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Abstract

While deep learning has led to huge progress in complex
image classification tasks like ImageNet, unexpected failure
modes, e.g. via spurious features, call into question how
reliably these classifiers work in the wild. Furthermore, for
safety-critical tasks the black-box nature of their decisions
is problematic, and explanations or at least methods which
make decisions plausible are needed urgently. In this paper,
we address these problems by generating images that op-
timize a classifier-derived objective using a framework for
guided image generation. We analyze the decisions of im-
age classifiers by visual counterfactual explanations (VCEs),
detection of systematic mistakes by analyzing images where
classifiers maximally disagree, and visualization of neurons
and spurious features. In this way, we validate existing obser-
vations, e.g. the shape bias of adversarially robust models,
as well as novel failure modes, e.g. systematic errors of
zero-shot CLIP classifiers. Moreover, our VCEs outperform
previous work while being more versatile.

1. Introduction

Deep learning-based image classifiers suffer from several
failure modes such as non-robustness to image corruptions
[32, 40], spurious features and shortcuts [28, 54, 76], over-
confidence on out-of-distribution inputs [31, 33, 55], adver-
sarial examples [50, 82] or biases [27], among others.

While there has been a lot of work on detecting these
failure modes, there remain two important problems that are
addressed in this paper: i) systematic high-confidence pre-
dictions of classifiers, e.g. due to harmful spurious features
[54], often occur on subgroups of out-of-distribution data. It
is inherently difficult to find these subgroups as no data is
available for them; ii) the visualization of the semantic mean-
ing of concepts, e.g. of single neurons, or counterfactual
explanations for image classifiers is extremely challenging
as one has to optimize on the set of natural images and the
optimization in pixel space leads to adversarial samples.

In this paper, we tackle these problems by leveraging
recent progress in generative models [13, 61, 64, 67]. Our
goal is to visualize properties of one or multiple image clas-
sifiers by optimizing on the approximation of the “natural
image manifold” given by a latent diffusion model like Sta-
ble Diffusion [64]. This allows us to search for “unknown
unknowns”, i.e. failure cases that correspond to a subpop-
ulation of natural images which is neither easy to find in
existing datasets nor allows for a textual description and is
thus not amenable to direct prompting. We achieve this by
using a generic framework for optimizing the inputs to a
latent diffusion model to create realistic-looking images that
minimize a loss function L, e.g. for the generation of images
maximizing classifier disagreement, and VCEs and neuron
visualizations, see Fig. 1 for an overview.

Using our DiG-IN framework we detect systematic failure
cases of a zero-shot CLIP ImageNet classifier by maximiz-
ing the difference in the predicted probability for a given
class, produce realistic visual counterfactuals for any image
classifier outperforming [5], and provide neuron visualiza-
tions for a SE-ResNet and introduce Neuron Counterfactuals
and evaluate them for neurons labeled as spurious in [76] of
a ResNet50 ImageNet classifier.

2. Related Work

Detection of systematic errors: [26] develop a pipeline to
iteratively retrieve real images from LAION-5B and label
failure cases where the retrieval is refined based on the la-
bels and additional LLM captions. [44] use a 3D simulator
to generate and evaluate controlled scenes containing class
objects to find systematic model vulnerabilities and validate
these synthetic scenes in the real world by manual recon-
struction of the scenes, whereas [73] try to find transforma-
tions which leave one classifier invariant but change another
classifier. [22] leverage an error-aware mixture model on a
multi-modal embedding to discover systematic errors in data
subsets. [14, 51, 85] use a fixed set of attributes or properties
of objects to search for systematic errors for subpopulations
by generating corresponding user-interpretable prompts with
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Figure 1. Illustration of three tasks for debugging image classifiers. Left: we generate images where one classifier is highly confident in
a class and the other is not and recover the shape bias of adversarially robust models compared to a standard model; Middle: we generate
images when maximizing or minimizing a neuron. We identify one neuron labeled as spurious for “fiddler crab”in [76] as associated to sand;
Right: we produce visual counterfactual explanations for arbitrary image classifiers and outperform [5].

a fixed template structure. [12] use patch-attacks on a pixel
level or restricted attacks on the latent space of an image gen-
erator to construct perturbations which are then pasted into
images. As the added patches are not coherent with the origi-
nal image, the resulting image is typically unrealistic. While
some of these methods use generative models to search for
systematic errors this is done with a fixed search pattern.
Thus, problematic cases can be missed if not included in the
pre-defined attribute set. In contrast, we optimize over the
prompt/latent space and thus can find any problematic case
as long as the diffusion model can generate it.

Spurious features are a particular failure mode where out-
of-distribution images including the spurious features are
confidently classified as a corresponding class, e.g. graffitis
as “freight car” due to graffitis often appearing on training
images of “freight car” in ImageNet. [54] label a spurious
feature as harmful if it can mislead the classifier to classify
the image as the corresponding class without the class ob-
ject being present. Most existing methods are limited to
smaller datasets or subsets of ImageNet [4, 58, 74, 75], only
[52, 54, 76, 77] do a full search on ImageNet. [76] label
neurons of a ResNet50 as “core” or “spurious” features by
inspecting Grad-Cam images and feature attacks. We show
that our prompt-based optimization allows for a much eas-
ier identification of spurious features by generating realistic
images that maximize or minimize the neuron activation.

Interpretability methods are often motivated by detecting
failure modes of a classifier. Very popular ones are, for
example, attribution methods such as GradCAM [72], Shap-
ley values [49], Relevance Propagation [8], and LIME [63].
These methods were analyzed with mixed success regarding
the detection of spurious features in [1, 2]. Counterfactual
explanations [86, 87] have recently become popular but are
difficult to generate for images as the optimization problem
is very similar to that of adversarial examples [82]. Visual
counterfactual explanations are generated via manipulation
of a latent space [71], using a diffusion model [5, 24] or in
image space [6, 10, 68] for an adversarially robust classifier.

3. Method
3.1. Background: Latent Diffusion Models

Score-based diffusion models [39, 78, 80] generate new sam-
ples from a data distribution p(x) by progressively denoising
a latent vector drawn from a prior distribution. In this work,
we focus on latent diffusion models (LDMs) [64, 83] that
generate new samples in the latent space of a variational
auto-encoder (VAE), where D denotes the de- and E the cor-
responding encoder. We use x to denote images in pixel- and
z for images in VAE-latent space. During sampling, a ran-
dom latent zT , where T corresponds to the total number of
sampling steps, is drawn from the prior distribution. We then
produce less and less noisy samples zT−1, zT−2, ... until we
reach a noise-free VAE latent z0, which can be transformed
into pixel space using D to produce the final image. The
exact sequence (zt)Tt=0 depends on the specific solver. While
diffusion models initially used stochastic samplers [39], it
has been shown that one can generate high-quality samples
with deterministic solvers like DDIM [79], where the entire
randomness lies in the initial latent zT . The sequence of
latents (zt)Tt=0 for DDIM is then defined via:

zt−1 =
√
αt−1

zt −
√
1− αt ϵ(zt, t, C)√

αt

+
√
1− αt−1 ϵ(zt, t, C).

(1)

Here (αt)
T
t=1 defines the noise schedule and ϵ is the de-

noising model which is trained to predict the noise that was
added to a noisy sample, see Appendix A for details. ϵ is typ-
ically parameterized using a U-Net [65] where an additional
conditioning signal can be employed to give the user control
over the outcome of the diffusion process by sampling from
a conditional distribution p(z|C). In this work, we use the
text-to-image Stable Diffusion [64] (SD) model where the
conditioning signal C is a text encoding from a CLIP [60]
text encoder which is fed into the U-Net via cross-attention
layers. The SD model is trained on a large set of image-text
pairs [70] and covers a variety of naturally occurring images.
In practice, to amplify the impact of the conditioning, it
is often necessary to employ classifier-free guidance [35],
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Figure 2. Illustration of the forward diffusion process (black arrows) from the initial latent zT into the loss function L and the gradient flow
during backpropagation (purple arrows). The optimization variables zT , (∅t)

T
t=1 and (Ct)

T
t=1 are marked with a dashed border. On the left,

we illustrate the conditioning mechanism inside the denoising U-Net via cross-attention (XA) layers.

where ϵ(zt, t, C) in Eq. (1) is replaced with a combination
of the conditional ϵ(zt, t, C) and an unconditional prediction
ϵ(zt, t,∅) with a null-text token ∅.

3.2. DiG-IN: Diffusion Guidance Framework for
Investigating Neural Networks

Text-guided diffusion models have shown great success in
generating highly realistic images. Several recent approaches
for the detection of systematic errors leverage large text-to-
image models [14, 51, 85] for the generation of images. They
use fixed prompt templates describing specific properties of
the desired input. However, these approaches are restricted to
the variability of images encoded by their prompt templates
and text guidance is often not precise enough. Our goal
is an optimization framework where the image generation
is directly guided by one or multiple classifiers (classifier
disagreement and VCEs) or their properties (maximizing
and minimizing neuron activations). Finding a text prompt
that captures these tasks is just as hard as solving the task
itself, e.g. if we want to find out what semantic concept
maximizes a certain neuron we do not have access to a text
description. While methods such as ControlNet [92] have
shown great success at fine-grained conditioning of diffusion
models, they require training samples that are not available
for the tasks we want to solve and in addition, would require
retraining for every vision classifier we want to explain.
However, it is easy to formulate our tasks as an optimization
problem using a loss function L on the generated image. For
example, we can easily calculate the activation of the target
neuron from our previous example and search for highly
activating images. Using the fact that the DDIM solver
from the previous Section is non-stochastic, the output of
the entire diffusion process is a deterministic function of the
initial latent zT , the conditioning C and the null-text token
∅. This allows us to formulate all our explanation tasks as
optimization problems of the following form:

max
zT ,(Ct)Tt=1,(∅t)Tt=1

−L
(
D
(
z0

(
zT , (Ct)

T
t=1, (∅t)

T
t=1

) ))
. (2)

Here, we use z0
(
zT , (Ct)

T
t=1, (∅t)

T
t=1

)
to denote the

noise-free latent which is obtained by running the diffusion
process from the initial latent zT . Additionally, we use a
separate conditioning Ct and null-text ∅t for each time-step
t ∈ {1, ..., T} (see Figure 2). Intuitively, we search for a
starting latent and conditioning that generates an image that
optimizes our loss L without the need for manual prompt
tuning or other forms of human supervision. We call this
diffusion guidance framework DiG-IN. In the following Sec-
tions, we provide the corresponding loss function for each
task. We want to highlight that this optimization framework
is completely plug-and-play, i.e. it can be used with any
vision model without requiring finetuning of the generative
model. In practice, storing the entire diffusion process in
memory for gradient computations is not possible due to
VRAM limitations and we use gradient checkpointing [17]
to compute the intermediate activations as required. See
Algorithm 1 for pseudo-code.

4. Maximizing Classifier Disagreement
We generate maximally disagreeing images for a pair of
two classifiers. This is a valuable tool to highlight differ-
ences caused by different training types, architectures, or
pre-training and is particularly interesting for identifying
subgroups where one classifier performs worse than the
other. Forcing disagreement shifts the focus from prototypi-
cal examples of a class and makes this approach especially
suitable for discovering unexpected failure modes on out-
of-distribution images. Assume we are given two classifiers
f, g and want to generate a realistic image that is predicted
as target class y by f and not recognized by g. As objective
we use the difference of confidences in the target class y:

max
zT ,(Ct)Tt=1,(∅t)Tt=1

pf

(
y|D

(
z0

(
zT , (Ct)

T
t=1, (∅t)

T
t=1

) ))
−pg

(
y|D

(
z0(zT , (Ct)

T
t=1, (∅t)

T
t=1)

))
.

(3)

We initialize the optimization with a random latent and the
prompt: "a photograph of a <CLASSNAME>".
Results: Maximally disagreeing images are useful to explore
subpopulations that capture classifier-specific biases and
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pf : Confidence Robust Vit-S ↑ vs pg : Confidence ViT-S ↓
Head Cabbage (pf / pg ) Koala (pf / pg ) Brown Bear (pf / pg ) Dugong (pf / pg )

SD
In

it.

0.57 / 0.95 0.70 / 0.95 0.79 / 0.96 0.76 / 0.97 0.76 / 0.96 0.67 / 0.96 0.01 / 0.01 0.14 / 0.92

p
f
↑

-p
g
↓

0.82 / 0.00 0.79 / 0.00 0.86 / 0.00 0.92 / 0.06 0.80 / 0.00 0.76 / 0.00 0.66 / 0.02 0.78 / 0.00

Figure 3. Classifier disagreement: shape bias of adversarially robust models. For a given class y, the first row shows the output of Stable
Diffusion for “a photograph of y”. The images in the second row have been optimized to maximize the confidence of an adversarially robust
ViT-S while minimizing the one of a standard ViT-S. The resulting images retain the same shape but with smooth surfaces and little texture.

Figure 4. Classifier Disagreement: Images maximizing the dis-
agreement between two classifiers f and g can reveal biases and
failure modes of one or both classifiers. The three different variants
we observe are: In the case of shape bias of robust models, the
generated subpopulation has a schematic appearance but is still part
of the true class (left). The zero-shot CLIP classifier extends the
original class to a much larger set of out-of-distribution samples
which causes unexpected failure modes (middle). When compar-
ing the ViT and the ConvNext models, we find different biases by
generating images inside as well as outside of the true class (right).

failure modes (Fig. 4). To demonstrate the versatility of this
approach, we visualize the shape bias of adversarially robust
models, failure cases due to the text embedding of zero-shot
CLIP, and differences between a ViT and ConvNeXt.
Shape bias of adv. robust models: In Fig. 3 we show
the difference between an adversarially trained ViT-S and
a standard ViT-S. Both variants mostly give the correct pre-
diction with high confidence on the initial Stable Diffusion
outputs. Maximizing the predicted probability of the robust
model while minimizing that of the standard ViT-S, produces
visible changes in the texture, e.g. smooth cartoon-like sur-
faces, while retaining the shapes of the objects as well as
their class. The standard classifier assigns zero confidence to
the generated images, whereas the confidence of the robust
one increases. This verifies the shape bias of adversarially
trained models which was already observed in [15, 29, 93].
Failure cases of zero-shot CLIP: Next, we consider the
maximally disagreeing images for an ImageNet classifier

(ConvNeXt-B) and a corresponding zero-shot CLIP (ViT-B-
16 trained on LAION-2B) classifier (see Fig. 5). Here, we
observe several failure modes specific to the properties of
the zero-shot classifier which classifies based on the cosine
similarity to a text embedding of the class name. In the
first two examples, an image corresponding to only parts
of the class name (“waffle” for “waffle iron”, “arch bridge”
for “steel arch bridge”) achieves a high similarity for the
CLIP model but low confidence for the ConvNeXt. The
latter is even a misclassification, as an “arch bridge” made
of stone is a “viaduct” which is another ImageNet class (we
further investigate this error in Fig. 8). The generated images
for the classes “wooden spoon” and “space bar” show a
related pattern. In these cases, the composition of individual
parts of the class name achieves a high score for the CLIP
model but does not resemble the intended class objects in
the training set. A spoon on a wooden table is classified
as “wooden spoon” and the words “space bar” in front of a
“space” background are classified as “space bar”. To verify
these findings, we queried the LAION-5B image retrieval
API for the text embeddings of “an image of waffle”, “an
image of arch bridge”, “an image of a spoon on a wooden
table”, and “an image of a bar in space”. These real images
produce the same results (see the second row of Fig. 5).

Comparing biases: ViT vs ConvNeXt: We investigate
the differences between a ViT-B and a ConvNeXt-B. We
generate two images by maximizing the confidence of one
while minimizing the other and vice versa (see Fig. 16 in
App. B). We discover subtle biases when maximizing the
ConvNeXt confidence for “goblet”: we generate empty wine
glasses classified as “goblet” by the ConvNeXt and “red
wine” by the ViT. Both of them are wrong, as the image does
not contain an ImageNet object. Nevertheless, insights about
such consistent behavior can help to detect failure modes
that would occur after the release of the model and cannot
be noticed by inspecting the training or test dataset.
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pf : Confidence Zero-shot CLIP ImageNet classifier ↑ vs. pg : Confidence ConvNeXt-B ↓
Waffle Iron (pf / pg ) Steel Arch Bridge (pf / pg ) Wooden Spoon (pf / pg ) Space Bar (pf / pg )

p
f
↑

-p
g
↓

1.00 / 0.01 1.00 / 0.00 1.00 / 0.00 1.00 / 0.00 0.98 / 0.00 0.92 / 0.04 1.00 / 0.00 0.99 / 0.00

Validation of CLIP zero-shot errors on real images from LAION-5B with retrieval query “an image of ...”
“.. a waffle” “.. an arch bridge” “.. a spoon on a wooden table” “.. a bar in space”

R
ea

lI
m

ag
es

1.00 / 0.18 1.00 / 0.02 0.98 / 0.00 0.99 / 0.00 0.94 / 0.00 0.99 / 0. 07 0.81 / 0.00 0.40 / 0.00

Figure 5. Detection of errors of the zero-shot CLIP model (ImageNet): we generate a SD image with the prompt “a photograph of
<CLASSNAME>”. Starting from this image, we maximize the difference between the predicted probability for the target class of a zero-shot
CLIP ImageNet model and a ConvNeXt-B trained on ImageNet (first row). We find subpopulations of images that are systematically
misclassified by the CLIP model: waffles are classified as “waffle iron”, stone briges as “steel arch bridges”, spoons on a wooden table as
“wooden spoon”, and images with space and bar as “space bar”. In the second row we validate these errors by finding similar real images in
LAION-5B (see App. C). The errors of CLIP are most likely an artefact of the text embeddings due to the composition of the class name.

5. Visual Counterfactual Explanations

Counterfactual reasoning has become a valuable tool for un-
derstanding the behavior of models. For image classifiers, a
Visual Counterfactual Explanation (VCE) [5, 10] for input x̂,
target class y and classifier f is a new image x, that i) is clas-
sified as y by f (actionable), ii) looks realistic (on the natural
image manifold), iii) contains minimal changes to the input
x̂. In particular, that the VCE x is actionable distinguishes it
from other explanation techniques. Prior methods that gener-
ate VCEs for ImageNet require an additional dataset-specific
adversarially robust model [5]. In contrast, our method is
training-free and produces VCEs for any classifier trained
on any dataset containing natural images. We thus refer to
our generated counterfactuals as Universal VCE (UVCE).

VCE generation is a challenging image-to-image task.
The loss for VCE generation has to include a similarity
measure to the original image in addition to the predicted
probability of f in class y. As the optimization problem is
highly non-convex, we need a good initialization for better
performance and convergence. We describe our method in
the following (see Appendix D for pseudo-code and details).
VCE Initialization: As the VCE should be similar to the
original image, random initialization is suboptimal. To find
a latent zT that reproduces the image x̂, we use Null-Text
inversion [53] which, on top of the latent zT optimizes a per-
time step null-token (∅t)

T
t=1 to improve reconstruction. As

the inversion is dependent on the text conditioning and we
want a fully automated pipeline, we need a text description
P̂ of x̂. We use Open-Flamingo [3, 7] to extend the generic
caption "an image of a <ORIGINAL CLASSNAME>" with
additional details and then decode this caption using the

CLIP encoder in SD to get an initial conditioning Ĉ. By do-
ing so, we can find (zT , Ĉ, (∅t)

T
t=1) that closely reconstruct

the original image. In order to get an even better initializa-
tion, we make use of the extensive knowledge contained in
SD. We replace the original class name with the name of
the target class in the prompt P̂ to get a modified prompt
P , so "an image of a dog at the beach" becomes "an image
of a cat at the beach". This prompt can be decoded into a
new conditioning C that contains the target class. Due to the
change from Ĉ to C, reconstructing the image with the new
conditioning C yields images with different overall structure.
We thus use a modified version of Prompt-to-Prompt from
[34], who found that one can preserve structure by injecting
cross-attention (XA) maps. This style of editing often results
in a good initialization, but several issues prevent it from
being a VCE method on its own. Most importantly, as f is
not involved, the resulting images often have low confidence
and secondly, it induces more changes than necessary, see
Figure 18a. To overcome those issues, we propose to jointly
optimize the confidence and distance to the starting image.

VCE Optimization: To ensure the similarity of the VCE x
to the starting image x̂, we want to change the class object
while preserving the background. Prior works [5, 10] use Lp

regularization between x and x̂ to keep the changes minimal.
However, Lp distances between images depend heavily on
the size of the foreground object. If the class object is small,
we only want to allow minimal changes in the image, while
for larger class objects we need to allow larger changes. As
the XA maps encode the locations that are most influenced
by a specific text token, we can use them to produce point
prompts for computing segmentation maps in the VAE-latent

11097



Original DVCE [5] DiG-IN Original DVCE [5] DiG-IN Original DVCE [5] DiG-IN
Magpie → Robin 1.00 → Robin 0.99 Ble. Spaniel →Maltese 0.99 →Maltese 0.98 Pizza →Pot Pie 0.99 →Pot Pie 0.99

Kit Fox →Red Fox 0.99→Red Fox 0.95 Tennis Ball →Basketb. 0.62→Basketb. 0.98 Minivan →Convert. 1.00→Convert. 0.97

Figure 6. ImageNet VCEs: We show the original ImageNet validation image as well as DVCEs [5] and our DiG-IN UVCEs with the
corresponding confidence in the target class. Our UVCEs are more realistic looking and produce fine-grained texture changes ("Red Fox",
"Basketb.") as well as more complex geometric transformations ("Pot Pie", "Convertible") where DVCE can fail to create a coherent object.

Original DiG-IN Original DiG-IN

St
an

fo
rd

C
ar

s[
43

] Corvette
ZR1 2012

→Ford GT
2006 0.99

BMW
M5 2010

→Audi TT
2011 0.99

Fo
od

-1
01

[1
1] Grilled

Salmon
→Risotto

0.99
Deviled

Eggs
→ Garlic

Bread 0.99

C
U

B
-2

00
-2

01
1

[8
8] Bronzed

Cowbird
→ Yellow Head.
Blackbird 0.99

Great Cr.
Flycatcher

→ House
Sparrow 0.99

FF
H

Q
[4

1]

"...crooked
teeth..."

→ "...perfect
teeth..."

"wearing
glasses"

→ "without
glasses"

Figure 7. UVCEs for various datasets. DiG-IN is the first training-
free method that can generate highly realistic VCEs for any dataset
containing natural images without requiring a dataset-specific gen-
erative model or an adversarially robust classifier.

(SVAE) and pixel space (SPX) using HQ-SAM [42], where
Si,j ≈ 1 if location (i, j) corresponds to the foreground ob-
ject. We define our foreground aware distance regularization
that penalizes background changes to the original image x̂
and its VAE encoding E(x̂) while simultaneously allowing
for large changes in color and shape in the foreground:

(Conf. Steel arch bridge / Conf. Viaduct)
Original DiG-IN Original DiG-IN

L
ai

on
-5

B
[7

0] 0.99 / 0.00 0.01 / 0.99

Im
ag

eN
et

-1
K

[6
6] 0.82 / 0.18 0.01 / 0.99

Figure 8. Zero-shot CLIP UVCEs: 14% of the ImageNet valida-
tion images of class “viaduct” are misclassified as “steel arch bridge”
by zero-shot CLIP (Fig. 5). We generate UVCEs for wrongly classi-
fied images with the correct class “viaduct” as target. The classifier
seems to distinguish the two classes based on the shape of the
arch. This shows that the CLIP model has learned a wrong decision
boundary and how UVCEs can be used to understand systematic
misclassifications, e.g. narrow stone bridges that are classified as
“steel arch bridge” instead of “viaduct”.

d(z, x̂) =wVAE∥(1− SVAE)⊙ (z − E(x̂))∥22
+wPX∥(1− SPX)⊙ (D(z)− x̂)∥22.

(4)

The final loss for the VCE generation is then given by:

max
zT ,(Ct)Tt=1,(∅t)Tt=1

−d
(

z0
(
zT , (Ct)

T
t=1, (∅t)

T
t=1

)
, x̂

)
+ log pf

(
y|D

(
z0

(
zT , (Ct)

T
t=1, (∅t)

T
t=1

) ))
.

(5)

Evaluation: We compare our DiG-IN UVCEs to DVCEs
[5] which is the most recent VCE method that works on Ima-
geNet. We emphasize that, unlike DVCEs, we do not require
a robust classifier or a dataset-specific diffusion model. We
generate counterfactuals into classes that are close in the
ImageNet hierarchy and show qualitative results in Fig. 6.
While DVCEs work well for some images, they often pro-
duce unrealistic results. For example, for “Basketball” or
“Convertible”, DVCEs contain some features of the target
class but the method fails to create a coherent object. In other
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Maximize Neuron 319 Maximize Neuron 373 Maximize Neuron 494 Maximize Neuron 798
Mean Act. 319: 18.02

Max Mean Act. Others: 1.44
Mean Act. 373: 17.56

Max Mean Act. Others: 0.35
Mean Act. 494: 18.21

Max Mean Act. Others: 2.67
Mean Act. 798: 12.66

Max Mean Act. Others: 1.27

Figure 9. Neuron visualization for a SE-ResNet-D 152 [90] trained on ImageNet: Our neuron visualization allows to identify subtle
differences between four neurons which are all activated by some kind of “water”. Interestingly, the individual neurons are maximally
activated only for a specific type of “water” and show no strong activations for the images generated where the other neurons are maximized.

cases, some parts of the generated class seem artificial or
illogical like the ear of the dog and the basketball texture. In
contrast, our approach consistently produces more realistic
changes. To validate our method, we did a user study on
randomly selected images where we asked the participants
to rate if "the counterfactual image " Q1) "... is realistic"
Q2) "... shows meaningful features of the target class" Q3)
"... changes mainly the class object". We also asked the
participants to directly rate whether the DVCE or the UVCE
counterfactual is better or if both are equal. Results are in
Table 1 and further details and the images of the study are
in Appendix E. Users rated our DiG-IN UVCEs as more
realistic and as better showing the features of the target class.
Our UVCEs were preferred over DVCEs in 59.5% of cases,
18.1% preferred DVCEs and 22.5% rated both equal.

Q1 Q2 Q3 Better?
DVCE[5] 40.4% 63.7% 73.8% 18.1 %

UVCE 76.0% 81.3% 89.1% 59.5%

Table 1. User Study. Our UVCEs are rated as more realistic (Q1),
showing better features of the target class (Q2), and overall better.

We emphasize that, unlike previous approaches like
DVCE, we can generate our UVCEs for any image clas-
sifier (no robustness or specific diffusion model required) on
any natural image dataset and we show examples for Cars,
CUB, and Food as well as zero-shot attribute classification
on FFHQ in Fig. 7 and additional examples in Appendix D.
In addition, Fig. 8 contains an error analysis of CLIP using
DiG-IN where we visualize what a wrongly predicted image
would have to look like to be correctly classified and we
present more UVCES for images misclassified by a EVA02
[23] in Fig. 25 in the Appendix D.

6. Neuron Activation
In the next task, we want to visualize the semantic meaning
of specific neurons in the last layer of a classification model.
While the neurons in earlier layers of DNNs and convolu-
tional NNs in particular, are thought to capture low-level
image features like corners and edges, neurons in the last

layer are meant to capture more semantically meaningful
concepts [21]. For this task, assume we are given a classifier
f and let ϕ : RD → RN denote the function that maps an
input image into its feature representation at the final layer
before the linear classification head. Let n be the target neu-
ron n ∈ {1, ..., N} we want to visualize. Our objective is to
maximize the activation of that neuron using the objective:

max
zT ,(Ct)Tt=1,(∅t)Tt=1

ϕ
(
D
(
z0

(
zT , (Ct)

T
t=1, (∅t)

T
t=1

) ))
n
. (6)

We demonstrate two visualization methods, one that gen-
erates synthetic prototypical images that highly activate a
target neuron and introduce Neuron Counterfactuals.
Synthetic Neuron Visualizations: Our goal is to generate
prototypical examples that visualize the target neuron n. A
common way to identify the concepts captured by a neuron
is to inspect highly active training images. However, such
subpopulations usually differ in many aspects which makes
this analysis ambiguous. For our optimization, we need an
initial conditioningC which ideally relates to the objects that
maximize this neuron. To get this, we use CogAgent [37] to
list the objects in the most activating train images for that
neuron. For each object, we use SD to generate images for
the prompt: "a photograph of a <OBJECT>" and use the one
with the highest mean activation for our initial conditioning
C and optimize Eq. (6). We show results for 4 different
"water" neurons in Fig. 9. Additional results and details
can be found in Appendix F, where we also demonstrate the
advantages over inspecting maximally active train images
and prompt-based approaches (Fig. 29).
Neuron Counterfactuals: It has been shown that the neu-
rons that are the most impactful for a classifier’s decision are
often activated by the image background instead of the class
object [54, 76]. To visualize this, we max- or minimize the
activation of a potentially spurious neuron starting from the
same Null-Text inversion of a real image we used in Sec. 5.
Unlike for UVCEs, we now want to allow for background
changes to insert or remove the spurious feature while pre-
serving the class object. To achieve this, we use the distance
term Eq. (4) without inverting the foreground mask.
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Neuron 870 (Conf. class Fiddler crab) Neuron 565 (Conf. class Prairie chicken)
[76] Max. Maximize ← Test → Minimize [76] Max. Maximize ← Test → Minimize

Neuron 870 Neuron 870 Image Neuron 870 Neuron 565 Neuron 565 Image Neuron 565
9.76 (0.00) 5.74 (0.99) 2.24 (0.93) 0.02 (0.04) 14.07 (0.62) 5.88 (0.97) 3.23 (0.87) 0.08 (0.01)

10.06 (0.00) 3.10 (0.95) 1.31 (0.86) 0.17 (0.16) 14.51 (0.80) 6.78 (0.80) 3.28 (0.57) 0.32 (0.00)

Figure 10. Neuron Counterfactuals: We visualize neurons marked as spurious in [76]. Starting from a test image, we max- and minimize
the value of the corresponding spurious neuron. As comparison, we show the result of the feature attack maximizing the neuron of [76].
Our resulting images convey the semantic meaning of the neuron, whereas the feature attack is too extreme. For the class “fiddler crab”,
maximizing the spurious neuron enhances the sandy background in the image, whereas minimizing the neuron removes the sand. Similarly,
the semantic feature “dry gras” is amplified or removed in the “prairie chicken” images when the spurious neuron is maximized or minimized.

Class 2 - NPCA Comp. 1 Class 554 - NPCA Comp. 2
(Conf. class Great White Shark) (Conf. class Fireboat)

Fireboat American Alligator Grey Whale Pirate

Te
st

Im
ag

e

−2.85 (0.02) −3.53 (0.09) −1.02 (0.00) −1.20 (0.22)

M
ax

.N
PC

A

3.38 (0.29) 1.01 (0.41) 5.10 (0.97) 2.63 (0.99)

Figure 11. Validating harmful spurious features: [54] identify
NPCA components of certain classes as harmful spurious features,
i.e. their presence alone is sufficient to trigger prediction of the
class, by searching maximally activating images. We validate this
property directly by maximizing the NPCA component (details in
G) starting from images of other classes (top row). Left: Maximiz-
ing NPCA comp. 1 of great white shark changes the water surface
and yields prediction ’great white shark’ even though the ’fireboat’
and ’American alligator’ are still visible and no features of a shark
are generated. Right: Same for the NPCA comp. 2 of fireboat.

Generated images that maximize individual neurons have
already been used to detect spurious features [76]. In Fig. 10,
we compare our approach to their “Feature attack”. Their
procedure achieves a higher neuron activation but the re-
sulting images lack realism as they show mostly artificial
patterns. In addition, they mostly reduce the confidence in
the spuriously correlated class. On the other hand, our results
convey a clearer interpretation of the corresponding seman-
tic concept: Maximizing the neurons amplifies the presence

of the corresponding spurious concepts (“sand” for “fiddler
crab” and “dry gras” for “prairie chicken”), whereas mini-
mizing removes them completely. Due to our regularization,
the class object shows only minimal changes, however, we
see that the confidence into the class changes dramatically
depending on the activation of that neuron. This strongly
suggests that both of them are cases of harmful spurious
features, i.e. their presence in images that do not contain the
actual class already triggers the prediction of the class. We
specifically validate the harmful spurious features found by
[54] in Fig. 11 where we start from the image of a different
class and maximize the NPCA component [54], see Fig. 35
and Appendix G for details. We show more neuron counter-
factuals in Appendix F and provide a quantitative evaluation
of core and spurious neurons of [76] in Appendix F.3.

7. Conclusion
In this work, we have introduced a framework for analyzing
and explaining any differentiable image classifier via dif-
fusion guidance. We demonstrated that it enables flexible
detection of systematic biases on in- and out-of-distribution
data. Additionally, our work improves the understanding
of classifier decisions by creating realistic and interpretable
visualizations of individual neurons as well as better and
more universal visual counterfactual explanations. See Ap-
pendix H for limitations and failure cases.
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