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Figure 1. Results of our method for crowded scenes. Bounding boxes of the same color correspond to associated bodies and faces.

Abstract

Image and video analysis requires not only accurate ob-
ject detection but also the understanding of relationships
among detected objects. Common solutions to relation mod-
eling typically resort to stand-alone object detectors fol-
lowed by non-differentiable post-processing techniques. Re-
cently introduced detection transformers (DETR) perform
end-to-end object detection based on a bipartite matching
loss. Such methods, however, lack the ability to jointly detect
objects and resolve object associations. In this paper, we
build on the DETR approach and extend it to the joint de-
tection of objects and their relationships by introducing an
approximated bipartite matching. While our method can gen-
eralize to an arbitrary number of objects, we here focus on
the modeling of object pairs and their relations. In particular,
we apply our method PairDETR to the problem of detect-
ing human bodies and faces, and associating them for the
same person. Our approach not only eliminates the need for
hand-designed post-processing but also achieves excellent
results for body-face associations. We evaluate PairDETR
on the challenging CrowdHuman and CityPersons datasets
and demonstrate a large improvement over the state of the
art. Our training code and pre-trained models are available
at https://github.com/mts-ai/pairdetr

1. Introduction

The detection of objects and their relationships is one of the
key challenges in computer vision. It involves the prediction
of bounding boxes for given object categories and assigning
pairs of detected objects to particular relations.

For example, the detection of human faces and bodies, as
well as the association of them for the same person, is essen-
tial for applications including human-computer interaction
(gestures detection), gaming (in virtual reality), fitness and
sport (from virtual coaching to automated match tracking),
mass market (virtual try-on), and many others.

Person detection is a well-studied problem in computer
vision. However, common approaches often focus on de-
tecting human bodies, faces, and heads in isolation, without
considering relationships among them. Given face and body
detections, typical systems resolve object relations based
on ad-hoc post-processing techniques, such as non-maxima
suppression followed by the matching of overlapping object
bounding boxes.

In this work, we formulate the detection and association
of object pairs as a graph prediction problem. While apply-
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Figure 2. PairDETR extracts embeddings using ResNet-50 followed by a transformer to predict pairs. During training, pairs are matched
with ground-truth and corrected using approximated matching loss.

ing transformer-based set prediction methods would result in
a NP-hard matching problem, we propose an approximated
solution formulated in terms of bipartite matching. We adopt
the Deformable DETR architecture [33] and reformulate it
to predict object pairs releasing PairDETR. Fig 2 illustrates
how our proposed system was trained. For each input image,
we extract the embedding using the ResNet-50 backbone,
followed by an encoder-decoder transformer. For each query,
the decoder predicts a pair that contains information about
the detected body and the associated face, if any.

We validate our method on the popular benchmarks for
pedestrian detection and association, CrowdHuman and
CityPersons. The log-average miss-matching rate mMR-2 is
a metric that was introduced in the BFJ paper [25] to evaluate
the association performance. Our experiments demonstrate
that the proposed method improves association by reducing
the log-average miss-matching rate mMR-2 , while having
comparable results with the models trained only for detection
in terms of AP.

On CrowdHuman, our method achieves 42% mMR-2 ,
which outperforms the state-of-the-art [31] method by 8%
Fig. 1 illustrates a range of difficult scenarios that involve a
variety of body postures, partially visible bodies and faces, as
well as multiple individuals standing in a row. To summarize,
the contributions of our paper are the following:

1. We propose a new end-to-end method for joint pair detec-
tion and association using DETR-based detectors.

2. We show that our method PairDETR achieves state-of-
the-art body-face association results in the CrowdHuman
and CityPersons datasets while maintaining comparable
detection performance, without requiring complex post-
processing techniques.

3. We propose to use approximate bipartite matching to
handle cases with no associations, which allows us to
take advantage of body-head annotations.

2. Related work
Our method is inspired by prior work on transformer-based
methods for object detection and graph prediction as well as
CNN-based models for body-face association.
Transformer-based object detection. DETR [3] propose
to redefine object detection as a set prediction problem.
A feature extractor based on the convolutional neural net-
work (ResNet-50) is followed by an encoder-decoder trans-
former to map embeddings to a fixed set of object-bounding
boxes. During training, the bipartite matching between the
predicted and ground truth object boxes is used to com-
pute the loss for the optimal assignment. Recent follow up
works [12, 17, 24, 27, 30, 33] extend DETR and introduce
several improvements. For example, PED-DETR [12] ad-
dresses pedestrian detection in crowd scenes and modifies
the DETR transformer decoder with rectified attention.

Iter-E2EDET [30] proposes an iterative label assignment,
a relation information extractor and a query update procedure
to refine features of noisy queries. Previous DETR-based
methods mainly aim at object detection and cannot be di-
rectly extended to object detection and association without
additional post-processing. In our work, we build on de-
formable DETR [33] and extend it by adapting the matching
procedure

to handle object pair detection and association.
Inspired by DETR, VectorMapNet [14] addresses au-

tonomous driving and defines the semantic map problem
in terms of a sparse set detection. From multiple input im-
ages and sensor data embedded to the same hyperspace it
predicts the surrounding environment components as a graph
with information about the road, other vehicles and intersec-
tions. MapTR[11] presents a similar approach using RGB
camera images only, the research introduces a permutation-
equivalent modeling for the predicted graph nodes to avoid
the ambiguity and stabilizing the training. More related to
our work, HOTR[8] extends DETR by formulating the de-
tection of human-object interactions as a graph prediction
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problem. HOTR performs pair detection under assumption
that the output is always a pair and the goal is to predict the
relation between two objects from the input image. Similar
to this work, our method also extends DETR and solves the
graph prediction for the face-body detection and association
problem, but does not assume a pair output always and can
handle cases with missing associations in the image (detect
only body if there is no visible face).
Detection and association methods. Prior to DETR, object
detectors such as Faster R-CNN [13, 20] and YOLO [2, 19,
26] were typically based on convolutional feature extrac-
tors followed by decoders with non-maximum suppression
(NMS). Such detectors make predictions using anchors or
grids and require hand-designed post-processing steps. Some
other anchor-free detectors use set-based bipartite matching
losses as proposed in these researches[6][1] or non-unique
assignment rules like RetinaNet [13], CenterNet [32] with
convolutional or/and fully connected layers, but still require
non-differentiable post-processing steps. For this reason, the
extension of such methods to the problem of detecting and
associating object pairs is difficult.

Recent methods for detecting and associating faces and
bodies resort to independent object detection followed by re-
lationship discriminating modules for matching JointDet [4],
or using double anchors RPN to capture the body and face
simultaneously Double Anchor R-CNN, [28].

BFJ [25] proposes an inspiring approach where faces and
bodies are detected separately and then matched using an
embedding matching loss and head boxes as hooks. The
recent BPJ method [31] modifies the YOLO head to handle
the detection of body parts and extends the object represen-
tation to include the center location offsets for the body and
its parts. PETR [23] extends DETR for body parts asso-
ciation to solve human pose estimation problem by using
multiple pose queries trained to estimate a set of full-body
poses refined by a joint detector. Our proposed PairDETR
keeps the end-to-end training property of DETR and extends
DETR by resolving object associations. While we here apply
PairDETR to faces and bodies, our method can generalize to
the detection and association of multiple objects In contrast
to PETR, we suggest an alternative approach for addressing
the tasks of pair detection and association. Instead of em-
ploying multiple queries for joints, pose, and coordinates
as in PETR, our method forecasts pairs for each query indi-
vidually. To accomplish this, we utilized an approximated
bipartite matching loss, which sets us apart from all previous
methods.

3. Method
This section offers a concise overview of the transformer-
based models known as the DETR family. Subsequently, we
present the joint detection and association problem in terms
of graph theory to illustrate why obtaining the matching loss

in polynomial time is not possible. The problem becomes
NP-hard when we blindly extend DETR for graph prediction.
Then, we propose an approximation to map this problem to
simple bipartite matching and the necessary modifications to
Deformable DETR based on the suggested approximation.

3.1. DETR and set prediction models

We begin by briefly reviewing the DETR method, as it in-
troduced a new concept to reformulate the object detection
problem as a set prediction problem. The objective was to
provide an end-to-end object detection baseline that doesn’t
require any hand-designed post-processing like Non Maxi-
mum Suppression.

DETR predicts N boxes b with corresponding class prob-
abilities, where N is higher than the maximum number of
boxes on any image in the dataset. During training, bipar-
tite matching is performed between the predictions and the
ground truth to eliminate false positives and classify them
as the no-object class. The loss is then calculated and propa-
gated back for the matched pairs and the no-object outputs.
The loss function is defined as follows:

L(y, ŷ) =
N∑
i=1

[
− log p̂σ̂(i)(ci) + 1{ci ̸=∅}Lbox(bi, b̂σ̂(i))

]
,

(1)
where p̂ indicates the probability for a particular class, b̂
and b correspond to the predicted and ground-truth bound-
ing boxes in order, c is the target class and, y, ŷ refer to
the ground-truth and the model’s output, respectively. σ̂
is the optimal assignment result from the bipartite match-
ing. − log p̂σ̂(i)(ci) is the weighted cross-entropy loss, and
Lbox(bi, b̂σ̂(i)) consists of the weighted sum of the ℓ1 loss
and GIoU loss [21] between bounding boxes.

3.2. Joint detection and association problem

Graph prediction methods. Representing object detec-
tion as a set prediction problem requires matching between
predictions and ground truth. In DETR, the matching is
one-to-one, resulting in a bipartite matching problem. To
ensure the optimal assignment between each prediction and
ground truth, we can find the minimum matching cost using
the Hungarian algorithm [10], Maximum Matching [18], or
MinCost MaxFlow.

In pair matching, where each node in the ground truth
or predictions is a pair, the same solution for the optimal
assignment remains valid. The only difference lies in the
cost calculation, where instead of considering the cost of
matching one object to another, it considers the total cost of
matching each object in the pairs to their correspondences.

When we address the challenge of linking pairs of ground
truth and predictions, we encounter a situation in which each
node in the ground truth may not always represent an ob-
ject or a pair but can be one or the other. As a result, the
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Figure 3. (a). The left side represents the predictions as pairs, while
the right side shows the ground truth, which has two types of nodes
(pair or a single object). (b) Middle figure represents the graph as
a flow problem. (c) Approximation of the problem as a bipartite
matching using the head annotations

graph is no longer bipartite, as the edges that connect two
pairs are different from those connecting a pair to a single
object. However, for the sake of simplicity, let’s visualize it
as a bipartite graph with two types of edges and nodes. The
ground truth nodes are divided into two types: type A indi-
cates that the node is a (class1 or class2) object, From this
point, we will refer to class1 as µ and for class2 as ν while
type B indicates that the node is a pair (µ-ν). In broad terms,
there will be n different types of nodes, and the graph’s com-
plexity will increase exponentially. To provide a simplified
representation, we will require approximately 2n classes to
predict a graph with nclasses, as further elaborated later on.
In Fig.3(a), we present our graph problem for pair case, the
costs of the red edges correspond to the matching cost of
only one class, while the cost of the black edges represents
the pair-matching cost. We cannot directly apply maximum
bipartite matching because the costs are different. To better
understand the complexity of the problem, we can reformu-
late the graph into a flow problem. As shown in Fig.3 (b), we
can divide each pair node into two nodes: one representing
a pair and the other representing a single object. The edges
between prediction pairs and ground truth pairs will have a
capacity of two because we match two boxes at once, and the
cost is equal to the matching cost of the pair (total of match-
ing each object). If the flow passes through this edge, the
cost is fixed regardless of the flow value. The edge between
two objects alone no association has a capacity equal to one,
and the cost of matching only that object. It is a known graph
problem called FixedCost MaxFlow, but unfortunately this
is an NP-hard problem [7][9]. To overcome this problem, let
us list our graph and the problem properties:
1. While the actual cost value is not a goal, it is important

to minimize the total cost, and determine flow paths.
2. The final flow value is known and is equal to f = 2m+n

where m is the number of target pairs and n is the number
of target objects without pair.

3. The capacities on the graph equal to 1 or 2
The approximate bipartite matching of the previous prob-

lem is based on mapping it to a special case. As stated above,
the capacity values differ between one and two since µ could
be presented in the absence of ν and vice versa. Therefore,
if we can guarantee that µ and ν always exist as a pair, then
the capacity of each edge is identical. Then, the problem
can be presented as a maximum matching problem that is
solvable in O(V E) where V is the number of vertices and
E is the number of edges. From above, if µ or ν is miss-
ing and we can add a representative node of the missing
class to the graph that has similar cost criteria, then we can
approximately map the problem back to being solvable in
polynomial time. Let us name the added nodes as relatively
estimated class µ̂ and relatively estimated class ν̂ for µ and
ν in order. Then we propose our cost as follows:

Cpair = f1 · Cµ + (1− f1) · Cµ̂

+f2 · Cν + (1− f2) · Cν̂ ,
(2)

where f1 and f2 equals one in case it is an original node
and zero in case of a relatively estimated node. The cost
for a particular matched pair follows the costing used on the
Deformable DETR [33]. The generalization of the proposed
approach is as follows: for any fixed-cost MaxFlow problem,
(1) there is a possibility to replace the nodes with other types;
(2) the capacity measurement is unified over all edges; and
(3) the cost of the new edges is obtainable. Using these
principles, we can map the problem to an approximated
maximum matching problem. In our experiments on the
face-body detection and association problem, we used head
annotations as the relatively estimated face when the face
is not visible. We experimentally show in section 4.2 that
head annotations are not necessary and can be replaced by a
geometric approximation.

3.3. PairDETR architecture

We propose architecture that we call PairDETR architec-
ture, inspired by Deformable DETR, an enhanced version of
DETR. Deformable DETR improves upon the slow conver-
gence issue and provides better detection of small objects.

As mentioned in section 3.3, our approximate matching
criteria requires annotations for invisible parts or annotations
similar to visible ones, which we call relatively expected
class annotations. The proposed matching approach requires
the model to predict the relatively expected class when one
of the classes is invisible.

This setup means that the model always recognizes pairs,
even if the face is not visible. Therefore, we need to add an
additional class to indicate that the detected face is a rela-
tively expected face, so the total number of classes is three.
In general, if there are cases where the face is visible and
the body is not, we need to add a fourth class As previously
stated, the number of classes is 2n, where n represents the
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Table 1. Comparison between our model and state of the art on CityPersons dataset. PairDETR outperforms BFJ method on the association
on all scenarios while maintaining comparable mAP results

Model AP face↑ AP body↑ mMR-2

reasonable↓ partial↓ bare↓ heavy↓
RetinaNet + BFJ[25] 36.2 79.3 39.5 41.5 38.5 63.1
FPN + BFJ[25] 68 84.4 32.7 30.6 33.0 53.5
BPJDet-L [31] 61 75.5 26.4 27.7 25.5 46.2
PairDETR (ours) 70.2 84.1 22.22 21.28 22.77 37.83

number of objects that need to be detected and associated.
to distinguish between all cases during inference. The use of
head annotations provides an advantage to our system, as it
enables head detection when faces are not visible, which is
particularly useful in many systems. The proposed method
is not specific to Deformable DETR; it could be extended to
any set prediction model. We chose Deformable DETR as a
benchmark for extending set prediction models for graph pre-
diction without additional box refinement steps in two stages:
Relation Net or hybrid matching [33][30]. We believe that
simplicity reflects the strength of our method.

Following DETR, we predict a fixed number of pairs, and
perform an approximated bipartite matching between the
ground truth pairs and the predicted pairs. The matching
cost is determined by the sum of the costs of body bounding
box matching and face or head bounding box matching. To
solve the linear assignment problem, we use the Hungarian
algorithm, which produces a distinctive match for each pair
based on the ground truth. Finally, we calculate the losses
for each bounding box in the pair independently.

4. Experiments
We first validate that our method outperforms state-of-the-
art methods in terms of association quality. We provide a
detailed ablation of the matcher compared to other approx-
imated solutions and also demonstrate the impact of the
predicted relative points on the performance. We show that
adding the association to Deformable DETR doesn’t affect
the detection performance. We will provide source code for
reproducing the experiments, along with pretrained model
weights.

Datasets. To validate PairDETR , we selected two popular
datasets for pedestrian detection: CrowdHuman [22] and
CityPersons [29]. CrowdHuman consists of 15k images for
training with head and body annotations. It contains a total
of 340k person annotations for invisible or visible body/head
parts , and 4.3k images for validation. BFJ authors [25]
provided supplementary annotations for the faces, which we
used for training to compare with their results. On average,
there are 23 person bounding boxes per image in the dataset.

The CityPersons dataset consists of 500 validation images

and 3k training images with around 19k bounding boxes in
total, and an average of 7 person annotations per image.

Technical details. We train our model with an initial learn-
ing rate of 4 ·10−5 with a step schedule to drop the LR by 0.1
at epoch 40. The model is trained for 50 epochs in total on
six GPUs with batch size of 1 per card. We use the AdamW
optimizer [15] with a weight decay of 0.0001. The model has
been trained in two stages: in the first stage, we used COCO
initial weights to fine-tune our model on the CrowdHuman
without association. The second stage of training uses the
first stage resulting weights as initial weights, freezing the
backbone, and adding the association matcher. We trained
our model with dynamic resizing, where the longest size
is 1400 with padding following COCO transforms for the
CrowdHuman dataset and 2048 × 1024 image size for the
CityPersons dataset.

Statistical significance. To ensure the reproducibility and
stability of our method we trained the model multiple times
on the CrowdHuman dataset with different random seeds,
we were able to get almost the same results: (1) the mean
value for APbody equals to 87.04 and the standard deviation
(std) is 0.043; (2) the mean value for APface equals to 72.55
and the standard deviation is 0.43; (3) the mean value of
mMR-2 equals to 42.7 and the standard deviation is 0.28.

4.1. Comparison with other methods

We pick BFJ and BPJDet as baselines to compare with our
method. BFJ is a strong baseline due to the results on Crowd-
Human and CityPersons datasets, so we choose it as a main
baseline. BPJDet uses a different backbone, significantly
higher image resolution than BFJ, and thus not directly com-
parable neither to BFJ nor to ours. Moreover we concentrate
on the association results and changing the backbone will
directly reflect on the AP results.

In table 1 we present our results against the state of the
art for the CityPersons dataset. Our method outperforms the
BFJ and BPJ methods in mMR-2 with a large gap in all sce-
narios while keeping comparable or higher detection metrics.
It is important to mention that the models are trained with
different image sizes on this dataset: BFJ with 3072× 1536
resolution, BPJ with 1536 × 1536. Also, initial weights
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Table 2. Comparison between Our model and the state of the art on CrowdHuman dataset. Our model outperforms it with 33.3% reduction
to the mMR-2 results in comparison with (1 stage), and 20% reduction in comparison with (2 stages).
*indicates the numbers calculated using our scripts and not mentioned in the original papers.

Model AP face↑ AP body↑ mMR-2 Backbone E2E
reasonable↓ partial↓ bare↓ heavy↓ hard↓ all↓

RetinaNet + BFJ[25] 58.7 80 - - - - - 63.7 ResNet-50 ✗

CrowdDet + BFJ[25] 70.5 90.3 - - - - - 52.3 ResNet-50 ✗

BPJDet-L [31] 81.6 89.5 42.5* 50.58* 34.45* 72.79* 77.30* 50.1 YOLOv5 ✗

FPN + BFJ[25] 69.9 88.7 42.96* 48.2* 37.96* 67.31* 71.44* 52.5 ResNet-50 ✗

FPN + POS[25] 71.1 87.9 55.49* 62.0* 48.2* 80.98* 84.58* 66.4 ResNet-50 ✗

PairDETR (ours) 72.6 87.17 35.25 38.12 30.38 52.47 55.75 42.9 ResNet-50 ✓

of BPJ and PairDETR are trained on COCO, and BFJ on
ImageNet. In table 2 we present our results for the Crowd-
Human dataset. Our method also outperforms the BFJ and
BPJ methods in mMR-2 with a large gap in different splits.

CrowdDet is capable of achieving higher APbody results
due to its use of additional post processing (refinement and
a special set NMS for crowd scenes); without it, the APbody
drops to 87.4% as reported in the paper [5]. Moreover, the
authors of the BFJ [25] provide pretrained weights for the
FPN + BFJ model and not CrowdDet therefore, our extended
comparison and visualization will be held against this model.

As mentioned above, BPJDet-L uses another backbone
and larger images sizes which explains the higher AP re-
sults for CrowdHuman and lower AP results for CityPersons
especially for the face class. One of the main challenges
faced by DETR-based methods is detecting small objects. To
analyze this issue, we split the data into small-medium and
large body bounding boxes using the standard thresholds,
and compare our method with BPJDet on CrowdHuman.
Our method has demonstrated superior performance in all
scenarios in association, despite having a different backbone
and resolution compared to BPJDet. Specifically, it has
shown better association results and more accurate detection
outcomes for the large split. In table 3, we report AP and
mMR-2 results for our model against BPJDet for the large
split. For more qualitative results and computational effort
comparison we refer the reader to supplementary material.

Table 3. Comparison between our model and BPJ method in terms
average precision and miss-matching rate for large body bounding
boxes larger than 96x96 pixels with their corresponding faces.

Model AP face ↑ AP body↑ mMR-2 ↓
BPJDet-L[31] 90.89 90.17 53.81
PairDETR (ours) 89.65 93.14 41.31

Detailed mMR-2 Comparison. We have followed the BFJ
way of calculating the mMR-2 : (1) The face and body IoU
with ground truth are higher than 0.5; (2) the two boxes (face

and body) on the ground truth belong to the same person. For
a detailed comparison of the mMR-2 values, we have used
the visibility threshold to split the dataset into (reasonable,
bare, partial, heavy, and hard) with the following visibility
ranges (0.65:1, 0.9:1, 0.65:0.9, 0:0.65, 0:0.5).

In Fig. 4, we show some examples of how our model
works in comparison with the baselines BFJ and BPJ in
difficult scenarios: (1) when the face is barely visible; (2)
when the scene is crowded with intersections between bodies;
and (3) when there is only face visible (people in front of
each others). In Fig. 1 we show how our model performs
over different challenging scenarios.

4.2. Ablation

For the ablation study, we concentrate on three main points:
(i) the effect of adding associations to the detection re-
sults; (ii) the matching approximation impact on the AP
and mMR-2 outcomes is assessed by comparing it to various
other approximations for the matching cost; (iii) the effect
of the adaptive relative points.

Detection results with/without association. As shown
in Table 4, Deformable DETR achieves APbody 86.5% and
APface 72.2% without association on the CrowdHuman
dataset. After adding association, we gain 0.4% for APface
and 0.6% for APbody. The addition of association in the
model has led to a slight improvement in its performance,
which suggests that extending DETR-based models for pairs
detection or graph prediction can maintain good performance
for more complex tasks. Furthermore, it indicates that using
recent DETR-based models can enhance the detection and
association for this particular task.

The matching method impact on AP and mMR-2 results.
We have tried different approximations for the matching
problem mentioned in Section 3.2. The results illustrate that
our method outperforms all other approximations, as shown
in table 5. The concept of body approximation involves eval-
uating the cost of aligning body predictions with the actual
ground truth, disregarding the presence of the face when it
is not visible, and then doubling the body cost to serve as
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Figure 4. Visual comparison between our method, BFJ and BPJ, we choose these images from the validation set with partially visible faces
and crowd scenes, to show the robustness of our method.

Table 4. Comparison between different runs specification for our
model. Adding association enhanced the APface by 0.4% and APbody

by 0.6%.

Association training stage APface↑ APbody↑ initial weights

✗ 1 71.4 85.9 COCO
✗ 2 72.2 86.5 stage1
✓ 2 72.6 87.1 stage1

the flow value for the pair. This approach was influenced by
the work of [9]. The basic approximation suggests that we
treat the pair flow as equal to one, transforming our problem
into a maximum matching problem in line with the conven-
tional object detection method, DETR. The cost formulas
are similar to the body approximation, but without doubling
the body cost. For a detailed comparison with visualization,
we refer the reader to supplementary material. Based on our
findings, it appears that our proposed method outperforms
other approaches when it comes to estimating the matching
cost, as there is a significant difference in the results ob-
tained. Additionally, our Basic and Body approximations

Table 5. Comparison between different matching approximations,
our approximation outperforms other methods on both AP and
mMR-2

Matching method APface↑ APbody↑ mMR-2 ↓
Basic 71.4 84.26 45.29
MinCost MaxFlow 61.5 80.3 76.9
Body Approximation 68.4 86.05 48.67
Head Approximation 72.6 87.1 42.9

were also able to surpass the current state-of-the-art in terms
of association performance.

Impact of relative point locations. We conduct exper-
iments on the relative points of the deformable attention
and find that using them adaptively achieves the best results.
Rather than predicting a fixed relative point for each object
(face or body), we predict the face relative point for face-
body pairs and the body relative point for head-body pairs.
This enables us to obtain sampling locations from the de-
formable attention layer, where the output of the model is
still an offset for both with respect to the dynamic relative
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point. For a better understanding of the relative points influ-
ence on the results, we perform the following experiments
(Table 6):
1. Relative points only for the body: we predict the body

location as an offset of the predicted relative points; the
same is true for the face, but the sampling location was
calculated with respect to the body.

2. Relative points for the face only: same as the previous
one, but vice versa offsets for the face and body, but the
sampling location calculated with respect to the face.

3. Adaptive relative points: both (body and face) are pre-
dicted as an offset of a single reference point, and the
sampling location is calculated adaptively for face when
the pair is face-body and for body when the pair is head-
body.

For a detailed comparison with visualization, we refer the
reader to supplementary material. Our findings indicate that

Table 6. Comparison between different relative points usage, the
adaptive method outperforms other methods on the mean AP and
mMR-2

Relative point APface↑ APbody↑ mMR-2 ↓
body 62.4 88.3 47.57
face 68.7 87.6 43.9
face and body 66.1 85.5 45.18
pair adaptive 72.6 87.1 42.9

the choice of reference points plays a significant role in
determining the outcomes of experiments. To improve the
generalizability of this approach, future experiments could
explore modifying the deformable attention mechanism to
handle multiple reference points per query. However, using
a single reference point for objects that are close to each
other can be advantageous in reducing the mMR-2 for this
specific task.
Training with body-relatively expected face annotations:

In order to approximate the cost without using head
annotations and achieve similar results, we can generate
expected faces for the body. These expected faces are
generated for pairs where the face is not visible, and are
based on the square centered on the top edge of the body
annotations, with a fixed ratio α of the body width. We have
chosen α to be equal to 0.3. Approximating the missing
annotation of invisible parts can also be done with a simple
linear regression. As long as the cost mapping is correct,
the approximation works. All of our previous experiments
were done using head annotations, but as we mentioned
above, the use of head annotations is not unavoidable. We
trained our model with the same hyper-parameters and
environment by replacing the head annotation with a body
relatively expected face annotation generated as described
in 3.3, and we were able to obtain almost the same results

shown in Table 7. This experiment confirms that there is no

Table 7. Comparison between training using original head annota-
tion against body-relatively expected generated annotations

body-relatively expected annotations APface↑ APbody↑ mMR-2 ↓
✗ 72.6 87.1 42.9
✓ 72.9 87.1 42.8

necessity for additional annotations for the approximated
bipartite matching loss, provided we can identify a method
to substitute it with fabricated dummy values.

4.3. Limitations

PairDETR shows strong performance for pair detection and
association. We trained and evaluated it against two open-
source datasets. PairDETR built on top of Deformable
DETR, which uses deformable attention layers taking only
one relative point per query, making it hard to extend the
current approach to graph prediction. Using the DETR ar-
chitecture could solve the issue, but it would suffer from
slow convergence and weakness against small object de-
tection and association. Although the recently introduced
RT-DETR[16] can help address the challenge of small ob-
jects, it is beyond the scope of our paper as our focus is on
exploring associations and developing a new approach to
enhance DETR-based models for more intricate tasks. One
way to extend the method for graph detection is by support-
ing multi-reference points with deformable attention, but
it would still suffer from the problem that the number of
classes will grow exponentially. The proposed method needs
extra annotations for invisible parts or objects or relatively
generated annotations. Therefore, if we cannot obtain or
generate such annotations, the method will be limited to
other matching approximations.

5. Conclusion

We presented PairDETR, an extended version of Deformable
DETR, for end-to-end detection and association based on
approximated bipartite matching loss for graph prediction.
The proposed method outperforms the state-of-the-art results
for association while maintaining comparable detection re-
sults to other methods on the challenging CrowdHuman and
CityPersons datasets. Our proposed approximation for the
NP-hard problem is scalable and can handle not only pairs
but also multi-object associations. The proposed approx-
imation is a step forward into more appropriate solutions
for graph prediction problems, including landmark detec-
tion, object detection and association, and many other vision
tasks.
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