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Abstract

Movie trailers are an essential tool for promoting films
and attracting audiences. However, the process of creating
trailers can be time-consuming and expensive. To stream-
line this process, we propose an automatic trailer genera-
tion framework that generates plausible trailers from a full
movie by automating shot selection and composition. Our
approach draws inspiration from machine translation tech-
niques and models the movies and trailers as sequences of
shots, thus formulating the trailer generation problem as a
sequence-to-sequence task. We introduce Trailer Genera-
tion Transformer (TGT), a deep-learning framework utiliz-
ing an encoder-decoder architecture. TGT movie encoder
is tasked with contextualizing each movie shot representa-
tion via self-attention, while the autoregressive trailer de-
coder predicts the feature representation of the next trailer
shot, accounting for the relevance of shots’ temporal or-
der in trailers. Our TGT significantly outperforms previous
methods on a comprehensive suite of metrics.

1. Introduction

Movie trailers are essential marketing tools for the film in-
dustry, generating anticipation by showcasing captivating
scenes, storylines, and cast members. They enable studios
to fuel marketing campaigns and build interest ahead of a
movie’s release. For audiences, trailers serve as decision-
making tools, offering a condensed preview of the film’s
content. Despite their importance, creating trailers is costly,
time-consuming, and demands expert knowledge.

The process of creating a trailer can be broadly divided
into two stages1. In the first stage, video editors immerse
themselves in the entire movie, viewing all the shots. They
carefully select relevant trailer shots and arrange them in a
specific order to craft an engaging flow and rhythm for the
movie trailer (see Fig. 1, top row). This is a time-consuming
and tedious process as the editor has to sort through an ex-
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1https://www.youtube.com/watch?v=zkEXtwCL684
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Figure 1. Trailer Generation Problem and Solutions. The top
row depicts the movie and expert-created trailer. The process com-
poses shots from the movie in non-chronological order to create a
compelling and intriguing story. Depicted in the central row are
the classification/ranking strategies that classify/rank each shot in
the movie independently (classification) or with limited relative
interaction (ranking). The bottom row represents our approach
which can reason over the entire input movie sequence before pro-
ducing a provisional trailer with non-chronological shots order.

tensive collection of movie shots [38]. The second stage in-
volves fine-editing which incorporates dialogue and sound
modeling into the trailer. This work delves into the do-
main of Automatic Trailer Generation (ATG) with the aim
of streamlining the first stage, i.e. shot selection and se-
quencing, to create a trailer montage from a given full movie
(see Fig. 1, bottom row).

ATG has remained a relatively underexplored problem
mainly due to the complexity of the task and the lack
of well-established benchmarks. Nevertheless, few prior
works [6, 23, 32, 38] have made efforts to tackle this chal-
lenging task. These works have approached trailer genera-
tion in different ways. Some works [23, 32] have framed
it as a binary classification problem, where each shot in a
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movie is classified as either a trailer shot or not, while oth-
ers [6, 38] have treated it as a ranking problem, wherein the
top-ranked movie shots are considered as trailer shots.

While the progress has been promising, previous works
on trailer generation exhibit several limitations, mainly due
to their problem formulations. First, both classification and
ranking are likely vulnerable to a long-tail distribution prob-
lem since only a few percent of movie shots are trailer shots,
and hence, there will always be a class imbalance in classifi-
cation [32] or a significant amount of hard negatives in rank-
ing [38]. Second, in classification-based works [23, 32],
all trailer shots are classified in parallel, and the decision
on whether a given shot is a trailer is not conditioned by
shots that are already selected as trailer shots. This even-
tually leads to numerous repetitive shots being categorized
as trailer shots. Similarly, ranking-based works [6, 38] only
consider two shots at a time. Third, and most importantly,
existing works do not consider shot composition (ordering),
as their formulation does not allow it. Consequently, the
shot sequence in the generated trailer mirrors the chronolog-
ical order of the shots in the original movie. See Fig. 1, cen-
tral row, for a graphical illustration of the predicted trailer
generated by classification and ranking methods.

Our work addresses these limitations by introducing a
new trailer generation framework. First, we formulate
trailer generation as a regression problem where we predict
continuous feature representations of trailer shots instead of
a discrete binary class. This makes our approach less vul-
nerable to a long-tail distribution problem [43]. Second, we
employ an autoregressive approach in which the prediction
of a trailer shot embedding at a specific time step is con-
ditioned not only on the input movie sequence but also on
the generated trailer sequence up to the current step. Third,
we design a model that takes shot composition into account,
and we reinforce this concept through training on a large set
of movie-trailer pairs with carefully designed losses.

In pursuit of these specifications, we introduce Trailer
Generation Transformer (TGT), a model designed to au-
tomatically generate plausible trailers using full movies as
input. Our approach uses an encoder-decoder architecture
that models ATG as a sequence-to-sequence (seq2seq) prob-
lem [36, 37], where the input sequence corresponds to the
movie sequence, and the target sequence represents the de-
sired trailer. To make this process computationally feasible
and follow the natural structure of movies, we utilize a shot
boundary detector [35] to tokenize movies and trailers and
use a state-of-the-art visual encoder (i.e. CLIP [28]) to ob-
tain sequences of visual embeddings.

TGT’s encoder comprises two components: trailerness
encoder and context encoder. The trailerness encoder in-
gests the entire movie sequence and estimates the likelihood
of each shot being relevant for trailer creation. This step
identifies the visually captivating shots often used for trailer

generation. The scores are fused with the input sequence, a
process we term trailerness encoding drawing a parallel to
positional encoding in [37]. The context encoder consists
of a stack of transformer encoder layers, leveraging self-
attention mechanisms [37] to contextualize each shot rep-
resentation based on the entire movie sequence, effectively
achieving temporal modeling across multiple shots.

The decoder of TGT is an autoregressive model that pre-
dicts the feature representation of the next trailer shot. This
design choice is instrumental in enabling the model to learn
shot composition, specifically, the ordering of shots, differ-
entiating our approach from previous works [6, 23, 32, 38].
See the comparison between the central and bottom rows
in Fig. 1. At training time, the decoder takes the encoder
output and the target trailer sequence and employs a causal
mask to learn to predict the next shot representation. At test
time, the model generates outputs in an autoregressive man-
ner. Finally, a greedy algorithm based on nearest neighbor
retrieval matches the generated trailer shot representations
with all shots in the movie, thereby selecting the most suit-
able shots for assembling the output trailer.

We curate an extensive dataset of movie-trailer pairs and
employ tailored loss functions to train TGT for automatic
trailer generation effectively. Furthermore, to foster fur-
ther research on ATG, our work presents new benchmarks
based on two widely-used movie datasets: MAD [33] and
MovieNet [10]. We construct these benchmarks by pair-
ing corresponding trailers and segmenting both movies and
trailers into shot sequences, resulting in two datasets with
movie-trailer pairs. We perform extensive experiments to
assess the performance of our approach and compare it to
previous methods using metrics that redefine how we mea-
sure trailer generation across various aspects.

Our contributions are: (1) A novel trailer generation
formulation that effectively overcomes the inherent limita-
tions of previous approaches. (2) Trailer Generation Trans-
former (TGT), an autoregressive encoder-decoder architec-
ture that generates provisional trailers from full movies,
which can be refined further by experts. (3) New ATG
benchmarks built atop two movie datasets: MAD [33] and
MovieNet [10]. We evaluate trailer generation performance
using a comprehensive suite of metrics that consider all rel-
evant aspects of the process.

2. Related Works
Trailer Generation Several papers have attempted to au-
tomate the process of trailer generation. Chen et al. [4] ana-
lyze movie composition based on sets of rules and grammar
to generate a trailer by concatenating shots with a specific
“movie tempo” above a threshold. Smeaton et al. [31] em-
ploy audiovisual features and a support vector machine to
automatically select shots for trailers, highlighting the im-
portance of shot sequence but leaving it to artists. Some
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works [6, 9, 12] utilize text features from TV show descrip-
tions, subtitles, or metadata, to find similar moments in the
video transcript or subtitles and select corresponding shots
for trailer creation. Others [14, 17, 32] use audio-visual fea-
tures to identify potential trailer moments from long videos.

Some works [11, 22] tackle the trailer generation task
using predefined templates and automatically fill them with
clips from the initial sequence. In contrast, our approach
solely relies on the movie sequence and does not use tem-
plates, additional metadata, or audio features to generate the
trailer. Finally, Wang et al. [38] recently proposed CCANet,
a deep learning model that utilizes co-attention and con-
trastive attention modules to match and distinguish trailer
moments from non-trailer moments. However, CCANet is
limited to a single genre and requires genre-specific train-
ing. Our work, on the other hand, is genre-agnostic and op-
erates effectively across the diverse range of genres present
in MovieNet [10] and MAD [33].

Video Summarization Video summarization aims to se-
lect the most important clips from a given video to cre-
ate a concise video summary. Similar to trailer genera-
tion, this task involves a shot selection aspect that models
must address. Earlier works attempted video summariza-
tion across different video domains without explicit super-
vision [2, 13, 20, 21, 25, 27, 44]. Other works approached
this task using supervised learning, coming from web video
summaries [8] or TV series summaries [34]. Representative
works employed various techniques, including fully convo-
lutional sequence networks that learn from paired data [30]
and unpaired data [29], graph modeling [26], and deter-
minantal point process (DPP) for structured predictions of
video sequences [16, 40, 41].

Recent attempts include using attention-based encoding
to score the importance of each frame using regression [5]
or modeling the interaction between video and text to com-
pute a saliency score [39]. Additionally, Zhang et al. [42]
proposed a sequence-to-sequence modeling approach us-
ing an encoder-decoder LSTM-based architecture to pre-
serve the video semantics in the output sequence. Gan et
al. [7] propose leveraging movie trailers as supervision for
video summarization, while our work uses pairs of movies
and trailers for trailer generation rather than summarization.
Lastly, CLIP-It [23] guides video summarization with text
through dense video captions, while TL:DW? [24] focuses
on exploring cross-modal saliency between video and text
(transcript) signals to summarize instructional videos.

3. Methodology

Problem Formulation Given a movie sequence M, the
problem of automatic trailer generation (ATG) aims at gen-
erating its corresponding trailer sequence T . Here, M de-
notes a sequence of movie shots {U1, U2, . . . , Un} and T

denotes a sequence of trailer shots {V1, V2, . . . , Vm}, where
n and m represent the number of shots in M and T , re-
spectively. During training, we use paired movie and trailer
sequences, denoted as {Mi, Ti}, where i refers to the index
of the movie-trailer pair. These pairs serve as a basis for the
model to learn the essential features and patterns necessary
for generating trailers from movie sequences. In contrast,
during testing, the model is given only the movie sequences
as input, without any corresponding trailer sequences. The
purpose of this setup is to evaluate the model’s ability to
generate trailer sequences T ′ that are coherent and relevant
to the given movie sequences M. The performance of the
model is assessed by comparing the generated trailer se-
quences T ′ to the ground truth trailer sequences T , using
suitable evaluation metrics.

3.1. Proposed Trailer Generation Transformer

Camera shots in movies and trailers provide a convenient
video structure that we leverage. Our initial step in-
volves segmenting the movie and trailer into shot sequences
({Ui}ni=1 and {Vj}mj=1, respectively) using a state-of-the-
art shot-boundary detector [35]. Learning directly from
the pixel space of long-form videos in an end-to-end man-
ner poses demanding computational burdens. Therefore,
to efficiently represent the input sequences, we leverage a
pretrained CLIP model [28] as a base encoder to extract
the feature representations of each shot, thereby transform-
ing the movie and trailer into a sequence of visual tokens,
i.e. {ui}ni=1 and {vj}mj=1. To indicate the beginning and
end of a movie/trailer sequence, we use learnable start-of-
sequence (SOS) and end-of-sequence (EOS) tokens, respec-
tively, as shown in Fig. 2.

We draw inspiration from machine translation tech-
niques [3, 36, 37]. Specifically, we approach the trailer
generation problem as a sequence-to-sequence (seq2seq)
task [36, 37]. In seq2seq, an encoder captures semantic
and syntactic information from an input token sequence and
converts it into a contextualized sequence. Then, a de-
coder generates the translated sequence by producing to-
kens one at a time, conditioned on the contextualized se-
quence and previously generated words. We apply this con-
cept to model the automatic trailer generation (ATG) prob-
lem, essentially “translating” a movie into a trailer. To
do this, we use an attention-based encoder-decoder archi-
tecture [37] and introduce our Trailer Generation Trans-
former (TGT) model. TGT consists of two main compo-
nents: the Movie Encoder (detailed in Sec. 3.1.1) and an
auto-regressive Trailer Decoder (described in Sec. 3.1.2).

3.1.1 Movie Encoder

The movie encoder aims at encoding a given movie se-
quence into a contextualized feature sequence by using a
trailerness encoder followed by a context encoder, as shown
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(a) TGT training pipeline. (b) TGT inference pipeline.

Figure 2. Architecture Overview. Subfigure (a) illustrates our TGT model’s training pipeline. Movies are segmented into shots and
transformed into visual embeddings via a pre-trained CLIP model [28]. Enhanced with positional embeddings and trailerness scores, these
tokens undergo context encoding. The trailer decoder, during training, uses ground-truth trailer shots as queries for cross-attention with
encoder output, then parallelly regresses the next shot feature using a causal mask. Subfigure (b) shows the inference pipeline where the
trailer decoder sequentially generates trailer shots in an autoregressive manner while the movie encoder process remains unchanged.

in the Movie Encoder block of Fig. 2.

Trailerness Encoder Given an input sequence of visual
tokens representing a movie, {SOS, u1, . . . , un,EOS}, a
positional encoding layer is first used to embed information
about the relative position of the input tokens. We then feed
the sequence into a trailerness encoder ET . The purpose of
the trailerness encoder is to observe the full movie and rea-
son over the likeliness of each movie shot to be in a trailer.
In ET , a Transformer [37] self-attention layer A, followed
by a linear layer f and a Sigmoid layer s, is used to predict a
trailerness score for each visual token in the input sequence,
as formulated below:{

tpi
}n+1

i=0
= s(f(A(SOS+σ0, u1+σ1, . . . ,EOS+σn+1))), (1)

where σi denotes the positional encoding value at position
i and tpi ∈ [0, 1] represents the predicted score of a movie
shot Ui as a noteworthy shot to be included in a trailer. Dur-
ing training, we compute the ground truth trailerness score
tGT
i for each movie shot by taking the maximum value of

the cosine similarity between the movie shot and all the
trailer shots (see Eq. (2)). A high value of tGT

i means that a
movie shot Ui is in a trailer, whereas a low value indicates
that the movie shot is not similar to any shots in the trailer.
We optimize the mean-squared error between the predicted
and ground truth trailerness scores during training to guide
the trailerness encoder ET as shown below in Eq. (3)

tGT
i = max

j
si,j , for 1 ≤ i ≤ n,where si,j =

ui · vj
∥ui∥∥vj∥

,

(2)

Lt =

n+1∑
i=0

|tpi − tGT
i |2, (3)

where Lt denotes trailerness loss and the ground truth trail-
erness score for SOS (tGT

0 ) and EOS (tGT
n+1) tokens is set

to 0. After positional encoding, the predicted trailerness

scores are added to inject information about the relative
degree of trailerness of the movie shots in the sequence
(see Fig. 2 Movie Encoder).

Context Encoder Trailerness encoding adjusts each po-
sitionally encoded visual token by a unique float number,
representing the trailerness score. Yet, to understand the re-
lationships between shots in the movie sequence, the trail-
erness encoded sequence is passed through a context en-
coder EC (see Eq. (4)). The purpose of the context encoder
is to obtain a contextualized representation of the input se-
quence, essential for decoding a trailer. We use a stack of
Transformer [37] encoder layers for EC . Through the multi-
head self-attention mechanism, EC considers the context in
which each movie shot appears, generating a representation
that encapsulates the meaning of the entire movie sequence.

C = EC(SOS+σ0+tp0 , u1+σ1+tp1 , . . . ,EOS+σn+1+tpn+1),
(4)

where C denotes a contextualized movie sequence repre-
sentation from EC .

3.1.2 Trailer Decoder

Given the output of the context encoder, we utilize a trailer
decoder DT to autoregressively generate shot embeddings,
which are subsequently matched back to the movie se-
quence to compose the trailer. At training time, the trailer
decoder inputs the learned context C and a positionally en-
coded but right-shifted trailer sequence as shown in Fig. 2
(a). The decoding is done in a sequential manner that DT
attends to the context C and a trailer sequence up to the
current position {SOS, v1, . . . , vj−1} in order to output the
next trailer embedding v̂j (Eq. (5)). This enables the net-
work to efficiently capture sequential dependencies and po-
sitional information of shots, facilitating the learning of shot
composition for generating a trailer sequence. The next
trailer shot generation scheme in our work is equivalent to
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next-word prediction in language modeling [37]. We use
a stack of Transformer [37] decoder layers for DT . At in-
ference time, as ground truth trailer sequence is not avail-
able, the trailer decoder starts with (C, {SOS}) and autore-
gressively decodes a trailer sequence using the previously
generated trailer shot embeddings until decoding the EOS
token. The decoding process is formulated as follows:

v̂j = DT (C, {SOS, v1, . . . , vj−1}), 1 ≤ j ≤ m+1. (5)

Lastly, we adopt a Greedy Search strategy utilizing Nearest
Neighbor retrieval. This method involves comparing each
embedding of the decoded shots against all shot represen-
tations from the movie. The shot with the highest feature
similarity is then selected for assembling the output trailer.

3.1.3 Training Losses

We train our network by optimizing the embedding distance
between the predicted trailer sequence {v̂1, . . . , v̂m, v̂m+1}
and the ground truth sequence {v1, . . . , vm,EOS}. To en-
sure that the trailer decoder outputs the correct shot at each
step, we minimize the reconstruction loss between each
predicted trailer embedding and the corresponding ground
truth embedding as shown in Eq. (6). As mentioned ear-
lier, the order in which the shots are decoded is crucial for
trailer generation. To integrate this concept into the pro-
posed model, we introduce a sequence-based loss, minimiz-
ing the Kullback-Leibler (KL) divergence loss between the
predicted trailer sequence distribution and the ground truth
distribution, as shown in Eq. (7).

Lrec =

m+1∑
j=1

|v̂j − vj |2, (6)

LKL =
∑
j

softmax(vj) · log
(softmax(vj)
softmax(v̂j)

)
. (7)

The total training loss is defined as the sum of the trailerness
encoding loss in Eq. (3), the feature reconstruction loss in
Eq. (6), and the sequence-based loss Eq. (7).

Ltotal = Lt + Lrec + LKL. (8)

3.2. Datasets

Movies exhibit a large diversity encompassing genre, style,
narrative structure, theme, artistic choices, and many more.
We argue that exposing our model to a large and compre-
hensive collection of movies is crucial for building a gener-
alizable trailer generation pipeline. Following this motiva-
tion, we collect a training set of 23,304 movies and trailers
spanning 28 genres. These movies cover over 120 years
of cinematic history, albeit with a natural bias towards more
recent films, reflecting the industry’s continuous growth and

increased production rates. The training set is paired with a
validation split containing 300 movie-trailer pairs used for
hyperparameter selection.

Furthermore, we introduce new benchmarks for trailer
generation, building upon two mainstream movie datasets:
MAD [33] and MovieNet [10]. To align these datasets with
our task, we enhance them by including their respective
trailers obtained from IMDb [1]. Notably, not all movies in
these datasets have trailers available on their IMDb pages.
Consequently, we obtained 602 out of 650 movie-trailer
pairs for MAD and 989 out of 1100 for MovieNet. We
also ensure no overlap between the test sets and the train-
ing/validation splits.

3.3. Evaluation Metrics

We evaluate the trailer generation performance by taking
both shot selection and sequencing into account. We follow
previous works [9, 38] and employ Precision, Recall, and
F1-score metrics to measure the accuracy of a model in pre-
dicting trailer shots from an input movie sequence. We also
measure the correctness of the predicted trailer sequence
using Levenshtein distance (LD) and Sequence length dif-
ference (SLD) metrics. Levenshtein distance (also known
a edit distance) [15] is defined as the minimum number
of edits (insertions, deletions, or substitutions) required to
transform the decoded trailer sequence into the ground truth
sequence. Sequence length difference measures the abso-
lute difference in the number of shots between the predicted
trailer sequence and the ground truth sequence.

4. Experiment
Implementation Details We use the TransNet-V2 [35]
model for preprocessing movies and trailers into sequences
of shots. Additionally, we employ the pretrained CLIP ViT
H/14 [28] for shot feature extraction. The trailerness en-
coder ET contains a single Transformer [37] encoder layer.
The context encoder EC consists of four encoder layers. Five
decoder layers are used for the trailer decoder DT . Each
encoder and decoder layer has a hidden dimension of 1024,
8 attention heads, and a feed-forward dimension of 2048.
SOS and EOS tokens are initialized by creating an embed-
ding vector of size 1024, sampled from a Normal distribu-
tion. AdamW [19] optimizer with an initial learning rate of
1e−4 and a cosine warm-up scheduler is used during train-
ing. Our model is trained for 200 epochs with a mini-batch
size of 8, on a single NVIDIA A100 GPU 2.

4.1. Trailer Generation Performance

In this section, we evaluate the performance of our ap-
proach by comparing it with three baseline methods: Ran-
dom, CCANet [38] and CLIP-It [23], on the MAD [33] and

2Training experiments done at KAUST.
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Table 1. Experimental comparison with different baselines.
MAD [33] MovieNet [10]

Precision ↑ Recall ↑ F1-score ↑ LD ↓ SLD ↓ Precision ↑ Recall ↑ F1-score ↑ LD ↓ SLD ↓
Random 5.32 6.05 5.65 - - 4.96 5.67 5.28 - -
CCANet [38] 32.15 30.76 31.63 81.25 - 30.46 29.29 29.58 90.18 -
CLIP-It [23] 40.29 43.05 41.73 95.58 47.10 38.19 40.28 39.34 103.64 51.30
TGT (ours) 55.30 49.92 52.38 21.18 10.78 49.74 44.32 46.77 24.66 13.28

O
ur

s
G

T

Figure 3. Subjective quality of our trailer generation. We compare a movie trailer against the one produced by our TGT method. We
highlight in green the correctly selected shots, in orange shots that are visually similar, and in red mismatched shots.

MovieNet [10] benchmarks. To establish a Random base-
line, we randomly select m shots from each movie, where
m represents the total number of shots present in the corre-
sponding ground truth trailer. As shown in Table 1, a base-
line that randomly selects movie shots for trailer generation
exhibits significantly poor performance across all metrics.

Comparison to Trailer Generation SoTA CCANet [38]
employs a co-attention module to rank a set of movie shots
in a contrastive manner, where shots with higher rankings
are considered to be trailer moments. To assess the per-
formance of CCANet for trailer generation, we select the
top m ranked shots from a given movie and utilize the re-
sulting sequence for evaluation purposes. As evident from
Table 1, our approach outperforms CCANet by a large mar-
gin. For instance, on the F1-score metric, TGT achieves
an average accuracy of 52.38% and 46.77% on MAD [33]
and MovieNet [10] datasets, respectively. In comparison,
CCANet could only achieve 31.63% and 29.58%. This is
mainly because CCANet has a limited attention span, fo-
cusing on two shots at a time, which hinders accurate rank-
ings due to the abundance of negative samples in full-length
movies. In contrast, our approach generates trailers by si-
multaneously considering the entire movie sequence. It can
also be inferred from Table 1 that the trailer sequence de-
coded by TGT shows much greater similarity to the ground
truth sequence (∼21 edits on LD metric on MAD dataset)
compared to CCANet (∼81 edits) even though the LD met-
ric favors CCANet due to the assumption of an equal se-
quence length to the ground truth. This is an expected ob-
servation since CCANet [38] mainly targets trailer moment
detection and does not take shot sequencing into account.

Comparison to Video Summarization SoTA We con-
duct further comparison by adapting a state-of-the-art video
summarization model, CLIP-It [23], for trailer generation.

CLIP-It utilizes a vanilla Transformer [37] architecture,
where the input sequence is passed through both the en-
coder and decoder. Additionally, a binary classifier is em-
ployed to identify summary-worthy inputs in the sequence.
In a parallel fashion, we classify each shot in a movie as
either belonging to the trailer or not. The shots classi-
fied as trailer shots are subsequently merged to construct
the final trailer. The results presented in Table 1 suggest
that the CLIP-It [23] based method generally achieves bet-
ter performance compared to CCANet [38]. However, it is
worth highlighting that our approach notably outperforms
CLIP-It. For example, on the Recall metric, TGT outper-
forms CLIP-It by 15.95% and 10.03% on MAD [33] and
MovieNet [10] benchmarks, respectively. This is likely be-
cause CLIP-It [23] primarily focuses on shot-level classifi-
cation and may not fully capture the temporal correlations
between shots necessary for creating a compelling trailer.
In contrast, our autoregressive approach enables TGT to at-
tend to the contextual dependencies between shots, aligning
with the movie’s narrative and dramatic flow to generate a
coherent and structured trailer. In terms of the predicted
trailer length, it is evident from Table 1 that CLIP-It devi-
ates by ∼51 shots on the MovieNet dataset, whereas TGT
only deviates by ∼11 shots on average.

Qualitative Results In Fig. 3, we qualitatively compare
a trailer decoded by our approach with its corresponding
ground truth sequence. For visualization purposes, we se-
lect a subsequence from the original trailer. The shots en-
closed in green boxes represent accurate predictions, while
those in orange boxes indicate resembling predictions. The
shots in red boxes correspond to failed predictions. The re-
sults in Fig. 3 indicate that the proposed method outputs
a reasonable trailer sequence from a given movie unseen
during training. For instance, TGT generates a third shot
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Table 2. Ablation experiment on network components. ET :
trailerness encoder; EC : context encoder. It shows both encoders
contribute to TGT performance, and EC is especially important.

Precision ↑ Recall ↑ F1-score ↑ LD ↓

M
A

D

w/o ET 53.23 47.64 50.20 22.72
w/o EC 43.36 36.07 39.23 25.70
w/o ET + EC 42.36 36.15 38.89 25.75
w/ ET + EC (TGT) 55.30 49.92 52.38 21.18

M
ov

ie
N

et w/o ET 48.38 41.80 44.75 25.62
w/o EC 40.08 33.41 36.32 27.09
w/o ET + EC 39.01 33.01 35.64 27.86
w/ ET + EC (TGT) 49.74 44.32 46.77 24.66

that closely resembles the corresponding insert shot (black
frame with text) in the ground truth, even though the movie
sequence itself does not contain that specific shot.

4.2. Ablation Studies

Network Components In Table 2, we present ablation
experiments on the different network components used in
the proposed framework. First, we study the importance of
trailerness encoding by training our network without ET ,
i.e. we directly feed the positionally encoded movie se-
quence into the context encoder. As can be inferred from
Table 2, TGT trained without ET still gives a competitive
performance across all metrics. This is intuitive since the
context encoder has to implicitly capture the trailerness of
each shot as it is trained to learn a contextualized represen-
tation for the trailer decoder. However, explicitly embed-
ding relative trailerness scores (predicted from ET ) into the
movie sequence has resulted in a better performance. For
instance, on the F1-score metric, trailerness encoding re-
sults in a 4.35% and 4.53% performance improvement on
MAD [33] and MovieNet [10].

To investigate the benefit of learning contextualized
movie representation for trailer generation, we train our net-
work without the context encoder EC . To do so, we use the
trailerness encoded movie sequence as a context and feed
it into the trailer decoder. As shown in Table 2, training
TGT without EC results in a notably worse performance.
For example, on the Recall metric, TGT without EC could
only achieve a top-1 accuracy of 36.07% and 33.41% on
MAD [33] and MovieNet [10] datasets, respectively. In
comparison, TGT with EC gives an accuracy of 49.92% and
44.32%. It can be observed from Table 2 that a similar
performance drop happens when using a decoder-only ar-
chitecture, i.e. the positionally encoded movie sequence is
fed into the trailer decoder DT (without ET + EC). These
results demonstrate the challenge of directly generating a
trailer sequence from a movie sequence and highlight the
importance of obtaining a contextualized representation of
the movie for effective trailer decoding.

Loss Functions Here, we examine the contribution of
various loss functions used to train our network. First, we

Table 3. Ablation experiment on loss functions. Lrec: recon-
struction loss of trailer embeddings; Lt: trailerness loss; LKL:
KL divergence loss of trailer sequence distribution. It shows that
both Lt and LKL are beneficial, and using them together with Lrec

leads to the highest performance.

Precision ↑ Recall ↑ F1-score ↑ LD ↓

M
A

D

Lrec 49.74 43.61 46.38 26.81
Lrec + Lt 52.35 46.06 48.90 25.84
Lrec + LKL 53.86 48.63 51.03 21.99
Lrec + Lt + LKL (TGT) 55.30 49.92 52.38 21.18

M
ov

ie
N

et Lrec 45.40 39.32 42.04 31.84
Lrec + Lt 46.52 40.15 42.99 30.91
Lrec + LKL 48.48 43.19 45.60 25.19
Lrec + Lt + LKL (TGT) 49.74 44.32 46.77 24.66

train TGT using the reconstruction loss Lrec in Eq. (6) as
the only loss function. As can be seen from Table 3, Lrec

is a strong enough constraint to train a competitive baseline
model. We also investigate the benefit of optimizing the pre-
dicted trailerness scores with ground truth scores. It can be
inferred from Table 3 that TGT trained with trailerness loss
Lt in Eq. (3) performs consistently better compared to TGT
trained without Lt. For instance, on the Precision metric,
a network trained with Lrec + Lt outperforms a network
trained with Lrec by 5.25% and 2.46% on MAD [33] and
MovieNet [10] datasets, respectively.

We investigate the impact of minimizing the KL diver-
gence between the predicted trailer sequence and the ground
truth sequence as defined in Eq. (7). The results in Ta-
ble 3 show that training with LKL results in a consider-
able performance gain. Particularly, on the Levenshtein dis-
tance (LD) metric, a trailer decoded by TGT trained with
LKL requires an average of 4.83 and 6.65 fewer edit steps
(to change it to the ground truth sequence) on MAD [33]
and MovieNet [10] datasets, respectively, compared to TGT
trained without LKL. These results emphasize the sig-
nificance of the KL-divergence loss LKL in ensuring that
the trailer sequence generated by TGT closely matches the
ground truth sequence. As can be inferred from Table 3, the
combination of all training losses (Lrec +Lt +LKL) yields
the best network performance.

4.3. Experimental Analyses

Text-Controlled Trailer Generation Thus far, we have
formulated movie trailer generation as a video-to-video
problem. Here, we experiment with incorporating language
into TGT to guide trailer decoding. For this purpose, we ob-
tain the plot summary of each movie from IMDb [1] and en-
code the text using a pretrained RoBERTa [18] model. We
explore two types of network variants for text-conditioned
trailer generation. First, we simply concatenate the encoded
text with the output of the context encoder as a control to
enrich the context pool of TGT, and the resulting represen-
tation will be fed into the trailer decoder (referred to as “en-
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Table 4. Analysis on text-controlled trailer generation. “En-
coded text” leads to a significant improvement across all metrics.
Using “contextualized text” further improves the performance.

Precision ↑ Recall ↑ F1-score ↑ LD ↓

M
A

D

TGT 55.30 49.92 52.38 21.18
+ Encoded text 59.27 54.68 56.81 19.34
+ Contextualized text 60.93 56.44 58.52 18.40

M
ov

ie
N

et TGT 49.74 44.32 46.77 24.66
+ Encoded text 53.69 49.05 51.19 23.59
+ Contextualized text 56.13 51.65 53.72 21.81

Table 5. Analysis on trailer shot selection. Relaxing the metric
enhances performance, indicating the potential of TGT to be used
in collaboration with a human editor.

Precision ↑ Recall ↑ F1-score ↑ LD ↓

M
A

D

Top-1 55.30 49.92 52.38 21.18
Top-5 65.31 60.57 62.76 15.51
Top-10 69.02 64.85 66.79 13.05

M
ov

ie
N

et Top-1 49.74 44.32 46.77 24.66
Top-5 58.58 54.05 56.12 18.86
Top-10 61.84 57.74 59.63 16.23

coded text” in Table 4). Second, we experiment with rea-
soning over the encoded text before feeding it to the trailer
decoder. We use a single Transformer [37] encoder layer
to obtain a contextualized text representation (referred to
as “contextualized text” in Table 4). As evident from Ta-
ble 4, “encoded text” leads to a significant improvement
in trailer decoding performance across all metrics. Using
“contextualized text” on top of pretrained RoBERTa [18]
further improves trailer generation performance. This find-
ing is consistent with our expectation that additional con-
text enhances generation quality. More importantly, as a
plot summary typically includes major plot points such as
the setting, characters, and conflicts, it enables the trailer
decoder to establish a more structured trailer decoding rule
by attending to the relevant movie shots.

Shot Selection One of the key challenges of generating a
trailer from a movie is shot selection. At each step of decod-
ing, there could be multiple movie shot candidates that are
semantically similar to the target trailer shot. In Table 5, we
evaluate our model’s performance by analyzing the quality
of the shots decoded at each step, considering the top-5 and
top-10 matching shots. As anticipated, expanding the pool
of shot candidates leads to enhanced model performance
across all evaluated metrics. For instance, on MAD [33]
benchmark, TGT achieves a top-10 precision of 69.02%
and the resulting trailer is only ∼13 edit steps away from
the ground truth trailer. This is particularly noteworthy as it
showcases the potential of our model to serve as a shot rec-
ommender during the editing process, where a human editor
collaborates with the model to make informed decisions.

Table 6. Analysis on the training data size. Performance drops
significantly when using only 10% of the data, while using 50% of
the data yields decent performance compared to the full dataset.

Precision ↑ Recall ↑ F1-score ↑ LD ↓

M
A

D

10 % 35.23 33.25 34.11 27.34
50 % 50.30 47.71 48.80 24.32
100 % 55.30 49.92 52.38 21.18

M
ov

ie
N

et 10 % 28.38 26.81 27.46 30.84
50 % 44.71 41.61 42.96 27.43
100 % 49.74 44.32 46.77 24.66

Scaling Effect In Table 6, we present the results of a scal-
ing experiment conducted to evaluate the performance of
our approach using different training data sizes, specifically
10%, 50%, and 100% of the available data. As can be in-
ferred from the table, model performance directly correlates
with the size of the training data. This observation is intu-
itive, as a larger dataset enables the model to encompass a
broader range of patterns and variations found in movie and
trailer sequences.

4.4. Discussion and Limitations
The proposed TGT method streamlines the trailer creation
process by enabling efficient selection and ordering of
shots. However, the current method does not incorporate di-
alogue and sound modeling, which are crucial for fine edit-
ing. This limitation could be addressed in future work by
incorporating these additional factors into the TGT model.
Despite this limitation, the TGT method can arguably pro-
vide significant time-saving to editors by automating the
initial steps of shot selection and ordering. This shift in
workload empowers editors to focus on the artistic aspects
of trailer creation, such as refining cuts, durations, and in-
jecting subtle audio elements to enhance the trailer further.
Therefore, the TGT method, while limited in scope, has the
potential to significantly improve the efficiency and creativ-
ity of trailer creation.

5. Conclusion
This work presents a novel approach to automatic trailer
generation. Our TGT models the task as a machine trans-
lation problem and uses an effective encode-decoder archi-
tecture to generate plausible trailers. We present two newly
constructed benchmarks and show that TGT outperforms
state-of-the-art approaches. We believe this study has the
potential to advance video summarization and promotional
content creation across various domains.
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