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Abstract

In this paper, we introduce VoteCut, an innovative
method for unsupervised object discovery that leverages
feature representations from multiple self-supervised mod-
els. VoteCut employs normalized-cut based graph partition-
ing, clustering and a pixel voting approach. Additionally,
We present CuVLER (Cut-Vote-and-LEaRn), a zero-shot
model, trained using pseudo-labels, generated by VoteCut,
and a novel soft target loss to refine segmentation accuracy.
Through rigorous evaluations across multiple datasets and
several unsupervised setups, our methods demonstrate sig-
nificant improvements in comparison to previous state-of-
the-art models. Our ablation studies further highlight the
contributions of each component, revealing the robustness
and efficacy of our approach. Collectively, VoteCut and
CuVLER pave the way for future advancements in image
segmentation. The project code is available on GitHub at
https://github.com/shahaf-arica/CuVLER

1. Introduction

Object localization remains a cornerstone in computer vi-
sion, empowering AI systems with abilities ranging from
perception and inference to strategic planning and interac-
tions centered around objects. The conventional training
paradigm for such models often requires specialized anno-
tations—be it object bounding boxes, masks, or localized
keypoints. Unfortunately, acquiring these manual annota-
tions is time-consuming and resource-heavy [38]. Conse-
quently, there is a burgeoning interest in automated object
detection and segmentation, particularly in unsupervised
settings, circumventing the exhaustive annotation process
[39].

Wang et al. [33] introduced CutLER (Cut-and-LEaRn),
a new approach for training unsupervised object detection
and segmentation models. CutLER employs a two-step
process. First, it generates pseudo-labels using the Mask-
Cut method. This novel approach leverages a single self-

supervised model to create a fixed number of pseudo-labels
per image. In the second phase, these pseudo-labels train a
segmentation model, resulting in the CutLER model. Ad-
ditionally, CutLER exhibits potential as a base model for
supervised detection, demonstrating efficacy in few-shot
benchmarks.

Our research builds on this pioneering work, progress-
ing through three critical stages: (1) We employ our inno-
vative method, referred to as ’VoteCut’, to harness feature
representations from multiple Vision Transformers (ViTs)
[14] trained in a self-supervised manner [8, 27] to generate
pseudo-labels with corresponding confidence scores, aided
by the eigenvectors of Normalized Cuts (NCut) [28]; (2)
The generated pseudo-labels are then used to train a robust
object detector, which we refer to as ”CuVLER”; (3) The
output from this detector aids mask refinement in a separate
domain, involving the generation of pseudo-labels from de-
tector predictions in this new domain, followed by filtering.
These refined pseudo-labels undergo a subsequent retrain-
ing phase, encapsulating our self-training approach.
Our methodology, the proposed CuVLER model, distin-
guishes itself from Wang et al.’s work in its capability to
generate superior object masks and detections in a given do-
main, without the need of several ”in domain” self-training
stages. We achieve this by integrating insights from mul-
tiple ViT models, enhancing the cluster separation pro-
cess. We also pioneer a self-training strategy that operates
within the original and the target domain, unlike the ap-
proach in CutLER, which restricts self-training to the origi-
nal domain. This innovation allows our model to enter self-
training stages beyond its initial domain, achieving signifi-
cant enhancements after just one epoch, showcasing its ef-
ficiency and flexibility.

This paper underscores the following contributions in the
domain of unsupervised object detection and segmentation:
1. In-Domain Mask and Detection Discovery - VoteCut:

At the heart of our work is a novel method for identi-
fying high-quality masks and detections within a spe-
cific domain. We considerably elevate object localiza-
tion and segmentation’s efficacy by harnessing multiple
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self-supervised models, paving the way for future explo-
rations. Notably, unlike MaskCut [33], these masks are
equipped with a confidence score, enhancing their relia-
bility and utility.

2. Instance-Level Loss Function with Soft-Targets: We
present a unique loss function that operates at the in-
stance level and integrates soft-targets. This innovation
facilitates a more granular training regimen, boosting ob-
ject segmentation and detection.

3. Cross-Domain Learning via Self-Training: Highlight-
ing our method’s adaptability, we delineate how our dis-
tinctive loss function can be harnessed both within and
outside its original domain in a self-training context.
Such versatility underscores our model’s potential to be
adapted across diverse applications, enriching the unsu-
pervised object detection and segmentation landscape.

2. Related work
Self-supervised feature learning. Self-supervised learn-
ing aims to generate rich data representations without re-
liance on human annotations, typically achieved through
pretext tasks. A noteworthy advancement in this do-
main has been the training of Vision Transformers (ViTs)
[14] in a self-supervised manner, which yields high-
quality features. Broadly, pretext tasks fall into two cat-
egories: Augmentation-based and Reconstruction-based.
Augmentation-based methods posit that varying augmenta-
tions of a single sample should produce semantically sim-
ilar outcomes compared to disparate dataset samples. This
often takes the shape of distinguishing augmentations from
unrelated samples via constructive [9, 20, 26, 36], similar-
ity [10, 18], clustering [2, 7, 37], or category-based [8, 27]
feature learning. Reconstruction-based methods, on the
other hand, emphasize reconstructing hidden patches or pix-
els, aiming to discern object structures within the image
[3, 13, 21].
Unsupervised instance segmentation. Attaining un-
supervised instance segmentation, as demonstrated by
FreeSOLO [32], involves the extraction of preliminary
coarse object masks, followed by mask refinement through
a self-training procedure. While FreeSOLO can generate
multiple coarse masks per image, their quality occasion-
ally falls short. Similar to our approach, other techniques
harnessed DINO [8]-extracted features to pursue instance
segmentation. These endeavors are motivated by the ob-
servation that DINO features encapsulate meaningful inter-
connections between patches within each image. Models
like LOST[29] and TokenCut[34] leverage self-supervised
ViT features for segment discovery through a graph con-
structed from patch key features’ similarity matrix connec-
tions. However, their emphasis often remains restricted to
the image’s primary salient object. Conversely, MaskDis-
till [31] extracts class-agnostic initial masks from a self-

supervised DINO’s affinity graph, yet its single-mask ap-
proach during distillation significantly restricts multi-object
detection. CutLER [33] has indeed carved a significant
mark in object detection and segmentation; however, our
method’s novelty stems from leveraging multiple models
and achieving exceptional results without the need for ex-
tensive ”in domain” self-training stages, making it a promis-
ing advancement in the field of unsupervised object detec-
tion and segmentation.

3. Method
This study introduces an innovative approach for unsuper-
vised object detection and segmentation using the ”cut-
vote-and-learn” pipeline. This technique capitalizes on the
findings from recent research [29, 33, 34] highlighting the
effectiveness of self-supervised representations for object
discovery. Our pipeline, illustrated in Figure 1, presents
a straightforward technique capable of detecting multiple
objects, resulting in substantial improvements in segmenta-
tion and detection performance within the target domain.
Specifically, we first introduce VoteCut, which generates
multiple binary masks per image using self-supervised fea-
tures from DINO [8] in the ImageNet domain [11]. We
then leverage a loss function with soft targets to enable self-
training with these masks. From this point forward, Vote-
Cut with an additional self-training process using our novel
loss function will be called ”CuVLER”. Additionally, we
also enhanced CuVLER performance through self-training
across different domains.

3.1. Normalized Cuts

Normalized Cuts (NCuts) [28] is a popular algorithm for
image segmentation and clustering. According to this tech-
nique, we represent each patch as a node, thus constructing
an undirected, fully connected graph. Each pair of nodes
within this graph is connected by a weighted edge that mea-
sures their similarity. The NCut algorithm attempts to min-
imize the cost of partitioning the aforementioned graph into
sub-graphs by solving a generalized eigenvalue problem:

(D −W )x = λDx (1)

Where W and D denote the adjacency matrix and the de-
gree matrix of the weighted graph, respectively [5]. The
solution denoted as x in Eq. (1), corresponds to the eigen-
vector associated with the second smallest eigenvalue λ.
Traditionally, the formulation fixes the number of clusters
in the graph, usually a bipartition; however, we preferred a
more relaxed approach that utilizes the K-means algorithm
[12, 30].

3.2. VoteCut for object discoveries

This work presents a novel technique designed to harness
the collective power of multiple self-trained models via a
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voting mechanism, leading to precise object segmentation
(see Figure 1b). We capture diverse image content perspec-
tives using an ensemble of models trained on different aug-
mented image sets. With their varying transformer patch
sizes, these models can focus on distinct image attributes,
thus maximizing object detection precision. Our proposed
method maximizes the collective intelligence of the afore-
mentioned models by conducting a voting procedure on
each image segment. It prioritizes the most widely agreed-
upon masks while diminishing the influence of masks with
fewer votes.

In line with the methodology presented in TokenCut by
Wang et al. [34], we adopt a procedure involving the extrac-
tion of the second smallest eigenvector from each model, as
determined by the Normalized Cut (NCut) algorithm [28],
for each input image.

In this study, we employ this approach on multiple
DINO and DINOv2 [27] models, which exhibit different
patch sizes, to obtain feature representations for individ-
ual patches. Subsequently, these representations are used
to construct the affinity matrix employed in the NCut al-
gorithm. To calculate elements in the affinity matrix W ,
we use the cosine similarity between the patch’s features.
For DINO models, we follow Wang et al. [33] and use the
’key’ features extracted from the endmost attention layer.
When using a DINOv2 model, the features used instead are
the output features of the endmost attention layer. The cal-
culation is detailed in Equation (2), where Ki is the ‘key’
feature of the i‘th patch and fi is the output feature of the
i’th patch. We follow Wang et al. [33] and apply a threshold
operation to the elements of matrix W . Specifically, we set
any Wij ≥ τ ncut to 1, and otherwise to 1e−5.

Wij =

{
KiKj

∥Ki∥2∥Kj∥2
DINO model is used

fifj
∥fi∥2∥fj∥2

DINOv2 model is used
(2)

Subsequently, we generate mask proposals by applying
1D K-means clustering [1] to the eigenvectors using every
k value, ranging from 2 to kmax. This process resulted in the
creation of n instance mask proposals per image, achieved
by applying connected-components analysis to each seg-
ment produced by the K-means clustering.

Following this, we utilized an intersection over union
(IoU)-based strategy to group masks into clusters. Given n
proposal masks for a specific image, our clustering proce-
dure begins with a greedy selection process. For each itera-
tion, we identify the instance mask with the highest number
of overlaps with other masks, surpassing an IoU threshold
of τ c = 0.6. This mask is designated as the cluster pivot.
The masks that share substantial IoU overlap with the pivot
mask are considered part of the same cluster. Once a new
cluster is formed, we systematically remove all associated
masks and repeat this clustering procedure iteratively. This

recursive process persists until all instance masks have been
effectively associated with their respective clusters.

Formally, we denote the collection of clusters for the i-
th image in the image set as Ci = {Ci

1, C
i
2, . . . , C

i
m}. In

the context of each cluster Ci
j , we designate the mask mem-

bers as {M i
1,M

i
2, . . . ,M

i
p}. The resulting final mask for

the cluster is determined as follows:

Final Mask =

{
1, if 1

p

∑p
k=1 M

i
k > τm

0, otherwise
(3)

Here, τm represents a threshold, and the final mask is set
to 1 if the average of all masks for a given pixel within the
cluster exceeds this threshold. τm sets the required consen-
sus among the majority of masks to result a value of 1 in the
final mask. We leverage a Conditional Random Field (CRF)
[23] to perform post-processing on the final masks, facilitat-
ing the computation of their associated bounding boxes.

Once the clustering procedure is over, we compute the
mask proposal score. This score, ranging from 0 to 1, is
provided to each cluster j in each image i in the image set
and is denoted by yi,j . It corresponds to the cluster yielding
the highest consensus mask value among all mask proposals
of the same cluster size:

yi,j =

∣∣Ci
j

∣∣
max

(∣∣Ci
1

∣∣ , ∣∣Ci
2

∣∣ , . . . , |Ci
m|

) (4)

As demonstrated in the following section, we showcase
the applicability of this score in training a model using our
innovative loss function applied at the instance level. This
approach enables us to utilize all suggested masks without
concern for inaccuracies, as those with lower scores will
have a minor impact on the model’s performance.

Based on this procedure, many clusters of VoteCut re-
ceive a score close to zero and, as such, have minimal con-
tribution to the loss function. To minimize the calculation
time, in cases where there are more than 10 VoteCut clus-
ters, we remove the masks with the lowest scores.

3.3. Soft loss function

Given the aforementioned yi,j , the score for the j-th
pseudo-labeled instance in the i-th image, the correspond-
ing bounding box loss is formulated as follows:

Lbox =
∑
i∈I

∑
j∈Gi

yi,jL
j
box,orig (5)

Here, I denotes the image set, Gi denotes the set of in-
stances (i.e., masks) that are associated with the i-th image,
and Lj

box,orig is the original loss for the j-th box of the in-
stance using input image xi. Similarly, the mask loss is
defined as:
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Figure 1. (a) An illustrated overview of the VoteCut workflow. A set of models initially makes inferences on the input image, producing
feature representations for individual patches. Subsequently, Normalized Cuts (NCut) are performed following the methodology in [34],
yielding the second smallest eigenvectors from each model. Multiple segment proposals are generated by applying 1D K-means clustering
to these eigenvectors with varying K values. The final stage of VoteCut involves clustering these proposals and extracting definitive masks
from each cluster via voting. Each definitive mask is also associated with a score. (b) The ”Clustering & Voting” stage of VoteCut is
detailed. First, segments are clustered using an Intersection over Union (IoU) threshold, determining segment membership within clusters.
A voting mechanism is employed within each cluster to decide whether each patch should be included in the segment. Lastly, a Conditional
Random Field (CRF) [23] is applied to refine the mask at a finer level. The cluster size determines the score assigned to each mask, as
elucidated in Eq. (4).

Lmask =
∑
i∈I

∑
j∈Gi

yi,jL
j
mask,orig (6)

For foreground score, a soft binary cross-entropy is em-
ployed:

Lcls =
∑
i∈I

∑
j∈Gi

yi,j log(σf (xi)) + (1− yi,j) log(σb(xi))

(7)
Where σf (xi) represents the softmax output for fore-

ground and σb(xi) for background.

Lastly, inspired by Wang et al. DropLoss [33], we define
ri,j as the predicted region with maximum overlap of τ IoU

against ’ground truth’ instances. This leads to the compre-
hensive loss function:

L =
∑
i∈I

∑
j∈Gi

1(IoUmax
ri,j > τ IoU)(Lcls + Lbox + Lmask)

(8)
Where IoUmax

ri,j signifies the highest IoU with all pseudo-
labeled instances. This loss avoids penalizing the model
for missing ’ground-truth’ objects, fostering exploration of
diverse image regions. Similarly to Wang et al.’s work [33],
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we applied a low threshold of τ IoU = 0.01.

3.4. CuVLER

Following the initial training stage, we conduct class-
agnostic detection following the methodology outlined in
[29]. This involves training a detector in a class-agnostic
manner (CAD), utilizing the masks and the scores generated
by VoteCut. It is essential to notice that CuVLER is trained
solely on the ImageNet validation dataset. Thus, different
datasets, such as the COCO dataset, can be considered can-
didates for zero-shot performance evaluation.

Self-training on a different domain

To generate pseudo-labels for a new dataset, we produce
them using the CuVLER model inference. Then, we fil-
tered out instances with confidence scores lower than 0.2.
This newly curated dataset is utilized for further training,
incorporating the updated confidence scores within our soft
loss framework, resulting in the refinement of mask predic-
tions.

3.5. Implementation details

Pre-processing stage When using DINO models, we re-
sized the images to 480x480 pixels, and when using DI-
NOv2 models, we resized the images to 476x476 pixels.

VoteCut The complete list of the utilized models appears
in the supplementary materials. Unless specified otherwise,
we utilized all aforementioned models and set τm = 0.2
and kmax = 3. Further ablations related to these hyperpa-
rameters can be found in Sec. 5. We set τ cut = 0.15, as
done by Wang et al. [33].

We employ a two-step resizing approach to ensure accu-
rate pixel alignment between proposals. First, we resize all
proposals to a fixed size before the IOU clustering phase.
Then, after the pixel voting phase, we resize the final mask
to match the image shape.

Training details All experiments were performed using
the Detectron2 [35] platform, using a batch size of 16 and
the copy-paste augmentation [15, 17]. Cascade Mask R-
CNN [6] detector is used for CAD.

4. Experiments
This section delves into our experimental framework and
is designed to evaluate our method’s performance compre-
hensively. We divide the experiments into three essential
evaluations, each presenting a different side of our method-
ology. First, we scrutinize the effectiveness of our method
’in domain’ - within the domain for which the ViT models
have initially trained. This provides us with a performance
assessment in a familiar context. Second, we venture ’out of
domain’ zero-shot evaluation to assess the model’s general-
ization capabilities (i.e., examining its adaptability to new

environments). Lastly, we examine the dynamics of ’self-
training’ within an alternative domain. This evaluates the
efficacy of unlabeled images from the domain of interest to
enhance object discovery tailored to that domain. These ex-
periments collectively offer a thorough understanding of the
strengths and limitations of our approach in diverse settings,
providing valuable insights for its practical applications.

The assessment of unsupervised object detectors
presents a unique set of challenges. Primarily, these models
lack an inherent understanding of semantic classes, render-
ing them unsuitable for evaluation through class-aware de-
tection metrics. Consequently, we adopt the class-agnostic
detection evaluation paradigm in line with prior research
[4, 29, 33, 34]. Secondly, object detection datasets typi-
cally provide annotations for only a subset of the objects
present in the images. Similarly to the work of Wang et al.
[33], we have incorporated the Average Recall (AR) metric
to address this limitation. AR proves valuable in assessing
unsupervised detection models as it refrains from penaliz-
ing them for detecting novel, unlabeled objects within the
dataset.

4.1. In-domain evaluation

In this experiment, we conducted an ’in-domain’ evalua-
tion of the ImageNet validation set. We chose this specific
dataset to align with the domain on which the ViT model
was originally trained. Our comparative analysis unfolds
through two distinct scenarios: (1) ’no CAD’, where we
solely generate masks using the features extracted from the
pre-trained model, abstaining from training a dedicated de-
tector; (2) ’with CAD’, where we train a detector using
the masks we create and subsequently deploy it for class-
agnostic object detection. Keeping with established conven-
tions, our evaluation employs the widely recognized COCO
metrics. However, given that only a fraction (approximately
10 %) of ImageNet has bounding-box annotations and none
have segmentations, we exclusively report the performance
of bounding-box metrics.

Our approach introduces a novel scoring mechanism, de-
tailed in Eq. (4), which allows for a more detailed and in-
sightful assessment of our model’s performance. To fa-
cilitate a fair and equitable comparison, we incorporated
DINOv2 models within our methodology. Consequently,
we compared the previous state-of-the-art (SOTA) and our
best-performing DINOv2 model. For reference, the ’no-
CAD’ method of the previous SOTA was set to 1.0 since
this methodology does not provide a direct score evaluation.

It’s worth noting that this additional comparison does not
yield any significant improvement in favor of the previous
SOTA; this is shown in Table 1, where MaskCut† utilizes
the best-performing DINOv2 model, instead of the DINO
model used in the original MaskCut [33].

As depicted in Table 1, in the ’no CAD’ scenario, Vote-
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Method CAD AP AP50 AP75 AR100

TokenCut[34] × 14.4 27.0 13.4 26.9
MaskCut[33] × 10.6 20.3 10.0 27.7
MaskCut†[33] × 8.3 14.9 7.7 22.8
VoteCut (ours) × 20.9 36.2 20.0 45.0
CutLER[33] ✓ 29.2 48.8 29.8 56.7
CuVLER (ours) ✓ 33.2 52.6 33.7 59.0

Table 1. In-domain evaluation on the ImageNet validation set. The
comparative analysis is divided into two scenarios: ’no CAD’ and
’with CAD’. Keeping with established conventions, the evalua-
tion employs the COCO metrics. We exclusively report the perfor-
mance of bounding-box metrics. †: utilizing our best-performing
DINOv2, instead of the DINO model used in MaskCut [33].

Cut (our approach) showcases substantial improvements,
with performance enhancements ranging from approxi-
mately 60% to 100% across various metrics. In the ’with
CAD’ scenario, we observed more modest yet significant
improvements, ranging from 4% to 13% across all metrics.
These results underscore our approach’s competence and ef-
ficiency in ’in-domain’ evaluations.

Figure 2 illustrates our proposed methodology perfor-
mance compared to other SOTA models.

4.2. Zero-shot evaluation

In this experiment, we assessed our methodology perfor-
mance across seven diverse benchmarks, detailed in the
Supplementary Materials. Following the methodology of
the previous SOTA [33], we employ a cascade Mask R-
CNN model trained exclusively on ImageNet, a method-
ology referred to as ’zero-shot’ due to its singular domain
training and cross-domain evaluation without further adap-
tation. Our evaluation is based on the COCO metrics, en-
compassing Average Precision (AP) and AP50 scores. De-
tailed results for all benchmarks are available in the Supple-
mentary Materials.

As depicted in Table 2, our approach demonstrates sig-
nificant improvements of up to 20%. We consistently ob-
serve performance enhancements across all benchmarks,
except for the Cliparat dataset, where a minor decline of
1% is noted in the AP50 metric. Importantly, our method
achieves superior performance over the previous SOTA af-
ter a single training epoch, obviating the necessity for ex-
tensive self-training stages on the ImageNet dataset.

4.3. Self-training evaluation

In this experiment, we harness our self-training methodol-
ogy, which leverages unlabeled images from the domain
of interest and subjected it to a rigorous comparison with
previous approaches. Aligning with established practices,
we train a Cascade Mask-RCNN model on the COCO
train2017 dataset and evaluate our results on widely rec-

ognized benchmarks for bounding-box and segmentation
tasks.

In Table 3, we present a comparison of our detector’s per-
formance on two prominent benchmarks: COCO val2017
and COCO 20K, the latter being a subset of 20,000 images
from the COCO dataset [25, 29, 32, 33]. Notably, our re-
sults showcase improvements in all metrics, with enhance-
ments reaching up to approximately 10%.

We have expanded our evaluation to a more challeng-
ing benchmark - LVIS [19], which encompasses over 1,000
entry-level object categories and naturally exhibits a long-
tailed data distribution. We found that the improvement was
more modest, with enhancements of up to 7% (see Table 4).
This outcome aligns with our expectations, considering the
significant shift in category distribution between LVIS and
ImageNet. Additional insights and detailed explanations re-
garding these benchmarks are available in the Supplemen-
tary Materials.

5. Ablations
In Table 5, we present an ablation study on the COCO
val2017 dataset [25], aiming to illustrate the importance
of each component. Utilizing VoteCut with CAD train-
ing, as an alternative to the baseline MaskCut [33], after
CAD training, results in a 12% and an 18% improvement
in APmask

50 and APmask respectively. Additionally, utiliz-
ing the soft target loss further enhances the results, with a
notable 9% increase in APmask

50 and 7% in APmask. We
emphasize that the results achieved up to this point were
obtained without reliance on the COCO dataset, thus es-
tablishing a zero-shot evaluation setup. Furthermore, in-
corporating data from the COCO dataset using the self-
training stage, as detailed in Sec. 3.4, yields an additional
5% boost for APmask

50 and a 6% improvement in APmask.
Collectively, these components produce a noteworthy 29%
increase in APmask

50 and a substantial 35% enhancement in
APmask, highlighting their combined impact on segmenta-
tion quality.

We evaluate the VoteCut method (without CAD) in the
following ablation studies on the ImageNet validation set.
[25] dataset, in an in-domain setup. These studies aim to
investigate the effects of individual hyperparameters while
holding the remaining parameters constant.
τm introduced in Eq. (3) acts as an integral threshold within
the proposed method. In Figure 3, we demonstrate the im-
pact of varying threshold values. Configuring τm at 0.2 is
strictly dominant across all evaluated metrics.

kmax is an integral part of the VoteCut method, directly
impacting the number of generated proposals. In Figure 4,
we aim to illustrate the influence of varying kmax values.
Notably, kmax = 3 excels in AP-based metrics and ranks
almost equally well in AP box, with under a one percent dif-
ference from the top result.
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Figure 2. Visual illustration of VoteCut performance vs. SOTA NCut based object-discovery methods on the ImageNet validation set. The
VoteCut bounding box score is calculated according to Eq. (4)

Method COCO COCO20K VOC OpenImages Clipart Watercolor Comic
AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP

Prev. SOTA [33] 21.9 12.3 22.4 12.5 36.9 20.2 17.3 9.7 21.1 8.7 37.5 15.7 30.4 12.2
CuVLER (ours) 23.0 12.6 23.5 12.7 39.4 22.3 19.6 11.6 20.8 9.3 41.3 19.0 32.2 14.6
vs. prev. SOTA +1.1 +0.3 +1.1 +0.2 +2.5 +2.1 +2.3 +1.9 -0.3 +0.6 +3.8 +3.3 +1.8 +2.4

Table 2. SOTA zero-shot unsupervised object detection performance on seven datasets. The reported results are based on the COCO
metrics, encompassing both Average Precision (AP) and AP50 scores. The presented models are trained in an unsupervised manner solely
on ImageNet. Results of [33] are produced with official code and checkpoint.

Figure 3. In-domain evaluation of the VoteCut method, without
CAD training, with varying τm on the ImageNet validation set.

We observe from the provided ablation studies that the
proposed method demonstrates robustness to variations in

Figure 4. Results of the VoteCut method without CAD training
in an in-domain configuration with different kmax values on the
ImageNet validation set.

both τm and kmax, as even suboptimal settings for these
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COCO 20K COCO val2017

Method Detector Init. APbox
50 APbox

75 APboxAPmask
50 APmask

75 APmaskAPbox
50 APbox

75 APboxAPmask
50 APmask

75 APmask

LOST[29] FRCNN DINO - - - 2.4 1.0 1.1 - - - - - -
MaskDistill [31] MRCNN MoCo - - - 6.8 2.1 2.9 - - - - - -
FreeSOLO [32] SOLOv2 DenseCL 9.7 3.2 4.1 9.7 3.4 4.3 9.6 3.1 4.2 9.4 3.3 4.3
CutLER [33] Cascade DINO 22.4 11.9 12.5 19.6 9.2 10.0 21.9 11.8 12.3 18.9 9.2 9.7
CuVLER† (ours) Cascade DINO 24.1 12.3 13.1 21.6 9.7 10.7 23.5 12.0 12.8 20.4 9.6 10.4

Table 3. Unsupervised object detection and instance segmentation on COCO 20K and COCO val2017. We report the detection and
segmentation metrics and note the detectors (Detector) and backbone initialization (Init.). All models results are obtained with the official
code and checkpoint. †: model was further self-trained on the target domain.

Method APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

CutLER[33] 4.5 8.4 3.9 3.5 6.7 3.2
CuVLER† 4.7 8.9 4.1 3.8 7.2 3.4

Table 4. Evaluation on the LVIS benchmark.†: model was further
self-trained on the target domain.

Methods APmask
50 APmask

MaskCut CAD [33] 15.8 7.7
+VoteCut CAD 17.7 9.1
+Soft target loss (CuVLER) 19.3 9.8
+Self-training stage 20.4 10.4

Table 5. Component ablation study of our methodology. We il-
lustrate the impact of each component on the COCO val2017
dataset.

parameters outperform TokenCut [34] by a significant mar-
gin.

In Figure 5, we can discern the impact of employing
an increased number of models. The results correspond to
maximum obtained by calculating all possible combinations
of models within our set, with each calculation constrained
by the number of selected models. A clear trend emerges,
indicating that employing a greater number of models leads
to improved outcomes. This trend suggests that each model
captures distinct information, and the collective strength of
the models surpasses the performance of each model in iso-
lation.

6. Conclusion and Limitation
We have presented VoteCut, a novel method for unsuper-
vised object discovery capable of generating a dynamic
number of mask instances with corresponding confidence
scores, outperforming previous counterparts. We also intro-
duced CutLER, a zero-shot model that enhances VoteCut re-
sults using a self-training phase with a novel soft loss. Fur-
thermore, we presented an additional enchantment based on
self-training that improves cross-domain results. CutLER

Figure 5. Model count ablation test. The results are obtained in an
in-domain setup on the ImageNet validation set using the VoteCut
method without CAD training.

outperforms the previous SOTA in both zero-shot and unsu-
pervised setups across multiple datasets.

While our hyperparameter studies highlighted the ro-
bustness of our method — with optimal configurations for
parameters like τm and kmax substantially influencing re-
sults — we also observed the inherent strength of ensem-
ble techniques. For instance, as the number of models in-
creased, there was a clear trend of performance improve-
ment, signaling the importance of diversified model input.

Limitation. The computational requirements of inte-
grating multiple models within the VoteCut framework may
present challenges in resource-constrained settings. How-
ever, leveraging VoteCut for training a single segmentation
model, as showcased by CuVLER, mitigates this constraint
while enhancing segmentation performance. Additionally,
utilizing the ImageNet dataset for pseudo-label generation
may introduce biases, given its simplified domain and lower
object density, potentially reducing false positives. Future
research should investigate how source domain characteris-
tics impact pseudo-label quality and inference outcomes.
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural information
processing systems, 33:21271–21284, 2020. 2

[19] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A
dataset for large vocabulary instance segmentation. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5356–5364, 2019. 6

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9729–9738, 2020. 2

[21] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16000–
16009, 2022. 2

[22] Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiy-
oharu Aizawa. Cross-domain weakly-supervised object de-
tection through progressive domain adaptation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 5001–5009, 2018.
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Mejail. Automatically finding clusters in normalized cuts.
Pattern Recognition, 44(7):1372–1386, 2011. 2

[31] Wouter Van Gansbeke, Simon Vandenhende, and Luc
Van Gool. Discovering object masks with transformers
for unsupervised semantic segmentation. arXiv preprint
arXiv:2206.06363, 2022. 2, 8

[32] Xinlong Wang, Zhiding Yu, Shalini De Mello, Jan Kautz,
Anima Anandkumar, Chunhua Shen, and Jose M Alvarez.
Freesolo: Learning to segment objects without annotations.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14176–14186, 2022.
2, 6, 8

[33] Xudong Wang, Rohit Girdhar, Stella X Yu, and Ishan Misra.
Cut and learn for unsupervised object detection and instance
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3124–
3134, 2023. 1, 2, 3, 4, 5, 6, 7, 8

[34] Yangtao Wang, Xi Shen, Yuan Yuan, Yuming Du, Maomao
Li, Shell Xu Hu, James L Crowley, and Dominique Vaufrey-
daz. Tokencut: Segmenting objects in images and videos
with self-supervised transformer and normalized cut. arXiv
preprint arXiv:2209.00383, 2022. 2, 3, 4, 5, 6, 8

[35] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 5

[36] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3733–3742,
2018. 2

[37] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
deep embedding for clustering analysis. In International
conference on machine learning, pages 478–487. PMLR,
2016. 2

[38] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong
Wu. Object detection with deep learning: A review. IEEE

transactions on neural networks and learning systems, 30
(11):3212–3232, 2019. 1

[39] Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and
Jieping Ye. Object detection in 20 years: A survey. Proceed-
ings of the IEEE, 2023. 1

23114


