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Figure 1. Radiance field reconstruction using eye reflections. The human eye is highly reflective. We show that from a sequence of
frames that capture a moving head, we can reconstruct the radiance field and render the scene of what the person is observing using only
the reflections off their eyes.

Abstract

The reflective nature of the human eye is an underappre-
ciated source of information about what the world around
us looks like. By imaging the eyes of a moving person, we
capture multiple views of a scene outside the camera’s di-
rect line of sight through the reflections in the eyes. In this
paper, we reconstruct a radiance field beyond the camera’s
line of sight using portrait images containing eye reflec-
tions. This task is challenging due to 1) the difficulty of ac-
curately estimating eye poses and 2) the entangled appear-
ance of the iris textures and the scene reflections. To address
these, our method jointly optimizes the cornea poses, the ra-
diance field depicting the scene, and the observer’s eye iris
texture. We further present a regularization prior on the iris
texture to improve scene reconstruction quality. Through
various experiments on synthetic and real-world captures
featuring people with varied eye colors, and lighting con-
ditions, we demonstrate the feasibility of our approach to
recover the radiance field using cornea reflections.

*Equal contribution

1. Introduction

The human eye is a remarkable organ that enables vi-
sion and holds valuable information about the surrounding
world. While we typically use our own eyes as two lenses
to focus light onto the photosensitive cells composing our
retina, we would also capture the light reflected from the
cornea if we look at someone else’s eyes. When we use
a camera to image the eyes of another, we effectively turn
their eyes into a pair of mirrors in the overall imaging sys-
tem. Since the light that reflects off the observer’s eyes
share the same source as the light that reaches their retina,
our camera can form images containing information about
the surrounding world the observer sees.

Prior studies have explored recovering a panoramic im-
age of the world the observer sees and simple 3D struc-
tures like boxes that the observer is looking at from man-
ually specified correspondences from a single image of two
eyes [27, 28]. Follow-up works have further explored ap-
plications such as personal identification [10, 29], detecting
grasp posture [53], focused object estimation [40], illumina-
tion estimation [48], and relighting [26]. Given the recent
advancements in 3D vision and graphics, we wonder: Can
we do more than reconstruct a single panoramic environ-
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ment map, simple 3D structures, or recognize patterns? Is
it possible to recover the 3D world seen by the observer?

In this paper, we answer these questions by reconstruct-
ing a radiance field from a sequence of eye images. We start
from the insight that our eyes capture/reflect multi-view in-
formation as we naturally move our heads. We draw in-
spiration from the classical imaging formulation proposed
by [27] and integrate it with the recent advances in radi-
ance field reconstruction spearheaded by Neural Radiance
Fields (NeRF) [21], which prior work has demonstrated can
achieve high-quality view synthesis.

However, while conceptually straightforward, recon-
structing a NeRF from eye images is extremely challeng-
ing in practice. The first challenge is to separate the cornea
reflections from the iris textures of human eyes. Unlike the
clear images of the scene typically assumed in standard cap-
tures, the eye images we obtain are inherently blended with
iris textures. This composition disrupts the pixel correspon-
dence and complicates the reconstruction process. The sec-
ond challenge is cornea pose estimation. Unlike the stan-
dard NeRF capture setup, which requires a moving cam-
era to capture multi-view information (often followed by
camera pose estimation), our approach employs a station-
ary camera and extracts the multi-view cues from eye im-
ages under head movement, as shown in Figure 2. Thus,
we need to estimate the 3D positions and orientation of the
eyes accurately from image observations. However, this is
difficult because of how small the eyes are in portraits.

To address these challenges, we repurpose NeRF for
training on eye images by incorporating two crucial com-
ponents: a) iris texture decomposition, which leverages a
simple radial prior to facilitate separating the iris texture
from the radiance field for the scene, and b) 6DoF cornea
pose refinement, which enhances pose estimation accuracy
despite the challenges of the small size of eyes.

To evaluate the performance and effectiveness of our ap-
proach, we generate a synthetic dataset of a complex indoor
environment with images that capture the reflection from a
synthetic cornea with realistic iris texture. We further im-
plement a real-world setup with multiple objects to capture
cornea images. We conduct extensive experiments on syn-
thetic and real-world captured eye images to validate several
design choices.

Our primary contributions are as follows:
• Radiance field recovery from eyes. We present a

method for reconstructing radiance fields of the ob-
server’s world from eye images, integrating earlier foun-
dational work with the latest advancements in neural ren-
dering.

• Cornea pose refinement and analysis. We incorporate
a cornea pose refinement to correct the initial noisy pose
estimates of the eyes. Using a synthetic dataset, we evalu-
ate the sensitivity to pose errors and the necessity of pose

Moving cameras (Outside camera view)

Fixed camera Moving person

(a) NeRF Setup (b) Our Setup
Figure 2. NeRF for non-line-of-sight scene. The typical NeRF
capture setup requires multiple posed images (e.g., captured from
a moving camera) for reconstruction. In our setup, we gather
multi-view information of the scene through light reflected from
the eyes of a moving person.

optimization for improved view synthesis results.
• Radial prior for irises. We introduce a radial prior for

iris texture decomposition in cornea images, improving
the quality of the reconstructed radiance field.

These advancements extend the current capabilities of radi-
ance field reconstruction through neural rendering to han-
dle partially corrupted image observations obtained from
eye reflections, opening up new possibilities for research
and development in the broader area of accidental imag-
ing [6, 15, 38, 43] to reveal and capture 3D scenes beyond
the visible line-of-sight.

2. Related Work

Corneal imaging. Imaging techniques that use the corneas
as mirrors fall under the more general category of cata-
dioptric imaging. Catadioptric imaging techniques use a
combination of lenses and mirrors to capture images. The
word catadioptric is derived from catoptrics (related to the
Greek words for specular and mirrors) and dioptrics (re-
lated to an Ancient Greek lens-like instrument). In essence,
catadioptric imaging seeks to leverage an additional (often
curved) mirror to expand a lens-based imaging system’s ef-
fective field of view. Early studies in catadioptric imaging
focused primarily on the design of the mirror profiles and
their impact on the final image quality. Prior work [2] stud-
ied three design criteria of a catadioptric imaging system:
1) the shape of the mirrors, 2) the resolution of the cameras,
and 3) the focus settings of the cameras. Prior work has also
demonstrated that it is possible to extract depth information
from multiple views captured using a catadioptric system
by extending classical depth-from-stereo ideas [24, 25].

Moreover, a creative way to realize an accidental cata-
dioptric imaging system is by treating human eyes as exter-
nal curved mirrors [27, 28]. The seminal work by Nishino
and Nayar [27, 28] shows that it is possible to recover ba-
sic 3D structures like box meshes from manually specified
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pixel correspondences in the reflections in the eyes in a sin-
gle image and the epipolar geometry that relates the two
eyes. Other applications of using human eyes as part of
the imaging system include estimating light direction from
the eyes to perform relighting [26, 44], calibration and gaze
tracking in head-mounted displays [23, 35], and calibration
of display camera systems [30]. Our work advances the
prior work on scene reconstruction from eye images by 1)
reconstructing a radiance field, which enables new applica-
tions such as novel view synthesis and 2) removing the iris
texture from scene reconstruction.

Neural radiance field. Neural radiance fields (NeRF) [21]
represent a milestone in novel view synthesis. NeRF adopts
differentiable volume rendering to represent a 3D scene and
uses neural networks to learn the density and color of each
scene point. Following the success of NeRF, a plethora of
follow-up works have been introduced to improve its ren-
dering quality [3, 4], ability to handle scene dynamics [19,
32, 33, 36], inaccurate camera poses [5, 14, 20, 34, 49],
and rendering speed [1, 22, 51]. Our work uses NeRF to
parametrize the unknown scene we wish to recover from
eye reflections. In particular, we modify the training frame-
work from nerfstudio [41] to implement the NeRF-based
scene reconstruction. Our input images are captured at a
fixed viewpoint, differing from the typical NeRF setup that
requires multi-view posed images.

Reflection removal. Removing reflections from captured
images is a longstanding computational photography prob-
lem. The related literature on this topic can be summarized
into two main categories: multi-frame and single-image.
Multi-frame reflection removal methods [8, 17, 18, 39, 50]
often exploit the differences of motion patterns between
the background and reflection layers and impose various
image priors as regularization. Single-image reflection re-
moval methods exploit visual cues available in a single im-
age, such as depth-of-field [13, 47], defocus-disparity [37],
or learned image features [54]. More recently, various
NeRF-based methods have studied how to accurately model
and extract specular reflections from shiny or metallic ob-
jects [7, 42, 46, 52]. Nerfren [9] demonstrates that by fit-
ting two NeRFs to model the reflection and transmittance
components of the scene separately, reflections from planar
surfaces like mirrors can be removed and re-rendered as a
separate 3D scene. Our work differs from prior work on
reflection removal with NeRF like Nerfren by regularizing
the reconstruction of the diffuse color the human eye using
a radial symmetry prior. Prior work has also focused on
removing reflections, specifically from eyes, by exploiting
the fact that the iris texture tends to be constant radially to
design a radial autocorrelation prior [48]. Our work also
differs from prior work on reflection removal from eyes by
using a radial symmetry prior instead of the radial autocor-
relation prior.

ℎ
𝑧

𝑦
𝑥

pupil𝑟!"!#

Cornea

Iris

Figure 3. Cornea geometry. The cornea size and shape is uniform
across all healthy humans. It can be modeled as an ellipsoid, with
eccentricity of 0.5, and curvature of 7.8mm. The key fact that we
exploit is that radius of the base riris is approx. 5.5mm, and the
height of the cornea h is 2.18mm.

Non-line-of-sight imaging. Non-line-of-sight (NLOS)
imaging aims to recover images of objects that are not di-
rectly visible by using light reflected off visible surfaces.
Active NLOS imaging techniques involve using controlled
light sources, such as time-of-flight sensors, to reconstruct
the hidden scene [45]. Passive NLOS imaging, on the other
hand, exploits natural or ambient light and does not require
a controlled light source. Several works analyze the inten-
sities changes on corner regions [6] or a blank wall [38]
and reveal information about the hidden scene. Thermal re-
flections have been used to reconstruct the 3D body pose
of non-line-of-sight humans [15]. Orca [42] uses reflec-
tions from a glossy object observed in multi-view images
to train a NeRF for the surrounding environment. Unlike
Orca, which relies on images captured with a moving cam-
era while the “mirror” object is fixed, our method works for
a stationary camera and uses the natural movement of the
human eye “mirrors”, which is visualized in Figure 2.

3. Background: Eye Model
The geometry of the human eye has been extensively stud-
ied [31] and is well known. The known eye geometry pro-
vides a strong prior to model the camera ray interactions
with the eye in closed form. The major components that are
visible in the eye are: the sclera; which is the white region
of the eye, and the cornea; which includes the iris and the
pupil. The cornea is covered by a thin film of tear fluid,
making it highly reflective. As noted by Nishino and Nayar
[27], since the cornea can act as a mirror, the combination
of a camera and the cornea resembles a catadioptric sys-
tem. In our work, we follow the same eye model adopted
by Nishino and Nayar [27] for the geometry we assume for
the eye.

The eye is modeled as a section of an ellipsoid, as illus-
trated in Figure 3, which can be described using

(1− e) z2 − 2Rz + r2 = 0 (1)

where e is the eccentricity, R is the radius of the curvature at
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Figure 4. Joint optimization of radiance field and iris texture. We trace rays that bounce off the cornea to render the scene using volume
rendering. Additionally, we model the iris texture as a 2D neural field Φ whose input is the intersection of the casted ray from the camera
and the cornea plane and add it to the rendered color from the radiance field to estimate the cornea measurement and compute the loss
against the ground truth cornea measurement to optimize all the neural fields. To ensure that the scene is not absorbed into the iris texture,
we regularize the texture field Φ with a radial loss Lradial that encourages the estimated texture to maintain a rotational consistency.

(a) Eye localization with GroundingDINO (b) Ellipse fitting with ELLSeg (c) Iris segmentation with SAM

Figure 5. Data processing pipeline. To compute the iris ellipse parameters, we first obtain eye bounding boxes using GroundingDINO
[16] and then conduct ellipse fitting using ELLSeg [12]. Since we only want to use the visible regions of the cornea in our radiance field
optimization, to handle occlusion, we generate a segmentation mask of the iris from the approximated cornea ellipse using SAM [11].

the apex, and r2 = x2 + y2. For an adult with healthy eyes,
on average the eccentricity e is about 0.5 and curvature R is
about 7.8 mm, and the radius at the base of the cornea riris
is approximately 5.5 mm with a height h of 2.18mm. As in
the prior work [26], we leverage the fact that humans have a
known eye size to compute the average depth of the cornea
in 3D by using the camera focal length f and the radius in
image space rimg in the weak perspective equation:

depthavg = riris
f

rimg
. (2)

that we use to initialize our estimate of the cornea position
in our reconstruction pipeline. The initial pose is further
refined, under correct perspective projection, during recon-
struction using an optimization procedure that will be dis-

cussed more later. To compute the ray reflection direction,
we need to compute the cornea’s normal at the intersection
point. Here the normal can be computed in closed form us-
ing ellipsoid equation Eq. 1:

−→n (x, y, z) = ⟨2x, 2y, 2 (1− e) z − 2R⟩ , (3)

which we use with the standard reflection equation to reflect
the camera rays off the cornea. However, since the cornea
is not a perfect mirror, we need to consider the transmitted
rays that hit the iris and pupil. For simplicity, we model the
iris and pupil as a flat and round plane directly behind the
cornea. We can thus compute the hit points onto the iris via
the camera ray-iris plane intersection.
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Figure 6. Pose optimization quantiative eval. We evaluate the effects of pose optimization in simulation against various noise levels on
the quality of synthesized views and the accuracy of recovered poses. For the XY and Z estimation plots, the x-axis represents the percent
error in the estimated quantity relative to the true iris radius in pixels.
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Figure 7. Texture Decomposition Ablation. We show that using
a neural field to decompose the iris texture from the reflection im-
proves reconstruction performance.

4. Method

Radiance field from reflection. One can train a radiance
field by minimizing the photometric loss between ground
truth pixel values from captured images and the rendered
color. Each pixel color is computed through volume render-
ing using the color and density values of the sampled points
along a camera ray. The ray associated with a pixel starts
from the camera origin, denoted by O, and the viewing di-
rection, denoted by

−→
d .

However, in our setup, what we are interested in recon-
structing the radiance field of the scene reflected from the
person’s eyes. In Figure 4, we illustrate how we use the
rays reflected from the eye. The reflected ray starts with the
origin where the camera ray intersects with the cornea at O′,
and in the direction of the reflected ray

−→
d′ instead of using

O and
−→
d . We compute the reflected ray explicitly using the

standard reflection equation:
−→
d′ =

−→
d − 2

(−→n ·
−→
d
)−→n , (4)

where −→n is the normal at the hit point O′. Since we model
the cornea geometry as an ellipsoid, we directly compute
the hit points and normals using closed-form ellipsoid ray
intersection formulas.

Iris texture decomposition Since the target images are
the scene reflections off the cornea, training NeRF naively
leads to poor view synthesis results as the cornea images
contain both reflection (scene) and transmittance (iris tex-
ture) components. To recover only the scene in the radiance
field, we jointly optimize a 2D field Φ to model the iris tex-
ture. The iris texture remains constant across the different
views while the person moves, while the scene reflections
vary. We thus use a texture field shared across input im-
ages. Since we model the iris as a flat, round plane behind
the cornea, we can directly compute the 2D coordinate on
the iris plane by performing ray-plane intersection in 3D.

However, when a part of the scene does not display con-
siderable motion across the training views (e.g., limited
head motion of the subject), parts of the scene can be “ab-
sorbed” as part of the iris texture instead of the scene. To
resolve this issue, we propose a radial regularization that en-
courages radial symmetry of the recovered texture. The iris
is far from being perfectly rotationally symmetric. How-
ever, our observation is that as we rotate the iris, the color
variance is small. We use this observation to regularize the
colors we learn with the iris texture by penalizing the pix-
els that are rotationally inconsistent. At each step, for each
point p, we empirically estimate the distribution of colors
of the ring, by computing the average color µr and the stan-
dard deviation σr of the color ring. We then compute the
range of the 10th and 90th percentile colors [c10, c90]. We
only penalize the model to match the mean if a point’s color
falls outside of [c10, c90] by at least a standard deviation.

Lradial(p) =


ℓ2(Φ (p) , µr) cp − σp > c90

ℓ2(Φ (p) , µr) cp + σp < c10

0 otherwise
(5)

Cornea pose optimization Due to the small cornea size
in the captured images, the cornea pose and normals esti-
mate inevitably have some errors. Training with the erro-
neous poses significantly affects the radiance field recon-
struction’s quality. To alleviate the pose errors, we optimize
the 6DoF pose of each cornea. For each cornea, we opti-
mize for a transformation matrix T = [R, t] ∈ SE(3), where
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Novel view rendering
Figure 8. Additional real results. We show that our method works in a variety of capture conditions, like smaller objects as in the small
plant on the top row, and varying eye colors.

R ∈ SO(3) and t ∈ R3 denote the rotation and translation,
respectively. We optimize the cornea poses during training
similar to prior work on training NeRF with noisy poses
[14, 20, 49], simultaneously with the iris texture recovery
and radiance field reconstruction. We initialize the trans-
lation component of the cornea poses using Equation 2 as
Z = depthavg, X = x(Z/f), Y = y(Z/f), where x and y
are the normalized image coordinates of the eye center and
f is the focal length of the camera. We initialize the rota-
tion component of the cornea poses to the identity matrix.
In section 5.1 we analyze how the pose optimization helps
improve the novel view synthesis and ground truth eye pose
recovery in a synthetic setup, and analyze its sensitivity to
varying noise levels.

5. Experiments

5.1. Synthetic data evaluation

We generate synthetic data in Blender with eye models
placed in the scene. Since we cannot estimate the cornea
poses perfectly in real captures, we evaluate the robustness
of our cornea pose optimization to the noise in the estimated

cornea radius/position. We study the possible noise sources:
1) the eye center estimation, 2) the iris radius estimation,
and 3) the eye rotation initialization separately. To evalu-
ate the sensitivity of our pipeline to the eye center estima-
tion,we corrupt the observed cornea center x coordinate and
y coordinate for each imaging by scaling them with varying
noise levels, which results in errors in the X and Y coor-
dinates in the 3D poses of the corneas. For iris radius esti-
mation, we corrupt the observed iris radius for each image
by scaling the estimated radius with varying noise levels,
which results in errors in the Z coordinate in the 3D poses
of the corneas. For the eye rotation initialization, we ini-
tialization the true rotation of the cornea in simulation with
a small amount of rotation noise. We compare the recon-
struction quality and pose recovery accuracy at five noise
levels for each noise source, across five different scenes,
and with and without pose optimization. The quantitative
results are summarized in Figure 6. Our experiments show
that our reconstruction pipeline can tolerate about 1% er-
ror in the initial eye center estimate, 2.5% error in the ini-
tial radius estimate, or 5 degrees of rotation error, before
quality starts to degrade significantly and pose recovery be-
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Reconstructed scene Subject POV Eye crop Capture setup

Figure 9. Captures without structured lighting. We show our method on an indoor office space scene and an outdoor scene in a field
using natural light, and demonstrate that we can recover the scene from the eye reflection successfully without controlled illumination.
Note that the photographer is also visible in the background.

comes intractable. Furthermore, we show quantitative com-
parisons of our method with and without iris texture decom-
position in Figure 7. Our method performs better in terms
of SSIM and LPIPS with texture decomposition than with-
out. Notably, we do not compute PSNR because in our set-
ting there is a drastic difference in intensities between the
reflection and the scene itself. In the project webpage, we
include synthesized novel views of our reconstructions of
the synthetic scenes.

5.2. Real-world experiments

We describe capturing real-world images and demonstrate
the effectiveness of our method on real captures.

Image capture. To maintain a realistic field of view, we
capture images with a field of view that matches a standard
portrait capture where the entire head is visible within the
frame. We test our method with various illumination con-
ditions, ranging from structured scenes with bright external
lights, to unstructured indoor and outdoor settings with nat-
ural lighting. We ask the person to move within the cam-
era’s field of view and capture 5-15 frames per scene. We
captured the images using a Sony RX IV camera as RAW
16-bit photos and post-processed the images using Adobe
Lightroom to reduce the noise in the cornea’s reflection. We
vary the illumination brightness and the reflected object size
for a comprehensive evaluation.

5.2.1 Data processing

We estimate the cornea’s center and radius on images to
get an initial estimate of the cornea’s 3D location. Once we
have the radius, we can directly approximate the cornea’s
3D location using the average depth from Eq. 2 and
the camera’s focal length, and also compute its surface
normals using Eq. 3. To automate the process, we locate
the eyes bounding boxes using Grounding Dino [16] and
then use ELLSeg [12] to perform ellipse fitting for the iris.
While the corneas are typically occluded, we only need the
unoccluded regions, so we obtain a segmentation mask for
the iris using Segment Anything [11].

5.2.2 Results from real captures

Using our captured images, we show that our method en-
ables the reconstruction of radiance fields from real-world
portrait captures despite the cornea location and geometry
inaccuracies that may arise in the real world. In Figures 1
and 8, we run our method in a controlled setting with ex-
ternal area lights and object-centric scenes to evaluate the
best possible performance by our method and its general-
ization to the real-world results. In Figure 9 we show that
our method can work even without controlled illumination.
We find that pose optimization is the most critical compo-
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No texture field No pose optim.

Full method Full method

Figure 10. Ablating texture decomposition and cornea pose op-
timization. Left: not decomposing the iris texture can introduce
artifacts in the reconstruction. Right: pose optimization is the most
critical component for our method to reconstruct the scene.

nent for a coherent reconstruction. Our finding validates
sensitivity analysis of error in cornea poses shown in Sec-
tion 5.1. In Figure 10, by ablating the cornea pose
optimization and texture decomposition from our method,
we demonstrate that both cornea pose optimization and tex-
ture decomposition are necessary for successful scene re-
construction. The initial cornea pose estimation is noisy be-
cause the blurriness of the cornea boundary makes it chal-
lenging to be localized precisely in the image, as shown in
Figure 11. In Figure 10 we show the rendered radiance field
with and without the iris texture decomposition. We notice
significantly more floaters when not explicitly modeling the
texture. Furthermore, Figure 11 demonstrates that the ra-
dial regularization improves the reconstruction by prevent-
ing scene regions with limited disparity of getting absorbed
into the learned iris texture.

5.3. Limitations

Our work demonstrates the feasibility of reconstructing the
3D world only from eye reflections. Our current real-world
results are from a “laboratory setup”, such as a zoom-in cap-
ture of a person’s face, and deliberate person’s movement.
We believe more unconstrained settings remain challenging
(e.g., video conferencing with natural head movement) due
to lower sensor resolution, compression, and motion blur.

No Lradial With Lradial

Figure 11. Ablating radial regularization. Without radial regu-
larization, the reconstructed iris texture contains parts of the scene
with low disparity among observed views.

6. Conclusions

By leveraging the reflections of light off human eyes, we de-
velop a method that reconstruct the scene observed by a per-
son using monocular image sequences captured at a fixed
camera position. We demonstrate that naively training a ra-
diance field on the observed reflections is insufficient due to
several factors: 1) the inherent noise in cornea localization,
2) the complexity of iris textures, and 3) the low-resolution
reflections captured in each image. To address these chal-
lenges, we introduce cornea pose optimization and iris tex-
ture decomposition during training, aided by a radial tex-
ture regularization loss based on the nature of the human
iris. We validate the design choices with synthetic data and
showcase view synthesis results from real-world captures of
varying difficulty, including cases with and without external
light and outdoor setting. With this work, we hope to inspire
future explorations that leverage unexpected, accidental vi-
sual signals revealing information about the world around
us, broadening the horizons of 3D scene reconstruction.
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Frédo Durand, Gregory W. Wornell, Antonio Torralba, and
William T. Freeman. Turning corners into cameras: Princi-
ples and methods. In ICCV, 2017. 2, 3

[7] Akshat Dave, Yongyi Zhao, and Ashok Veeraraghavan. Pan-
dora: Polarization-aided neural decomposition of radiance.
In ECCV, 2022. 3

[8] Kun Gai, Zhenwei Shi, and Changshui Zhang. Blind separa-
tion of superimposed moving images using image statistics.
IEEE TPAMI, 2012. 3

[9] Yuan-Chen Guo, Di Kang, Linchao Bao, Yu He, and Song-
Hai Zhang. Nerfren: Neural radiance fields with reflections.
In CVPR, 2022. 3

[10] Rob Jenkins and Christie Kerr. Identifiable images of by-
standers extracted from corneal reflections. PloS one, 8(12):
e83325, 2013. 1

[11] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and
Ross Girshick. Segment Anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2023. 4, 7

[12] Rakshit S Kothari, Aayush K Chaudhary, Reynold J Bailey,
Jeff B Pelz, and Gabriel J Diaz. Ellseg: An ellipse segmenta-
tion framework for robust gaze tracking. IEEE Transactions
on Visualization and Computer Graphics, 2020. 4, 7

[13] Yu Li and Michael S. Brown. Single image layer separation
using relative smoothness. In CVPR, 2014. 3

[14] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields.
In ICCV, 2021. 3, 6

[15] Ruoshi Liu and Carl Vondrick. Humans as light bulbs: 3d hu-
man reconstruction from thermal reflection. In CVPR, 2023.
2, 3

[16] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun
Zhu, et al. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499, 2023. 4, 7

[17] Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu
Chuang, and Jia-Bin Huang. Learning to see through ob-
structions. In CVPR, 2020. 3

[18] Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu
Chuang, and Jia-Bin Huang. Learning to see through ob-
structions with layered decomposition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(11):8387–
8402, 2021. 3

[19] Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu
Tseng, Ayush Saraf, Changil Kim, Yung-Yu Chuang, Jo-
hannes Kopf, and Jia-Bin Huang. Robust dynamic radiance
fields. In CVPR, 2023. 3

[20] Andreas Meuleman, Yu-Lun Liu, Chen Gao, Jia-Bin Huang,
Changil Kim, Min H. Kim, and Johannes Kopf. Progres-
sively optimized local radiance fields for robust view synthe-
sis. In CVPR, 2023. 3, 6

[21] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2, 3

[22] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics,
2022. 3

[23] Atsushi Nakazawa and Christian Nitschke. Point of Gaze
Estimation through Corneal Surface Reflection in an Active
Illumination Environment. In ECCV, 2012. 3

[24] S. K. Nayar. Sphereo: Determining depth using two spec-
ular spheres and a single camera. In Proceedings of SPIE
Optics, Illumination, and Image Sensing for Machine Vision
III, pages 245 – 254, 1989. 2

[25] S.A. Nene and S.K. Nayar. Stereo with mirrors. In ICCV,
1998. 2

[26] Ko Nishino and Shree K. Nayar. Eyes for relighting. SIG-
GRAPH, 2004. 1, 3, 4

[27] Ko Nishino and Shree K. Nayar. The World in an Eye.
CVPR, 2004. 1, 2, 3

[28] Ko Nishino and Shree K. Nayar. Corneal Imaging System:
Environment from Eyes. IJCV, 2006. 1, 2

[29] Ko Nishino, Peter N. Belhumeur, and Shree K. Nayar. Using
eye reflections for face recognition under varying illumina-
tion. In ICCV, 2005. 1

[30] Christian Nitschke, Atsushi Nakazawa, and Haruo Take-
mura. Display-camera calibration from eye reflections. In
2009 IEEE 12th International Conference on Computer Vi-
sion, pages 1226–1233, 2009. 3

[31] Anna Pandolfi and Federico Manganiello. A model for the
human cornea: Constitutive formulation and numerical anal-
ysis. Biomechanics and Modeling in Mechanobiology, 5(4),
2006. 3

[32] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In ICCV, 2021. 3

[33] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: A higher-

4872



dimensional representation for topologically varying neural
radiance fields. ACM TOG (Proc. SIGGRAPH), 2021. 3

[34] Keunhong Park, Philipp Henzler, Ben Mildenhall,
Jonathan T. Barron, and Ricardo Martin-Brualla. Camp:
Camera preconditioning for neural radiance fields. ACM
Transactions on Graphics, 2023. 3

[35] Alexander Plopski, Yuta Itoh, Christian Nitschke, Kiyoshi
Kiyokawa, Gudrun Klinker, and Haruo Takemura. Corneal-
Imaging Calibration for Optical See-Through Head-
Mounted Displays. IEEE Transactions on Visualization and
Computer Graphics, 21(4):481–490, 2015. 3

[36] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields for
dynamic scenes. In CVPR, 2021. 3

[37] Abhijith Punnappurath and M. S. Brown. Reflection removal
using a dual-pixel sensor. In CVPR, 2019. 3

[38] Prafull Sharma, Miika Aittala, Yoav Y. Schechner, Anto-
nio Torralba, Gregory W. Wornell, William T. Freeman, and
Frédo Durand. What you can learn by staring at a blank wall.
In ICCV, 2021. 2, 3

[39] Sudipta N. Sinha, Johannes Kopf, Michael Goesele, Daniel
Scharstein, and Richard Szeliski. Image-based rendering
for scenes with reflections. ACM Transactions on Graphics,
2012. 3

[40] Kentaro Takemura, Tomohisa Yamakawa, Jun Takamatsu,
and Tsukasa Ogasawara. Estimation of a focused object us-
ing a corneal surface image for eye-based interaction. Jour-
nal of eye movement research, 7(3):1–9, 2014. 1

[41] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David
McAllister, and Angjoo Kanazawa. Nerfstudio: A modular
framework for neural radiance field development. In SIG-
GRAPH, 2023. 3

[42] Kushagra Tiwary, Akshat Dave, Nikhil Behari, Tzofi
Klinghoffer, Ashok Veeraraghavan, and Ramesh Raskar.
Orca: Glossy objects as radiance-field cameras. In CVPR,
2023. 3

[43] Antonio Torralba and William T. Freeman. Accidental pin-
hole and pinspeck cameras: Revealing the scene outside the
picture. In CVPR, 2012. 2

[44] Norimichi Tsumura, Minh Dang, and Yoichi Miyake. Esti-
mating the directions to light sources using images of eye for
reconstructing 3d human face. International Conference on
Communications in Computing, 2003. 3

[45] Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok
Veeraraghavan, Moungi G Bawendi, and Ramesh Raskar.
Recovering three-dimensional shape around a corner using
ultrafast time-of-flight imaging. Nature Communications,
2012. 3

[46] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd E. Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-nerf: Struc-
tured view-dependent appearance for neural radiance fields.
CVPR, 2022. 3

[47] Renjie Wan, Boxin Shi, Ah-Hwee Tan, and Alex Chichung
Kot. Depth of field guided reflection removal. In IEEE In-
ternational Conference on Image Processing, 2016. 3

[48] Huiqiong Wang, S. Lin, Xiaopei Liu, and Sing Bing Kang.
Separating reflections in human iris images for illumination
estimation. In ICCV, 2005. 1, 3

[49] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and
Victor Adrian Prisacariu. NeRF−−: Neural radiance
fields without known camera parameters. arXiv preprint
arXiv:2102.07064, 2021. 3, 6

[50] Tianfan Xue, Michael Rubinstein, Ce Liu, and William T.
Freeman. A computational approach for obstruction-free
photography. ACM Transactions on Graphics, 2015. 3

[51] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2021. 3

[52] Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul E.
Debevec, William T. Freeman, and Jonathan T. Barron. Ner-
factor: Neural factorization of shape and reflectance under
an unknown illumination. ACM Transactions on Graphics,
2021. 3

[53] Xiang Zhang, Kaori Ikematsu, Kunihiro Kato, and Yuta Sug-
iura. Reflectouch: Detecting grasp posture of smartphone us-
ing corneal reflection images. In CHI Conference on Human
Factors in Computing Systems, 2022. 1

[54] Xuaner Cecilia Zhang, Ren Ng, and Qifeng Chen. Single
image reflection separation with perceptual losses. In CVPR,
2018. 3

4873


