome these limitations, one potential approach is
to make these models adaptive and leverage the spatiotem-
poral cues present in specific scenes, similar to the strategies
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employed by classical approaches based on spatial transfor-
mations. However, a shortcoming of test-time adaptation
in neural approaches is the considerable time and resources
required to adapt to new data. This can be alleviated by em-
ploying techniques investigated in meta-learning literature,
as similar techniques have been proven effective in various
computer vision tasks such as video super-resolution [25],
frame interpolation [11], and visual tracking methods [8].
We hypothesize that these techniques can also improve
video stabilization approaches by quickly adapting to the
input data at test time without using the ground truth stable
data. Using these techniques, we can combine the strengths
of deep learning methods, which provide superior quality,
with classical methods that provide better stability, along
with the added benefit of giving users more control over the
stability and quality of the resulting videos.

In this work, we propose a scene-adaptive video stabi-
lization method that can quickly adapt to unseen videos at
test time. At test time, we improve both the picture qual-
ity and stability of full-frame video stabilization models.
To the best of our knowledge, this is the first integration
of meta-learning in the field of video stabilization. The
proposed fast adaptation algorithm can be seamlessly in-
tegrated with any off-the-shelf end-to-end pixel synthesis
stabilization models. Additionally, it allows the adapted
models to achieve an ~ 8% absolute gain in stability and
provides state-of-the-art results for pixel synthesis methods
for video stabilization.

We summarize our contributions as follows:

e We integrate the meta-learning algorithm, which improves
the performance of full-frame video stabilization models by
adapting model parameters to various scenes with distinct
motion profiles and content.

e Our method equips these fixed-performance models with
a moderate control mechanism for various aspects of video
stabilization and consistently improves the performance in
these aspects by increasing the number of adaptation steps.
e We achieve SOTA video stabilization results on the
evaluation datasets and our method outperforms the long-
standing SOTA methods for this task.

2. Related works

This section summarizes the related literature on video sta-
bilization and meta-learning for computer vision tasks.

2.1. Video stabilization

Conventionally, video stabilization approaches can be clas-
sified into three distinct categories, 3D, 2.5D and 2D ap-
proaches. The 3D approaches for video stabilization model
the camera trajectories in the 3D space. Various techniques
such as depth information [29], gyroscopic data [22] struc-
ture from motion [27], light fields [37], and 3D plane con-
straints [50] have been used to stabilize videos in 3D space.

Despite their ingenious formulations, these approaches face
difficulties in handling dynamic scenes containing multiple
moving objects; therefore, 2D approaches which limit their
scope to spatial transformations like homography and affine
transformations became the tool of choice for researchers.
Generally, these approaches track and stabilize the trajec-
tories of prominent features. Doing so introduces loss of
visual content near the frame boundaries which is often con-
cealed by cropping and up-scaling the resultant video.

For 2D stabilization, Buehler et al. [4] estimated cam-
era poses in shaky videos and used non-metric image-based
rendering to stabilize videos. Matsushita et al. [34] esti-
mated simplistic 2D global transformations to warp the un-
stable frames to produce stable video, and Liu et al. [30] ex-
tended this phenomenon to grid-based warping for smooth-
ing feature trajectories. Grundmann et al. [18] presented
an L -based objective function for estimating stable camera
trajectories, whereas Liu et al. [28] utilized eigen-trajectory
smoothing for this task. Goldstein et al. [17], Lee et al. [24],
and Wang et al. [42] employed epipolar geometry-based op-
timization models for stabilizing videos.

Inspired by these approaches and looking at their short-
comings in handling the independent motion of multiple
objects, Liu et al. [30] highlighted the importance of “rel-
atively” denser inter-frame motion through optical flow
for video stabilization. Their findings inspired most of
the modern video stabilization methodologies that are cur-
rently being used professionally to this day in apps like
Blink, Adobe Premiere Pro, and Deshaker. Many recent
works [7, 31, 43, 44, 46, 47] rely on optical flow as an ir-
replaceable backbone for the definition of their approaches.
Geo et al.[16] further improved on these methods and fine-
tuned a conventional flow estimation network to estimate
only the camera motion component of optical flow (termed
global optical flow) and used it to define warping fields
for video stabilization. Please note that, unlike the con-
ventional deep stabilization methods, Ali ef al. [1] high-
lighted the importance of perspective in training data and
the power of traditional deep convolutional neural networks
(CNNs) by learning to synthesize stable frames entirely
through learned implicit motion compensation from neigh-
boring frames, and Choi et al. [7] proposed an iterative in-
terpolation strategy for stabilizing videos. Please note that
these two methods are the only proposed methods for pixel
synthesis end-to-end full-frame video stabilization.

2.2. Meta learning and test-time optimization

For deep video stabilization methods, some literature has
been investigated on test-time adaptation inspired by the
conventional optimization approaches. Yu et al. [46] pro-
posed to stabilize videos by optimizing the motion vec-
tor warp field in CNN weight-space. Liu ef al. [31] pro-
pose to learn radiance fields for distinct scenes, and Xu et

12606



al. [44] defined a pipeline inspired by [18, 30] with the help
of a modular pipeline catering to estimating and iteratively
smoothing the motion trajectories and reprojecting the un-
stable frames to follow a smooth global motion profile. De-
spite the ingenuity of these approaches, these methods sig-
nificantly hamper the time required for stabilizing videos.

Contrary to the conventional optimization-based video
stabilization approaches, we aim to investigate faster test-
time adaptability for full-frame video stabilization ap-
proaches inspired by its recent success in various computer
vision tasks such as video super-resolution [19, 25], visual
tracking [8], video segmentation [3], object detection [13],
human pose estimation [6], image enhancement [33], and
video frame interpolation [10]. Typically, meta-learning al-
gorithms can be categorized into three main groups: metric-
based, network-based, and optimization (or gradient)-based
algorithms. From the optimization-based category of meta-
learning, model agnostic meta-learning (MAML) [14] has
become the tool of choice for researchers investigating com-
puter vision tasks [5, 15, 20, 23, 26, 32, 36, 38, 40, 45, 49,
51] due to its effectiveness, generalizability, and simplicity.

In light of recent literature, and its success in low-level
computer vision tasks, we investigate the applicability of
this technique for pixel-level synthesis solutions for video
stabilization and propose a new algorithm that combines
the strengths of conventional spatial transformation-guided
video stabilization approaches and regressive properties of
pixel-level synthesis video stabilization approaches. The
proposed algorithm allows the parameters of the feed-
forward video stabilization models to be updated quickly
with respect to the unique motion profiles and diverse im-
age content present in each scene and allows the adapted
model to stabilize extremely shaky videos while preserving
visual quality and resolution. The proposed model also pro-
vides the user with the ability to control the level of stabil-
ity and quality preservation (up to a certain degree); which
is unattainable with currently available regressive solutions
for this task.

3. Proposed method

This section begins by presenting the problem setup of
pixel-level regressive video stabilization. Next, we discuss
the proposed algorithm, outline the meta-training objective
functions, and discuss the inference strategy.

3.1. Problem set-up

Consider an unstable video containing n frames as V' = {1,
Iy, ..., I }. The goal of the video stabilization methods is
to predict a stable video V= {fo, I, .., fn} using a stabi-
lization network fy given the unstable input video V, and
the predicted video V contains similar content to V' with a
stabilized camera trajectory. Conventionally, stabilization
methods based on pixel synthesis [1, 7] employ a sliding

window strategy that considers a local temporal window
containing 2k + 1 frames Lk, .y Ity ..y It 1 }) and pro-
duce a stabilized frame I; as:

I = fo(Sh), (1

where S; denotes the local temporal window of 2k + 1 con-
secutive frames. This temporal window strategy allows the
model to regress missing information in synthesized stable
frames. For instance, temporal window of 5 consecutive un-
stable frames (i.e. Sy = {It—o, I;—1, It, [;11, I;42}) is used
in DMBVS, and a temporal window of 3 consecutive frames
with frame recurrence (i.e. Sy = {ft,l, Iy, I;11}) is utilized
in DIFRINT. Note that, the initial £ and last k frames can-
not be stabilized with window-based approaches, but we use
0 <t < T for notational simplicity throughout this paper.

These pixel-synthesis methods are straightforward and
allow for end-to-end learning and inference. However, one
of the main drawbacks of these works is the limited per-
formance in terms of stability. While the frame recurrence
schemes can improve the stability of these methods by prop-
agating synthesized content to regress future frames and
can be used with any window-based approach, these ap-
proaches can also compromise the quality and introduce
wobble (jitter) artifacts.Despite the limited performance in
stabilization, pixel-level synthesis solutions are still promis-
ing, because they can easily produce full-frame videos after
stabilization. Therefore, we formulate our fast adaptation
method based on these pixel-level synthesis approaches to
improve both stability and image quality.

3.2. Meta-learning for video stabilization

Our key observation highlights the challenge that pixel-
level synthesis stabilization models face when dealing with
motion in specific scenarios. This challenge arises from bi-
ases in conventional training data and the complexities asso-
ciated with using motion cues from raw pixel values. There-
fore, we hypothesize that in real-world videos, the motion
profiles can vary significantly even within the same video
content, for which models with fixed parameters might be
ineffective; thus, to make these models more effective, we
propose a fast test-time adaptation strategy that allows these
models to explicitly look for and utilize visual cues for spe-
cific unique scenarios for better compensation of camera
shakes. Specifically, to aid the adaptation process, we use
MAML [14], which is known for its ability to effectively
adapt to new tasks. The MAML algorithm consists of two
components: an inner loop and an outer loop. Within the in-
ner loop, the parameters of the models are adapted through
a small number of adaptation steps for each specified task.
Following this adaptation, in the outer loop, test sets for
the task in the inner loop are sampled to evaluate the gen-
eralization of the adapted model. In this work, to define a
scene-adaptive video stabilization approach, we consider a
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short sequence of frames as a “task™; which is then used
for fast adaptation to unseen videos through the proposed
algorithm. We employ a feed-forward video stabilization
network fp, which takes a set of 2k + I neighboring frames
as in Eq. 1 to synthesize its stable counterpart I,, and we
use the DMBVS and DIFRINT as our baselines. The task
in our formulation is defined as the minimization of both of
the aforementioned objectives in the MAML framework on
T consecutive input frame sequences from unstable videos.
The overall process of our proposed meta-training process
is illustrated in Fig. 1.

Dt
Local Temporal Window St PR Tt S RN
[ Ip J [It—k ][ Ie [It+k ]
T
Meta-learned
Stabilization
Network fy

»—i\
5
I

Figure 1. Overview of the proposed meta-training process. This
figure illustrates the overall pipeline of the training process. The
model in the inner loop gets a sequence of local temporal windows
(St € D7) and synthesizes stable frames. The synthesized frames
are penalized according to the aligned frames in the inner loop.
For the outer loop, the deviation of synthesized frames is measured
with the corresponding DeepStab [39] stable frames. At inference
time, only the inner loop optimization is needed.

During the training-phase, each task 7; is sampled from
the DeepStab dataset [39] (D7;). The inner loop update
is governed with the help of an inner loop loss function

7+ which does not require the ground truth counterpart (as
shown in the Fig. 1), whereas, the parameter update at the
meta-stage (outer loop) is governed by /339; for which we
utilize the stable videos from the same dataset. In our for-
mulation, the inner loop loss is focused on input-specific
information available at test time which can be used to im-
prove both stability and perceptual quality, whereas, the
outer loop loss focuses more on visual quality to instill a
sense of mitigating jerk-related degradations such as blur
and distortions, hence it requires the stable counterparts of
the DeepStab [39] videos; thus, meta-learning is employed
to take into consideration both the input specific cues at test
time while making the models under consideration stronger
in each of the concerned aspect of video stabilization. It
is worth noting that despite focusing more on one aspect,
both the discussed losses contain parts that penalize devia-
tion from other aspects as well.

3.2.1 Objective functions

Ali et al. [1] showed that various motion-related objectives
can be abstracted in pixel space, therefore, we implicitly de-
fine our motion penalties in both pixel space with the help of
arigid transform estimation module and optical flow space,
as there is no ground-truth available for video stabilization,
and the videos in the DeepStab dataset [39] contain perspec-
tive mismatch [1]. We intentionally opt for rigid transforms
in our formulation, as these transforms do not consider scale
and shear change, which often causes visual distortions in
the transformed images. These unique properties of rigid
transforms not only govern the stabilization process but also
limit the deviation of visual content from that of actual con-
tent as the transformed images are wobble-free. We will
now elaborate on the details of our rigid transform regres-
sion module and then define the formulation of the proposed
losses L and O‘f and the proposed algorithm.

First, for rigid transform estimation, we separately
trained and froze our affine motion estimation network h.
This network h is pre-trained with the global optical flow
Fr_ 1 (as presented in [16]) estimated between randomly
transformed images I and I’ with rigid transforms to regress
rotation and translation parameters of the rigid affine trans-
form. We use the global optical flow instead of a conven-
tional optical flow as the input of our hg network since it
masks the flow of dynamic objects from the evaluated flow
and is also robust against crops in the input images, which
aids the proposed rigid transform estimation network to fo-
cus on removing camera shake in a video rather than local
motion. To be specific, the proposed network regresses the
rigid affine transform parameters as follows:

Ap = hy(Fror), ()

where A 1+ denotes the estimated rigid transform, and hg is
the proposed affine estimation network which renders rota-
tional and translational parameters of the rigid transforma-
tion A 1 from the global optical flow (F;_, /) between the
frames I and I’. Then, our hg network can be used to align
short sequences of input frames by estimating transforma-
tion parameters w.r.t. the first input frame as follows:

At = h¢(]:]0/_>1t), t e {1, ...,T},

- N - _ - 3

L =WU, A), V={ly,I,....Ir}. )
Here, A, denotes the estimated rigid transform that aligns
frame I, to the first frame (/) of the sequence, 1" denotes
the number of consecutive frames, WV represents the spatial
warp operator, and I, refers to the warped frame. Please
note that Iy, denotes the first frame of the sampled short
sequence instead of the actual first frame of the video. The
set (f/) indicates the aligned frames. Note that({() is used
as the reference frame, so alignment is not required, but I, o
is used to keep the notation consistent.

12608



Unstable

Aligned

Figure 2. Affine alignment. This affine alignment strategy is
analogous to the classical stabilization strategies which estimate
and smooth transforms to stabilize videos. Please note that these
frames are not neighboring frames and were selected to highlight
the crops near the image boundaries in aligned frames V.

These aligned frames can be used as a stabilization guide
for the proposed algorithm, but these frames include signifi-
cant cropped regions near the image boundaries as shown in
Fig. 2; thus, these frames cannot be used directly as ground-
truth stable frames like the ones used in DMBVS. There-
fore, we define our inner loop loss for meta-learning as the
sum of global camera motion and perceptual distance be-
tween these aligned frames and the regressed frames from
the feed-forward stabilization networks fy as follows:

7. = As - L%ubility + Ap - L quality “4)
where A and ), are associated weights for stability and
quality loss, respectively. The inner loop stability loss
(Einslabimy) is defined as the absolute mean of global opti-
cal flow between the regressed frame I, and the rigid-affine
aligned frame I, as:

T
in _ N -
L gabitity = E N E \Fh 7|
t=1 N

Here, N represents the total number of pixels in the re-
gressed frame. Please note that the employed global optical
flow estimation network is quite robust against augments
that resemble the cropped regions in the warped frames I,
and fills these holes by utilizing the visual context from the
input images'. The intuition behind this loss formulation
is to enforce dense alignment between the regressed and
aligned sequences, as, ideally, the regressed frames and the
aligned frames should align perfectly. However, this loss
by itself cannot justify the synthesis of legible content, as
there can exist multiple solutions to the optical flow equa-
tion [2]; therefore, strong visual penalties should be intro-
duced to ensure content preservation. We introduce these
penalties in the form of perceptual loss [21], a contextual
loss, and a feature-based gram matrix loss to preserve the
visual content and style of the input videos. Please note that
throughout our experiments, we fix 7' = 5 due to resource
limitations. The proposed loss to secure video quality is
defined as:

®)

I'Please refer to the supplementary material for robustness comparison
of the employed and a conventional optical flow estimation network.

) 2
o =56 (1) -0 (0]
+ ZTI > |cto (1) - 6o ()
t=0 1

—log(CX (¢1(1y), tu(Lr)))-

Here ¢, (-) represents layers of a VGG-16 network till the
layer relu_4_3 (trained on the ImageNet dataset [12]). G
represents the gram matrix of features extracted from the
corresponding layer [ and C' X () represents contextual loss.
We employ the contextual and perceptual losses in our for-
mulation in line with the previous literature [1], which has
shown the effectiveness of these losses for video stabiliza-
tion. In particular, the addition of gram matrix loss further
encourages the models to synthesize realistic frames.

The combination of both of these losses is used to carry
out the inner loop update of the proposed algorithm to ob-
tain the adapted network parameter ;. Please note that this
inner loop update step can be repeated M times.

Next, within the outer loop, our network parameters
are updated to minimize the different stability and quality
penalties for fp, w.r.t. 6 on different sampled frame se-
quences along with their stable counterparts from the Deep-
Stab dataset [39]. In the outer loop update, we focus more
on the qualitative objectives due to the availability of stable
videos which contain roughly the same content with better
quality as compared to the unstable videos.

The motion loss for the outer loop update is defined as
the deviation between the global camera motion of synthe-
sized frames and their stable counterparts as:

‘2 (6)

2

2
» (D
2

T-1 1
out — o . —
L stability — § N § H‘Flt—ﬂt-u -FOt—>Ot+1
t=0 N

where O, represents the target stable frame in the DeepStab
dataset corresponding to the predicted stable frame I,. This
loss further enforces the learned stability of the model under
consideration with smooth real-world trajectories. Similar
to the stability loss in the inner loop, this loss alone can-
not justify the preservation of legible content; therefore, a
qualitative penalty is also added in the outer loop update.

Since both the stable and unstable videos in the Deep-
Stab dataset contain large disjoint perspectives [1], a non-
local criterion is needed for a quality guidance. We take
inspiration from Ali ef al. [1] to define our non-local qual-
ity penalty using contextual loss [35], which compares un-
aligned image regions with similar semantics and has been
shown to be useful in improving the quality of synthesized
stable frames [1]. The outer loop quality loss with the
ground-truth target Oy is defined as:

L iy = — log(CX (¢! (1), ' (O0))), ®)
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Algorithm 1: Meta-Training.

Algorithm 2: Meta-Inference.

Require: uniform distribution over sequences p(7),
adaptation number M, learning rate «, 3

1 while not converged do

2 Initialize parameters 6; < 6;

3 Sample batch of sequences T; ~ p(T);
4 foreach i do

5

Sample local temporal windows
D7, = {So0, 51, ..., St } from T;;
6 for m < 1to M do
7 Compute V,Vin Eq. (1), (3);
8 Evaluate Vo, L. (fo,) using L7, in Eq. (4);
9 0;" =0, — aVy, i7"—i(fe,i);
10 end
11 end

12 Sample D7, = {(So, Oo), (S1,01), ..., (St,O0¢)}
from 7; for meta-update;

13 0« 60— BVe > 1 o LT, (fo,r) using each D7
14 end

and the final loss for the outer update is defined as:

out out out
LT = L% gavitity + L% quatity - )

3.2.2 Meta-training and inference

The overall training algorithm is presented in Alg. 1. Please
note that at the test-time, only the inner loop loss is needed
to update the meta-trained parameters and the updated pa-
rameters are used to synthesize the final stabilized results
in a feed-forward manner. It is worth mentioning that we
experimented with a fixed number of adaptation iterations
and a patch size of 320 x 320 during the inference time
to further expedite the adaptation process and empirically
found that even with as low as 100 adaptation iterations
on randomly sampled sequences from the test videos, the
meta-trained models adapt quite well due to the similarity
in motion profiles and the content of the videos. This pro-
cess significantly cuts down the adaptation time as most of
the videos from the evaluation dataset [30] contain over 700
frames. Our fast adaptation algorithm is presented in Alg. 2.
Please refer to the accompanied supplemental for a detailed
description of the implementation details and experiments.

4. Ablation study

To properly evaluate the efficacy of each of the modules and
objective functions, we conducted thorough ablation studies
and present our findings below. We first present the contri-
bution of each of the losses presented and then present the
category-specific hyperparameters in this section.
Objective function contribution. We explore the influ-
ence of each loss term presented in Eq. 4 from the main
paper (Ei“quamy and Linstabﬂity) concerning different weights
of each loss term in the adaptation process.

Require: meta-trained model f, test sequence 7,
adaptation number M, learning rate o

1 Construct local temporal windows D7 = {So, S1, ..., St}
from T
for m < 1to M do
Compute V, V in Eq. (1), (3);
Evaluate Vo L% (fo) using L7 in Eq. (4);
9/ =0 - Oth,C%“—(fg);
end

N S R W N

Stabilize video V = f,/ (V) with sliding window strategy
in Eq. (1);
8 return stabilized video V
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Figure 3. Contribution of each objective function. a) The effects
of stability loss during the adaptation stage. A higher weight for
the proposed stability loss positively affects the stability score. b)
The effects of quality loss during the adaptation stage. A higher
weight for quality loss positively affects the distortion score.

To properly ablate the contribution of each of the pro-
posed losses, we randomly sample 4 videos from the NUS
dataset [30] and repeat the adaptation process with vari-
ous ratios of A\; and )\, and present our findings in Fig. 3.
For our ablation studies, we choose the meta-trained DM-
BVS [1]. Note that similar phenomenons were observed
with the meta-trained DIFRINT [7], therefore, we only
present the findings from one of the considered models in
Fig. 3. Itis evident from Fig. 3a, that increasing the weights
for the proposed stability loss positively affects the stability
of the resultant videos and an increasing trend is observed
in terms of stability metric results. As for the quality loss,
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Figure 4. Finetuning vs meta-inference. A comparison of the
finetuned and the meta-trained models highlights that it takes
significant finetuning iterations for a minuscule improvement.
Whereas, the proposed algorithm allows for a significant improve-
ment with a single adaptation pass over the video sequence.

a similar increasing trend for distortion score is observed as
evident from Fig. 3b. Please note that the presented results
in the main manuscript and this supplemental were gener-
ated with a 70:1 ratio of A; and \,,.

Category-specific ratios. Each video category within the
NUS dataset [30] exhibits distinct characteristics, neces-
sitating tailored weighing configurations to achieve opti-
mal results. This subsection presents the findings of our
study for the category-specific hyperparameters on individ-
ual video categories. Please note that the presented results
(in both the main paper and this supplemental) were evalu-
ated on hyperparameters that demonstrated optimal perfor-
mance across all the video categories. However, we found
the performance on distinct motion profiles can be further
improved (by 1~2%) by selecting specific weights for the
stability and quality losses during the adaptation process.
We present the category-specific weights in Tab. 1.

Category ‘ Crowd Parallax Regular Running Quick Rot Zoom

As 10 1 1 10 10 1
Ap 1 1 1 1 1 1

Table 1. Category-specific weights (\; and \,). This table high-
lights the category-specific weights for the proposed loss func-
tions for the adaptation step. The various motion profiles from
the NUS dataset [30] can be efficiently stabilized by employing
these weights during the adaptation process.

Finteuning VS. meta-training. To highlight the efficacy
of the proposed algorithm, we also conducted an abla-
tion study in which we finetuned the baseline DMBVS [1]
with the proposed inner-loop losses on its worst-performing
videos (with a stability score of 10~15%) from the eval-
uation dataset and compared the performance of its meta-
trained variant with only 1 adaptation pass (please note that
in both of these experiments, we opted the best settings of
hyperparameters presented above). We present our findings
in Fig. 4. The meta-trained model performs significantly
well as compared to the baseline.

5. Experimental results

5.1. Qualitative results

For qualitative comparison, we compare our results with L1
stabilizer [18], bundled, and baselines [1, 7] in Fig. 5. The
bounded regions highlight the temporal artifacts present in
DIFRINT [7] and the frame recurrent extension of DM-
BVS [1]. The proposed algorithm mitigates these temporal
artifacts successfully and produces sharper results. Due to
the space limitation, we only present the qualitative com-
parison with the longstanding SOTA methods in the main
paper and humbly request the readers to refer to the accom-
panied supplemental for qualitative comparison with other
approaches used for quantitative comparison.

DMBVS L1 Bundle

DMBVS + Ours

DIFRINT

DIFRINT + Ours

Figure 5. Qualitative Results. Qualitative comparison of the
meta-trained, baseline models and current SOTA methods. The
proposed methodology improves the stability of considered mod-
els and also mitigates the artifacts present in frame recurrent base-
line results. (Best viewed on a computer screen with zoom).

5.2. Quantitative results

We compare the quantitative performance of both scene-
adaptive models with their baseline variants on the NUS
dataset [30] in terms of stability, cropping, and distortion’
in Tab. 2. This dataset contains videos of 6 distinct cat-
egories including different motion profiles. The test-time
adapted models perform significantly better than their base-
line (non-adaptive) counterparts. We see an average of 5%
gain in absolute stability with a single adaptation pass on the
test videos for the meta-trained variant of DMBVS [1], and
an average gain of 8% for DIFRINT [7]. Please note that

2Please refer to the accompanied supplemental for the implementation
details of these metrics.
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‘ Stability

Model ‘ Crowd Parallax Regular Running Quick Rot  Zoom
Baseline | 0.7315 0.7660  0.6938  0.6522  0.8453  0.7811

DMBVS [1] | Adapt|), [0.7584  0.7965 0.7133  0.6983 0.8906  0.8368
Adaptl), | 0.7616 0.8125 07290  0.7144 09046  0.8412

Baseline | 0.7453 0.8321  0.6371  0.7143 09058  0.8258

DIFRINT [7] | Adaptl}, | 0.8062  0.8492  0.6501  0.7218 09361  0.8501
Adaptl), | 0.8149 0.8542 0.6617 07410 09431  0.8611

Table 2. Quantitative comparison of adapted models against
baselines. The proposed algorithm consistently improves the sta-
bility with the increasing number of adaptation iterations for both
of the considered models. The subscript shows the number of se-
quences sampled for adaptation and the superscript denotes the
adaptation number. The best stability is highlighted with a green
color and the second best is highlighted with a blue color.

this gain does not come at the cost of compromising the full-
frame nature of the baseline models and an improvement is
also observed in terms of the distortion score as well as evi-
dent from Tab. 3. After our baseline comparison, we present
a thorough quantitative assessment against well-established
SOTA methods known for their stability [18, 30], recent
methods [31, 39, 47, 48], and Adobe Premiere Pro 2020’s
professionally used warp stabilizer in Tab. 3. Despite the
classical nature of the methodologies introduced in [18, 30],
these approaches still produce state-of-the-art results, in
terms of stability [41]. Please note that the proposed method
in [48] produces video results across the entire evaluation
dataset, however, it is imperative to highlight that videos
generated by this method exhibit pronounced shakes in the
initial frames, gradually leading to stable videos due to their
inherent minimum latency constraints. This instability in
the initial segment (spanning over 30 frames per video) im-
pedes the estimation of homography for stability metric cal-
culation. To ensure a fair comparison, we only present aver-
age results from their method where the stability metric can
be computed for the entire videos.

The proposed algorithm consistently improves the re-
sults of both the considered models and equips DIFRINT
to achieve SOTA results and also improves the mean stabil-
ity of DMBVS without compromising the full-frame nature
or quality of the stabilized videos.

Please note that the average stability of the adapted
method can be further increased by opting for a higher num-
ber of adaptation iterations and higher weights for the stabil-
ity losses during the adaptation process. In Tab. 2, we only
present the results generated with up to a single adaptation
iteration on each consecutive sequence due to the time com-
plexity and resource limitations. In order to significantly
cut down the time required for adaptation, we observe that
comparable results can be achieved by adapting on a con-
stant number of randomly sampled sequences with a higher
number of adaptation iterations (as evident from Tab. 3).
Furthermore, the quality of the results (as indicated by the
Distortion metric) also suggests that the proposed algorithm

Method Stability 1 ‘ Cropping 1 ‘ Distortion T
L1[18] 0.8661 0.7392 0.9215
Bundled [30] 0.8750 0.8215 0.7781
Adobe Premiere Pro 2020* 0.8262 0.7432 0.8230
StabNet* [39] 0.7422 0.6615 0.8878
Yu and Ramamoorthi et al. [47] 0.7905 0.8592 0.9105
FuSta [31] 0.8037 0.9992 0.9642
Zhang et al.* [48] 0.7481 0.9592 0.9988
DMBVS [1] (baseline) 0.7372 0.9983 0.9189
DMBVS [1] + Adapt{), 0.7532 0.9974 0.9112
DMBVS [1] + Adapt(}), 0.7852 0.9973 0.9461
DMBVS [1] + Adapt}) 0.7760 0.9999 0.9990
DMBVS [1] + Adaptfl',), + recurrent 0.7867 0.9999 0.9818
DIFRINT [7] (baseline) 0.7904 0.9993 0.9438
DIFRINT [7] + Adapt{y), 0.8428 0.9993 0.9587
DIFRINT [7] + Adapt}y, 0.8528 0.9994 0.9596
DIFRINT (7] + Adapt{}) 0.8786 0.9994 0.9569

Table 3. Quantitative Results. The proposed algorithm consis-
tently improves the stability with the increasing number of adap-
tation iterations for both of the considered models. The proposed
algorithm enables DIFRINT [7] to achieve SOTA results with a
single adaptation iteration over all the frame sequences in videos
from the NUS dataset [30]. Please note that the methods proposed
in [39] and Adobe Premiere Pro fail to stabilize some videos;
therefore, their results are averaged over only the stabilized videos.

not only improves the stability but consistently enhances
the quality as well. Please note that employing the itera-
tive strategy proposed in [7] can further enhance the stabil-
ity of the resultant videos. Please refer to the accompanied
supplemental for user studies and other metric results.

6. Conclusion

In this study, we aim to improve full-frame pixel-level syn-
thesis video stabilization solutions by leveraging additional
information available at test time. We introduce a meta-
learning algorithm for this task, enabling rapid adaptation
of model parameters for scenes containing unique motion
profiles. Our proposed algorithm’s versatility is demon-
strated through extensive experimentation on publicly avail-
able models for this task. The proposed algorithm enables
the users to control various aspects of video stabilization
(to an extent), which was previously unattainable for such
models, and shows consistent improvement in both stabil-
ity and quality. The proposed algorithm can be seamlessly
integrated with upcoming pixel-synthesis solutions for this
task without additional parametric or structural changes.
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