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Abstract

Determining the location of an image anywhere on Earth
is a complex visual task, which makes it particularly rel-
evant for evaluating computer vision algorithms. Yet, the
absence of standard, large-scale, open-access datasets with
reliably localizable images has limited its potential. To ad-
dress this issue, we introduce OpenStreetView-5M, a large-
scale, open-access dataset comprising over 5.1 million geo-
referenced street view images, covering 225 countries and
territories. In contrast to existing benchmarks, we enforce
a strict train/test separation, allowing us to evaluate the
relevance of learned geographical features beyond mere
memorization. To demonstrate the utility of our dataset,
we conduct an extensive benchmark of various state-of-the-
art image encoders, spatial representations, and training
strategies. All associated codes and models can be found at
github.com/gastruc/osv5m.

1. Introduction
While natural image classification is the standard for evaluat-
ing computer vision methods [11, 49, 59], global geolocation
offers a compelling alternative task. In contrast to classifi-
cation, where the focus is often a single object, geolocation
involves detecting and combining various visual clues, like
road signage, architectural patterns, climate, and vegeta-
tion. Predicting a single GPS coordinate or location label
from these observations necessitates a rich representation
of both the Earth’s culture and geography; see Figure 1 for
some examples. Furthermore, the abundance of geo-tagged
street-view images depicting complex scenes with a clear
and consistent point of view makes this task appropriate for
training and evaluating modern vision models.

Despite this potential, few supervised approaches are
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Figure 1. Global Visual Geolocation. Predicting the location of
an image taken anywhere in the world from just pixels requires
detecting a combination of clues of various abstraction levels [36].
Can you guess where these images were taken?1

trained and evaluated for the task of geolocation. We at-
tribute this to the limitations of existing geolocation datasets:
(i) Large and open geolocation datasets contain a significant
portion of noisy and non-localizable images [19, 25, 60]; (ii)
Street view datasets are better suited for the task but are both
proprietary and expensive to download [7, 10, 16, 18, 33, 53].
To address these issues, we introduce OpenStreetView-5M
(OSV-5M), an open-access dataset of 5.1 million high-
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Figure 2. Localizable vs Non-Localizable. Images from our
dataset (green) occupy the space between weakly localizable im-
ages (red) like the ones from the test set of Im2GPS3k [60] and
landmark images used to advertise CV conferences (blue).

quality and crowd-sourced street view images. Our ambition
is to make both street view images and global geolocation
new standards for measuring progress in deep learning.

Automating visual geolocation has significant potential
benefits, with direct applications in fields such as journalism,
forensics, as well as historical and cultural studies. Learning
robust geographical representations may also be valuable for
various deep learning challenges, including self-supervised
learning and generative modeling, or the development of
more interpretable AI systems. Thanks to its size and scope,
and its strict train/test split, OSV-5M serves as a robust and
reliable benchmark for computer vision models. To demon-
strate this, we design an extensive evaluation experiment to
measure the impacts of various factors such as pretraining
strategies, model scale, spatial representations, fine-tuning
approaches, contrastive losses, and auxiliary tasks.

2. Related Work
In this section, we detail the notion of image localizability
(Section 2.1), the main existing geolocation datasets (Sec-
tion 2.2), and geolocation methods (Section 2.3).

2.1. Localizability
As noted by Izbicki et al. [25], images exhibit a range of
localizability, an inherently perceptual concept, see Figure 2.
Non-localizable images lack information that connects them
to a specific location or are of too low quality to properly
analyze. Weakly localizable images only contain vague or
indirect hints, such as people, animals, and objects in indoor
scenes. Localizable images should contain enough informa-
tion to allow for an informed guess relative to their location.
For example, street view images are generally localizable
as they typically contain salient features indicative of the
local environment such as climate, nature, architecture, or
utility and regulatory infrastructure. At the far end of the
spectrum, landmark images showcase emblematic monu-
ments or iconic landscapes, making their location instantly
identifiable to most viewers.

According to this criteria, a visual inspection suggests that
35% of the images in Im2GPS3k, a dataset commonly used

to benchmark geolocation methods [60], are non-localizable.
When used for evaluation, this may lead to unreliable errors
or promote methods that have memorized biases of the train-
ing distribution. When used for training, non-localizable
images can lead to sub-optimal representations or encourage
spurious correlations. OSV-5M predominantly comprises
localizable street view images whose accurate geolocation
requires robust geographical representations.

2.2. Geolocation Datasets
We motivate the need for OSV-5M by reviewing existing
geolocation datasets from the two main sources of geotagged
images: web-scraped and street view images, see Table 1.

Web-Scraped. Image hosting platforms like Flickr pro-
vide a near-endless source of geotagged images, which has
been used to create large open datasets, like YFC100M [56].
Most images correspond to personal or amateur photographs
representing food, art, and images of pets and friends, and are
either weakly or non-localizable. Even strongly localizable
images are typically taken in tourist spots, injecting an often
Western cultural bias towards recognizable landmarks [29].
The provided location metadata can be occasionally missing
or inaccurate, and the online nature of these images implies
they can be easily removed, hindering reproducibility2. For
evaluation purposes, cleaner subsets have been proposed that
improve both the image distribution coverage and annotation
quality [54, 60], but remain still heavily biased and predomi-
nantly non-localizable. Despite their small scope and size,
these datasets are currently the primary means of evaluating
geolocation models.

Street View. Conversely, street view images tend to be
strongly localizable. Captured through panoramic cameras
or dash-cams, they depict in high quality a vehicle’s sur-
roundings, which corresponds mostly to outdoor scenes with
rich geographical cues. Google famously provides a global
street view coverage, which is, however, expensive to ac-
quire for academic purposes ($1000 for 150k images) and
cannot be shared. Existing open datasets from this source
either only consist of dense samples from 3 US cities meant
for navigation [38, 67], or are inaccessible [10, 16, 33].

Luckily, crowd-sourced platforms such as Mapillary [4]
offer a global and diverse source of open-access street view
images for various environments, from dense cities and sub-
urbs to remote and inhabited landscapes. These images
have been used to construct several benchmarks for multiple
tasks other than geolocation, including depth estimation [6],
semantic segmentation [41], traffic sign detection and classi-
fication [14], place recognition [61] and visual localization
[26]. With 5.1M Mappilary images taken across the globe,
OSV-5M is the largest open-access street-view image dataset

260% of the 2014 YFCC-split [39] was deleted by 2020 [25]!
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Table 1. Geolocation Datasets. OpenStreetView-5M contains
strongly localizable street views with access, scope, and size com-
parable to web-scraped databases.

Image Source size open- scopeaccess

Web-scraped

Im2GPS [19] 237 ✔ biased
Im2GPS3k [60] 2997 ✔ biased
YFCC4k [60] 4536 ✔ biased
YFCC26k [54] 26k ✔ biased
MP-16 [32] 4.7M ✔ biased
Moussely et al. [39] 14M/6M2 ✔ global
YFCC100M [56] 100M ✔ biased
PlaNet [62] 125M ✗ biased

Street view

Google-WS-15k [10] 15k ✗ global
GMCP [67] 105k ✗ 3 cities
StreetCLIP [16] 1M ✗ unknown
OpenStreetView-5M 5.1M ✔ global

and the only one designed for global geolocation. OSV-5M
has a similar order of magnitude to popular YFCC-based
geolocation train sets [32, 39], and comes with a clean test
set that is 33 times bigger than the current largest street-view
image test benchmark [10] (which is not openly accessible).

2.3. Geolocation Methods
Place recognition [68] and visual localization [12, 30, 44,
45, 50] are popular tasks that consist in finding the pose of
images in a known scene. In contrast, visual geolocation
predicts 2D coordinates or discrete locations (e.g., countries),
and aims for lower accuracy and the ability to generalize to
unseen areas [20]. Existing geolocation approaches can be
categorized by whether they treat geolocation as an image
retrieval problem, a classification problem, or both.

Image Retrieval-Based Approaches. A straightforward
method for image localization is to find the most similar
image in a large image database and predict its location [19].
The first successful approaches involved retrieving the near-
est image in a space of handcrafted features such as color
histograms [19], gist features [42], or textons [35]. It was
later improved with SIFT features and support vector ma-
chines [21]. Deep features further boosted the performance
of these approaches [60]. While such models typically ex-
hibit high performance given a large and dense enough im-
age database, they do not involve representation learning.
Consequently, unless provided with robust features, they
may perform poorly in sparsely represented or dynamically
changing environments.

Classification-Based Approaches. Geolocation can also
be approached as a classification problem by discretizing
latitude and longitude coordinates. The choice of partition is
critical, ranging from regular [62], adaptive [10], semantic-

driven [55], combinatorial [52], administrative [17, 46], and
hierarchical [10, 60] partitions. Classification-based meth-
ods must strike a delicate balance between the quantity and
size of cells; if the discretization is too coarse, the perfor-
mance will be limited, while too many small cells may not
have enough samples for learning-based methods. Further-
more, a typical classification loss such as cross-entropy does
not incorporate the distance between regions: confusing two
adjacent cells is equivalent to mistaking the continent.

Hybrid Approaches. Retrieval and classification ap-
proaches can be combined to overcome the limitations of
discretization. This can be achieved using ranking losses
[60] or contrastive objectives [31]. Haas et al. [17] follow
a classification-then-regression approach based on proto-
type networks. Finally, Izbicki et al. [25] go beyond single-
location prediction by estimating probability distributions
based on spherical Gaussians.

3. OpenStreetView-5M
OpenStreetView-5M establishes a new open benchmark for
geolocation by providing a large, open, and clean dataset.
The Appendix details the construction of the dataset. As
detailed below, OpenStreetView-5M improves upon several
limitations of current geolocation datasets.

Scale. Deep neural networks have historically been selected
over other machine learning methods because they benefit
from larger amounts of data. OSV-5M consists of 4,894,685
training and 210,122 test images, with a height of 512 pixels
and an average width of 792± 127 pixels.

Scope. Many geolocation datasets are restricted to a few
cities [38, 67] or are significantly biased towards the West-
ern world [29]. In contrast, OpenStreetView-5M images are
uniformly sampled on the globe, covering 70k cities and 225
countries and territories, as shown in Figure 3. The distribu-
tion of test images across countries has a normalized entropy
of 0.78 [63, Eq. 19], suggesting high diversity. Our train set
has a normalized entropy of 0.67, which is comparable to
the entropy of the distribution of the countries’ area (0.71).

Access. OpenStreetView-5M is based on the crowd-sourced
street view images of Mapillary [4] which follow the CC-
BY-SA license: free of use with attribution [2].

Quality Evaluation. We estimate through manual inspec-
tion of 4500 images that 96.1% (±0.57%) of the images in
the OpenStreetView-5M dataset are localizable, with a 95%
confidence level [24, Chap. 8]. Among the weakly or non-
localizable images, 70% (2.7% total) are low-quality: under-
or over-exposed, blurry, or rotated; 30% (1.2% total) are
poorly framed, indoor, or in tunnels.
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(c) Continent and country distributions of the test set
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(d) Continent and country distributions of the training set

Figure 3. OpenStreetView-5M. Image density and proportions per country and continent for the train and test sets. To ensure an unbiased
evaluation, we prioritize the uniformity of the test set’s distribution across the globe over the training set distribution.

Spatial Separation. Without carefully enforcing the spatial
separation between train and test images, geolocation can
reduce to place-recognition. As our goal is to assess the
capacity of models to learn robust geographical representa-
tions, we ensure that no image in the OSV-5M training set
lies within a 1km radius of any image in the test set.

Sequence Separation. Street-view images are typically
acquired by a limited number of camera sensors mounted
on the top or front of a small fleet of vehicles assigned to a
given region. This correlation between location, cars, and
sensors can be exploited to simplify the geolocation task.
Notoriously, players of the web-based geolocation game
GeoGuessr [3] can locate images from Ghana by spotting
a piece of duct tape placed on the corner of the roof rack
of the Google Street View car [5]. OpenStreetView-5M
tries to avoid this pitfall by ensuring that no image sequence
(a continuous series of images acquired by the same user)
appears in both training and test sets. While this might not
prevent images taken with the same vehicle on different days
from being in both sets, it limits such occurrences.

Metadata. Rich metadata beyond geographical coordinates
can improve the robustness and versatility of geolocation
models. Each image in our dataset is associated with four
tiers of administrative data: country, region (e.g., state), area
(e.g., county), and the nearest city [6]. Note that areas are
not defined for one-third of the dataset. We also associate
each image with a set of additional information: land cover,
climate, soil type, the driving side, and distance to the sea
where the image was taken. See the Appendix for more

details on these attributes.

4. Benchmark
We use OSV-5M to benchmark supervised deep learning
approaches in the context of visual geolocation. We first
present our evaluation metrics (Section 4.1) and framework
(Section 4.2). We then explore several design choices, start-
ing with the image encoder backbone (Section 4.3), the
prediction objective (Section 4.4), the fine-tuning strategy
(Section 4.5), and the choices of contrastive losses (Sec-
tion 4.6). In each experiment, we select the top-performing
designs and integrate them into a combined model, which
we evaluate and analyze in Section 4.7.

4.1. Evaluation Metrics.
We denote the space of images by I and the span of longitude
and latitude coordinates by C = [−180, 180] × [−90, 90].
Our objective is to design a model that maps an image from I
to its corresponding location in C. We measure the accuracy
of predicted location across geolocation models with three
complementary sets of metrics:
- Haversine distance [58] δ, between predicted and ground
truth image locations;
- Geoscore, based on the famous GeoGuessr game [3], de-
fined as 5000 exp(−δ/1492.7) [17];
- Accuracy of predicted locations across administrative
boundaries: country, region, area, and city.

While the average distance between predictions and
ground truth is sensitive to outliers (i.e., a few poor pre-
dictions can significantly undermine an otherwise high-
performing algorithm), the accuracy metric based on admin-
istrative borders can avoid this issue. However, this metric
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Figure 4. Visual Geolocation Model. We propose a simple and versatile framework for visual geolocation and explore the impact of various
components of this approach in train-test performance on OpenStreetView-5M. Starting from the left, the input image is converted to a
vector representation by an image encoder f img (red). Then a geolocation head f loc maps this vector to a set of geographical predictions
(mint). Then a contrastive objective is potentially added (cyan), as well as auxiliary targets to learn better representations for geolocation
(lila). We also consider various parameter fine-tuning strategies for training our image encoder, by freezing all or part of f img (yellow).

Table 2. Impact of Image Encoder. Several pretrained backbones are evaluated in OpenStreetView-5M. We outline the influence of various
architectures, pretraining strategies, and datasets. Best scores are highlighted in bold. We denote closed datasets with †.

Architecture
Size

(×106)
Pretraining Train. time

(in h)
Geoscore ↑ Distance ↓ Classification accuracy ↑

Objective Dataset Country Region Area City

1 ViT-B-32 0088 CLIP LAION-2B 022 2052 2992 35.7 07.0 0.5 0.3

2 ResNet50 0023 Classification ImageNet-1k 45 1260 4171 20.8 3.0 0.2 0.1
3 ViT-L-14 300 DINOv2 DINOv2† 316 2530 2233 46.9 10.7 0.7 0.3
4 ViT-L-14 0300 CLIP LAION-2B 206 2474 2358 44.8 10.6 0.8 0.2
5 ViT-L-14 300 CLIP DATA COMP 206 2719 1964 50.6 12.8 1.0 0.4
6 ViT-L-14 0300 CLIP Meta-CLIP 206 2724 1888 49.7 12.7 1.1 0.4
7 ViT-L-14 300 CLIP OpenAI† 206 2888 1688 53.3 14.6 1.2 0.5
8 ViT-L-14 0300 StreetCLIP OpenAI† + GSV† 206 3028 1481 56.5 16.3 1.5 0.7
9 ViT-bigG-14 1800 CLIP LAION-2B 900 2878 1766 53.4 15.0 1.3 0.5

can be too lenient for large divisions or arbitrarily punitive
for small ones. The Geoscore offers a compromise by re-
warding precise predictions without being overly sensitive
to large but rare errors.

4.2. Framework
The models evaluated in this benchmark follow a consis-
tent architecture, represented in Figure 4. All considered
networks contain the two following modules:
- the image encoder f img : I 7→ Rd, which maps an image
to a d-dimensional vector;
- the geolocation head f loc : Rd 7→ C, which maps this
vector to geographic coordinates.

Implementation details. Unless stated otherwise, f img is
always a pretrained and frozen CLIP ViT-B/32 model [48]
with d = 768 and f loc is a Multilayer Perceptron (MLP)
with GroupNorms [65]. This base model directly regresses
geographical coordinates and uses the L1 norm as loss func-
tion. The model is trained with a batch size of 512 images
for 30 epochs (260k iterations) with a fixed learning rate of
2× 10−4. Throughout the paper we will denote in blue the
frozen base model, in orange its fine-tuned version, and in
green the model combining all top-performing designs.

4.3. Image Encoder
We first benchmark various architectures for the image en-
coder module f img, with varying backnones, and pretraining
strategies and datasets:
- Architecture. We test a standard ResNet50 [22], and mod-
ern ViTs [13] of multiple sizes (B-32, L-14, and bigG-14).
- Pretraining. We consider different types of pretrain-
ing objectives, including classification on ImageNet, self-
supervized pretraining DINOv2 [43], text supervision CLIP
[48], as well as StreetCLIP [16], which is finetuned specifi-
cally for geolocation.
- Dataset. We consider several pretraining datasets, in-
cluding LAION-2B [51], DATA COMP [15], Meta-CLIP
[66], and the proprietary datasets of DINOv2, OpenAI, and
StreetCLIP [16].

Analysis. Our experimental results are presented in Ta-
ble 2. Here, we summarize several key takeaways:
- Model Size. As shown in Rows 1, 2, 4, and 9 of Table 2,
there is a direct correlation between the size of the image
encoder and its geolocation performance. The large ViT,
bigG-14 model with 1.8 billion parameters (Row 9) improves
significantly on the performance of its smaller versions. As
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Table 3. Prediction Modules. We report the performance of var-
ious prediction models and objectives. QuadTrees, hierarchical
supervision, and hybrid models all significantly improve on di-
rect regression or classification with administrative borders. We
underline the accuracy for divisions that the method is specifically
trained to categorize.

Number
classes

Geo ↑
score

Dis ↓
tance

Classification accuracy ↑
country region area city

R
eg

. Coord. - 2052 2992 35.7 7.0 0.5 0.3
Sin/cos - 1192 4797 13.6 2.1 0.1 0.0

C
la

ss
ifi

ca
tio

n

Country 222 2263 2981 56.3 - - -
Region 2.8k 2683 2858 57.0 30.2 - -
Area 9.3k 1935 4454 36.3 19.7 8.8 -
City 69.8k 2600 3217 52.2 28.5 7.3 4.9
+ hierarchy 69.8k 2868 2768 58.2 34.3 9.6 6.0
QuadTree 11.0k 2772 2832 54.8 27.7 5.4 2.8
+ hierarchy 11.0k 2890 2654 57.4 29.9 5.9 2.9

Hybrid 11.0k 3036 2518 60.8 36.3 9.5 5.7

the size of models correlates with their training time, we
select ViT-L-14 as the best compromise.
- Pretraining. As seen in rows 3, 7, and 8, CLIP pretraining
leads to better results than DINO or image classification. We
thus focus on the latter for further comparisons.
- Dataset. Rows 4 to 8 show the significant impact of the
choice of pretraining datasets. The geolocation-oriented
StreetCLIP (row 8) leads to the best results, followed by
OpenAI’s CLIP (row 7). However, both datasets are not open
access. We choose DATA COMP (row 5) as the best open-
source dataset for its slightly better country classification
rate compared to Meta-CLIP (row 6).

4.4. Prediction Head
We examine three different possible supervision schemes for
the geolocation head f loc: regression, classification (includ-
ing hierarchical classification), and a hybrid approach.

Regression. We start with the most straightforward ap-
proach: f loc directly regresses coordinates in C. We train an
MLP supervised with the L1 loss between true and predicted
coordinates. To account for the periodicity of the latitude,
we also test an approach where we regress instead the cosine
and sine of the longitude and latitude and then recover the
real coordinates with trigonometry [34].

Classification. We divide the train set into a set K of K
divisions, such as countries, regions, areas, and cities, which
amount to K = 222 , 2.8k, 9.3k, and 69.8k, respectively. As
some administrative borders can have vastly different sizes,
we also consider an adaptive partition with a QuadTree of
depth 10 and maximum leaf size of 1000, corresponding
to 11k cells. We then train a classifier f classif : Rd 7→ RK

which maps an image representation to the probability that
the image was taken in each division. Then, to predict the
final geographic location, we define f lookup, which associates

Table 4. Parameter Fine-tuning Strategies. We compare the
performance of different parameter fine-tuning strategies, in terms
of performance, number of parameters, and training time.

Param.
(M)

Train.
time

Geo ↑
score

Dis ↓
tance

Classification accuracy ↑
country region area city

Frozen 0.6 22 2052 2992 35.7 7.0 0.5 0.3

LoRA-32 2.4 44 2101 2760 36.7 6.4 0.4 0.0
Last block 7.7 26 2587 2372 46.7 12.9 1.0 0.5
Fine-tuning 88.0 132 2893 2085 54.9 19.1 1.6 0.8

each division with the average location of its training im-
ages: f lookup : K 7→ C. The predicted geolocation can be
summarized as: f loc = f lookup ◦ argmax f classif.

In our implementation, f classif is an MLP trained with
cross-entropy, while f lookup is a look-up table obtained di-
rectly from the training set.

Hierarchical Supervision. We can exploit the nested na-
ture of the administrative divisions and QuadTree cells to
supervise all levels simultaneously [40, 60]. More precisely,
we predict a probability vector at the finest resolution (either
city or maximum depth of the QuadTree), which we aggre-
gate recursively to obtain predictions at all levels. We can
now supervise with a cross-entropy term for each level.

Hybrid Approach. Inspired by approaches that combine
both classification and retrieval [17, 60], we perform regres-
sion and classification in a two-step approach. Given the
output of our QuadTree classifier f classif : Rd → RK , we
define f relative : Rd → [−1, 1]2K that outputs the relative
coordinates of the predicted location inside each cell k. We
scale these values such that (0, 0) points to the centroid of
the training images in the cell and [−1, 1]2 spans the entire
bounding box. Using the cell prediction of the classifier
f classif and the relative position from f relative, we can predict
the location of the image with sub-cell precision.

We train f classif with the cross-entropy, and f relative with
the L2 loss between the predicted and true relative coordi-
nates on the division that contains the true location.

Analysis. We report the performance of different predic-
tion heads in Table 3, and make the following observations:
- Regression. Predicting sines and cosines does not improve
the regression model’s performance. We hypothesize that
this is due to the non-linearity of the trigonometric formula.
- Classification. Classification methods generally perform
well in Geoscore and starkly improve their respective clas-
sification rates, e.g. +23.2% region accuracy for the region
classifier compared to the regression model. However, their
influence on the average error distance is smaller. Coarse
partitions, like countries, are limited by the low precision of
f lookup. Inversely, overly refined partitions such as cities lead
to a more challenging classification setting where most labels
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Table 5. Contrastive Learning. We report the impact of adding a
contrastive objective to our model, defined by various notions of
positive matches between images.

Pairs Geoscore ↑ Distance ↓ Classification accuracy ↑
country region area city

no contrastive 2893 2085 54.9 19.1 1.6 0.8

ge
og

ra
ph

ic country 2903 2005 66.8 13.7 0.7 0.3
region 3028 2131 60.0 33.3 2.9 1.0
area 2376 2886 43.7 18.9 3.7 1.2
city 2912 2209 56.3 24.5 3.2 1.2
cell 2891 2310 55.9 25.4 3.5 1.3

text-based 2812 2171 66.0 13.0 0.7 0.2

have only a few training examples. QuadTree-constructed la-
bels achieve performance close to the administrative division-
based classifier across all levels, e.g. 54.8% vs. 56.3% for
countries and 27.7% vs. 30.2% for regions. This compounds
into an overall better performance, which shows that adapt-
ing the granularity of the label distribution according to the
image density appears to be a successful heuristic.
- Hierarchical & Hybrid. Supervising on all levels simulta-
neously significantly improves the prediction. Hybrid meth-
ods bridge the gap between classification and regression,
yielding high precision without relying on very fine-grained
partitions. These results validate the underlying spatial hi-
erarchical nature of geographical data [57]. We select both
hybrid and hierarchical designs for the combined model.

4.5. Parameter Fine-tuning
We evaluate different fine-tuning strategies to quantify the
impact of learning dedicated features for geolocation. In all
configurations, we learn f loc from random weight, and f img

is fine-tuned as follows:
- Frozen. f img is initialized with pretrained weights and
remains frozen.
- LoRA-32. We fine-tune f img using Low Rank Adap-
tion [23] and a rank of 32 (more values in supplementary).
- Last block. We unfreeze the last transformer block of f img,
responsible for producing the image embedding.
- Fine-tuning. We fine-tune all parameters of f img.

Analysis. In Table 4, we report the impact of different
fine-tuning strategies. Training only the last transformer
block instead of using LoRA leads to a ten times larger
Geoscore improvement in only half the training time. This
suggests that pretrained models can extract relevant patch
embeddings, while image encoding must be significantly
adapted for geolocation. Fine-tuning the entire network
leads to an even larger improvement but a five-fold increase
in training time. However, the resulting performance is
comparable to the frozen ViT-bigG-14 shown in Table 2 and
trains 9 times faster. We select the fine-tuning configuration
as the top-performing approach and denote it in orange.

Table 6. Combined Model. We report the improvements brought
by each top-performing design choice and their combination and
compare them with baselines and competing approaches.

Geo ↑
score

Dis ↓
tance

Classification accuracy ↑

country region area city

Base model 2052 2992 35.7 7.0 0.5 0.3

ViT-L-14 DC + 667 - 1028 +14.9 + 5.8 +0.5 + 0.1
QuadTree + 720 - 160 +19.1 +20.7 +5.4 + 2.5

Hybrid + 264 - 314 + 6.0 + 8.6 +4.5 + 2.9
Hierarchical + 118 - 178 + 2.6 + 0.2 +0.5 + 0.1

Fine-tuning + 841 - 907 +19.2 +12.1 +1.1 + 0.5
Region contrast. + 135 + 46 - 5.1 +14.2 +2.1 + 0.2

Combined model +1309 - 1178 +32.3 +32.4 +9.8 + 5.6
3361 1814 68.0 39.4 10.3 5.9

Random 328 8724 20.0 2.0 0.0 0.0
Human Evaluation 1009 6407 48.9 12.2 3.0 0.0
GeoEstimator [40] 3331 2308 66.8 39.4 18.4 4.2
StreetCLIP 0-shot [16] 2273 2854 38.4 20.8 9.9 14.8

4.6. Contrastive Objectives
Contrastive learning builds positive and negative sample
pairs from the training set and pushes representations of
positive pairs close to each other while contrasting negative
ones [8, 9]. Positive pairs can be formed within the same
modality, such as different views of an object, or across
modalities, such as images and captions. In the geolocation
context, we propose two approaches to construct such pairs:
- Geographic. We match images if they are within the same
administrative division: countries, regions, areas, cities, or
QuadTree cells. We modify the dataloader to ensure each
image is part of at least one positive pair. Contrary to Haas
et al. [16], we use the multi-positive MIL-NCE loss [37] as
our contrastive objective to account for images in several
positive pairs, e.g. in the same country.
- Text-Based. Similar to Haas et al. [16], we pair each
image with a textual description of its location formed as the
following string: “An image of the city of $CITY, in the area
of $AREA, in the region of $REGION, in $COUNTRY.”.

Analysis. In Table 5, we measure the impact on the fine-
tuned model of different approaches for constructing con-
trastive pairs. We observe a consistent improvement in terms
of performance when building positive pairs with regions,
which may be the division most likely to present unique and
homogeneous visual and cultural identities. In contrast, ar-
eas appear to hurt the performance when used contrastively.
Overall, contrastive learning yields a much higher country
and region classification rate compared to the classification-
based approaches of Table 3, suggesting that encouraging
geographically consistent representations is advantageous
for geolocation. We also observe that using text as a proxy
when geographically consistent pairs exist is not beneficial.

4.7. Combined Model
Summarizing our previous exploration and analysis, we com-
bine the most impactful design choices for each experiment
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Table 7. Nearest Neighbors. We report the performance of nearest
neighbor retrieval using different encoders.

Geo ↑
score

Dis ↓
tance

Classification accuracy ↑
country region area city

CLIP-VIT-B32-LAION 2511 3455 49.3 29.6 1.9 13.1
DINOv2 2994 2542 61.1 37.1 22.9 16.4
CLIP-VIT-L14-DATACOMP 3201 2047 64.5 38.4 23.3 16.6
CLIP-VIT-L14-OpenAI 3545 1458 72.8 44.4 27.5 19.3
StreetCLIP 3597 1386 73.4 45.8 28.4 19.9

Combined model 2734 2608 54.9 24.5 13.6 9.4

into a strong geolocation model, denoted in green: ViT-L-14
backbone pretrained on DATA COMP, QuadTree partition
with hybrid prediction and hierarchical supervision, fully
fine-tuned with a region-contrastive loss. As shown in Ta-
ble 6, this model starkly improves on the base model, with
an increase of +1309 in Geoscore, an average distance re-
duced by 45%, and significantly better accuracy at all levels
of administrative divisions.

Analysis. In Table 6, we compare the performance of our
combined model to a random baseline (select the location
of a random image in the training set) and a human per-
formance obtained by asking 80 annotators to guess the
locations of the same 50 images randomly sampled from the
test set [36].Despite the difficulty of the task, the average
annotator’s performance is significantly better than chance.
Our baseline model, and more substantially our combined
model, far surpasses the accuracy of annotators. We also
evaluate two state-of-the-art geolocation models: StreetCLIP
[16] evaluated in zero-shot using the text string given in Sec-
tion 4.6, and the GeoEstimator model [40] fine-tuned on our
training set. As both models are designed for geolocation,
they yield good performance. Owing to its bespoke geo-
cells, GeoEstimator reaches the highest accuracy for area
classification, illustrating the benefit of architectures with
built-in geographical priors. See the appendix for further
experiments, notably on the impact of auxiliary variables.

Nearest Neighbor. We perform retrieval by matching each
image from the test set with an image from the train set
based on the cosine distance between the features of each
image encoder. We perform approximate matching with the
FAISS algorithm [28] through the AutoFAISS package [1],
without re-ranking [27, 47]. As reported in Table 7, retrieval
methods trained through contrastive learning exhibit high
performance. However, the supervision of our combined
model based on geographic coordinates and cells does not
enhance its retrieval performance. In fact, its retrieval score
is lower than that of its pretrained image encoder. These
findings are consistent with observations that fine-tuning
self-supervised models decreases retrieval performance [64].
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Figure 5. Spatial Distribution of Errors. We plot the average
prediction error of the combined model in km across the globe.

Error Distribution. We report in Figure 5 a heatmap of
the average error distance. Areas sparsely populated with
training images, such as South America, have a significantly
higher error rate. We report a Pearson correlation coefficient
of −0.25 between image density and error, suggesting that
image density is not the only factor in the mistakes of our
proposed model. See Figure 6 for a visualization of the error
distribution. Over half of the combined model’s predictions
are within 250km of the true image locations.
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Figure 6. Error Distribution. Proportion of predictions within a
set distance in the test set. ⋆ evaluated on 50 images only.

5. Conclusion
We introduced a new open-access street view dataset of un-
precedented size and quality, enabling the consistent training
and evaluation of global geolocation models for the first
time. Through an extensive experimental framework, we
demonstrate that our dataset is a competitive benchmark for
developing and evaluating general and bespoke state-of-the-
art computer vision approaches for geolocation. Through its
scale and quality, we expect OSV-5M to also be useful for
self-supervised learning and generative modeling, valuable
tasks beyond the scope of visual geolocation.
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