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Figure 1. CT Reconstruction with 32 views of State-of-the-Art Methods. Comparative analysis with post-processing and first-order
unrolling networks highlights QN-Mixer’s superiority in artifact removal, training time, and data efficiency.

Abstract

Inverse problems span across diverse fields. In medical
contexts, computed tomography (CT) plays a crucial role
in reconstructing a patient’s internal structure, presenting
challenges due to artifacts caused by inherently ill-posed
inverse problems. Previous research advanced image qual-
ity via post-processing and deep unrolling algorithms but
faces challenges, such as extended convergence times with
ultra-sparse data. Despite enhancements, resulting images
often show significant artifacts, limiting their effectiveness
for real-world diagnostic applications. We aim to explore
deep second-order unrolling algorithms for solving imag-
ing inverse problems, emphasizing their faster convergence
and lower time complexity compared to common first-order
methods like gradient descent. In this paper, we introduce
QN-Mixer, an algorithm based on the quasi-Newton ap-
proach. We use learned parameters through the BFGS al-
gorithm and introduce Incept-Mixer, an efficient neural ar-
chitecture that serves as a non-local regularization term,
capturing long-range dependencies within images. To ad-
dress the computational demands typically associated with
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quasi-Newton algorithms that require full Hessian matrix
computations, we present a memory-efficient alternative.
Our approach intelligently downsamples gradient infor-
mation, significantly reducing computational requirements
while maintaining performance. The approach is validated
through experiments on the sparse-view CT problem, in-
volving various datasets and scanning protocols, and is
compared with post-processing and deep unrolling state-
of-the-art approaches. Our method outperforms existing
approaches and achieves state-of-the-art performance in
terms of SSIM and PSNR, all while reducing the number
of unrolling iterations required.

1. Introduction

Computed tomography (CT) is a widely used imaging
modality in medical diagnosis and treatment planning, de-
livering intricate anatomical details of the human body
with precision. Despite its success, CT is associated with
high radiation doses, which can increase the risk of can-
cer induction [50]. Adhering to the ALARA principle (As
Low As Reasonably Achievable) [37], the medical com-
munity emphasizes minimizing radiation exposure to the
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lowest level necessary for accurate diagnosis. Numerous
approaches have been proposed to reduce radiation doses
while maintaining image quality. Among these, sparse-
view CT emerges as a promising solution, effectively low-
ering radiation doses by subsampling the projection data,
often referred to as the sinogram. Nonetheless, recon-
structed images using the well-known Filtered Back Projec-
tion (FBP) algorithm [34], suffer from pronounced streak-
ing artifacts (see Fig. 1), which can lead to misdiagnosis.
The challenge of effectively reconstructing high-quality CT
images from sparse-view data is gaining increasing atten-
tion in both the computer vision and medical imaging com-
munities.

With the success of deep learning spanning diverse do-
mains, initial image-domain techniques [6, 19, 25, 28, 59]
have been introduced as post-processing tasks on the FBP
reconstructed images, exhibiting notable accomplishments
in artifact removal and structure preservation. However,
the inherent limitations of these methods arise from their
constrained receptive fields, leading to challenges in effec-
tively capturing global information and, consequently, sub-
optimal results.

To address this limitation, recent advances have seen
a shift toward a dual-domain approach [18, 27, 29, 49],
where post-processing methods turn to the sinogram do-
main. In this dual-domain paradigm, deep neural networks
are employed to perform interpolation tasks on the sino-
gram data [15, 24], facilitating more accurate image re-
construction. Despite the significant achievements of post-
processing and dual-domain methods, they confront issues
of interpretability and performance limitations, especially
when working with small datasets and ultra-sparse-view
data, as shown in Fig. 1. To tackle these challenges, deep
unrolling networks have been introduced [1, 7, 8, 11, 16,
20, 51, 54]. Unrolling networks treat the sparse-view CT
reconstruction problem as an optimization task, resulting in
a first-order iterative algorithm like gradient descent, which
is subsequently unrolled into a deep recurrent neural net-
work in order to learn the optimization parameters and the
regularization term. Like post-processing techniques, un-
rolling networks have been extended to the sinogram do-
main [52, 56] to perform interpolation task.

Unrolling networks, as referenced in [12, 36, 44], exhibit
remarkable performance across diverse domains. However,
they suffer from slow convergence and high computational
costs, as illustrated in Fig. 1, necessitating the development
of more efficient alternatives [14]. More specifically, they
confront two main issues: Firstly, they frequently grapple
with capturing long-range dependencies due to their depen-
dence on locally-focused regularization terms using CNNs.
This limitation results in suboptimal outcomes, particularly
evident in tasks such as image reconstruction. Secondly, the
escalating computational costs of unrolling methods align

with the general trend of increased complexity in modern
neural networks. This escalation not only amplifies the re-
quired number of iterations due to the algorithm’s iterative
nature but also contributes to their high computational de-
mand.

To tackle the aforementioned issues, we introduce a
novel second-order unrolling network for sparse-view CT
reconstruction. In particular, to enable the learnable regu-
larization term to apprehend long-range interactions within
the image, we propose a non-local regularization block
termed Incept-Mixer. Drawing inspiration from the multi-
layer perceptron mixer [46] and the inception architec-
ture [45], it is created to combine the best features from both
sides: capturing long-range interactions from the attention-
like mechanism of MLP-Mixer and extracting local invari-
ant features from the inception block. This block facili-
tates a more precise image reconstruction. Second, to cut
down on the computational costs associated with unrolling
networks, we propose to decrease the required iterations
for convergence by employing second-order optimization
methods such as [21, 30]. We introduce a novel unrolling
framework named QN-Mixer. Our approach is based on
the quasi-Newton method that approximate the Hessian ma-
trix using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update [10, 13, 57]. Furthermore, we reduce memory us-
age by working on a projected gradient (latent gradient),
preserving performance while reducing the computational
cost tied to Hessian matrix approximation. This adapta-
tion enables the construction of a deep unrolling network,
showcasing superlinear convergence. Our contributions are
summarized as follows:
• We introduce a novel second-order unrolling network

coined QN-Mixer where the Hessian matrix is approx-
imated using a latent BFGS algorithm with a deep-net
learned regularization term.

• We propose Incept-Mixer, a neural architecture acting as
a non-local regularization term. Incept-Mixer integrates
deep features from inception blocks with MLP-Mixer,
enhancing multi-scale information usage and capturing
long-range dependencies.

• We demonstrate the effectiveness of our proposed method
when applied to the sparse-view CT reconstruction prob-
lem on an extensive set of experiments and datasets. We
show that our method outperforms state-of-the-art meth-
ods in terms of quantitative metrics while requiring less
iterations than first-order unrolling networks.

2. Related Works
In this section, we present prior work closely related to
our paper. We begin by discussing the general framework
for unrolling networks in Sec. 2.1, which is based on the
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gradient descent algorithm. Subsequently, in Sec. 2.2 and
Sec. 2.3, we delve into state-of-the-art methods in post-
processing and unrolling networks, respectively.

2.1. Background

Inverse Problem Formulation for CT. Image reconstruc-
tion problem in CT can be mathematically formalized as the
solution to a linear equation in the form of:

y = Ax, (1)

where x ∈ Rn is the (unknown) object to reconstruct with
n = h × w, y ∈ Rm is the data (i.e. sinogram), where
m = nv × nd, nv and nd denote the number of projection
views and detectors, respectively. A ∈ Rn×m is the for-
ward model (i.e. discrete Radon transform [40]). The goal
of CT image reconstruction is to recover the (unknown) ob-
ject, x, from the observed data y. As the problem is ill-
posed due to the missing data, the linear system in Eq. (1)
becomes underdetermined and may have infinite solutions.
Hence, reconstructed images suffer from artifacts, blurring,
and noise. To address this issue, iterative reconstruction
algorithms are utilized to minimize a regularized objective
function with a L2 norm constraint:

x̂ = arg min
x

J(x) =
λ

2
∥Ax− y∥22 +R(x), (2)

where R(x) is the regularization term, balanced with the
weight λ. Those ill-posed problems were initially addressed
using optimization techniques, such as the truncated sin-
gular value decomposition (SVD) algorithm [42], or iter-
ative approaches like the algebraic reconstruction technique
(ART) [4], simultaneous ART (SART) [2], conjugate gra-
dient for least squares (CGLS) [22], and total generalized
variation regularization (TGV) [43]. Additionally, tech-
niques such as total variation [47] and Tikhonov regulariza-
tion [9] can be employed to enhance reconstruction results.
Deep Unrolling Networks. By assuming that the regular-
ization term in Eq. (2) (i.e. R) is differentiable and convex,
a simple gradient descent scheme can be applied to solve
the optimization problem:

xt+1 = xt − α∇xJ(xt),

where ∇xJ(xt) = λA† (Axt − y) +∇xR(xt).
(3)

Here, α represents the step size (i.e. search step), and A† is
the pseudo-inverse of A.

Previous research [16, 53] has emphasized the limita-
tions of optimization algorithms, such as the manual selec-
tion of the regularization term and the optimization hyper-
parameters, which can negatively impact their performance,
limiting their clinical application. Recent advancements
in deep learning techniques have enabled automated pa-
rameter selection directly from the data, as demonstrated

in [7, 11, 23, 33, 38, 56]. By allowing the terms in Eq. (3)
to be dependent on the iteration, the gradient descent itera-
tion becomes:

xt+1 = xt − λtA
† (Axt − y) + G(xt), (4)

where G is a learned mapping representing the gradient of
the regularization term. It is worth noting that the step size
α in Eq. (3) is omitted as it is redundant when considering
the learned components of the regularization term. Finally,
Eq. (4) is unrolled into a deep recurrent neural network in
order to learn the optimization parameters.

2.2. Post-processing Methods

Recent advances in sparse-view CT reconstruction lever-
age two main categories of deep learning methods: post-
processing and dual-domain approaches. Post-processing
methods, including RedCNN [6], FBPConvNet [19], and
DDNet [59], treat sparse-view reconstruction as a denoising
step using FBP reconstructions as input. While effective in
addressing artifacts and reducing noise, they often struggle
with recovering global information from extremely sparse
data. To overcome this limitation, dual-domain methods in-
tegrate sinograms into neural networks for an interpolation
task, recovering missing data [15, 24]. Dual-domain meth-
ods, surpassing post-processing ones, combine information
from both domains. DuDoNet [29], an initial dual-domain
method, connects image and sinogram domains through
a Radon inversion layer. Recent Transformer-based dual-
domain methods, such as DuDoTrans [49] and DDPTrans-
former [27], aim to capture long-range dependencies in the
sinogram domain, demonstrating superior performance to
CNN-based methods.
Self-supervised learning. SSL methods [5, 17, 26, 48, 58],
have been applied for CT reconstruction. For instance, [5]
proposed an equivariant imaging paradigm through a train-
ing strategy that enforces measurement consistency and
equivariance conditions. To ensure equitable comparisons,
we focus on supervised methods in this work.

2.3. Advancements in Deep Unrolling Networks

Unrolling networks constitute a line of work inspired by
popular optimization algorithms used to solve Eq. (2).
Leveraging the iterative nature of optimization algorithms,
as presented in Eq. (4), unrolling networks aim to directly
learn optimization parameters from data. These meth-
ods have found success in various inverse problems, in-
cluding sparse-view CT [7, 20, 52, 54, 56], limited-angle
CT [8, 11, 51], low-dose CT [1, 16], and compressed sens-
ing MRI [12, 44].
First-order. One pioneering unrolling network, Learned
Primal-Dual reconstruction [1], replaces traditional proxi-
mal operators with CNNs. In contrast, LEARN [7] and
LEARN++ [56] directly unroll the optimization algorithm
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Figure 2. Overall structure of the proposed QN-Mixer for sparse-view CT reconstruction, unrolled from Algorithm 2. The method
leverages the advantages of the quasi-Newton method for faster convergence while incorporating a latent BFGS update.

from Eq. (4) into a deep recurrent neural network. More
recently, Transformers [3, 31] have been introduced into
unrolling networks, such as RegFormer [54] and HUMUS-
Net [12]. While achieving commendable performance,
these methods require more computational resources than
traditional CNN-based unrolling networks and incur a sig-
nificant memory footprint due to linear scaling with the
number of unrolling iterations.

Second-order. To address this, a new category of unrolling
optimization methods has emerged [14], leveraging second-
order techniques like the quasi-Newton method [10, 13, 21].
These methods converge faster, reducing computational de-
mands, but struggle with increased memory usage due to
Hessian matrix approximation and their application is lim-
ited to small-scale problems [30, 57]. In contrast our
method propose a memory-efficient approach by operat-
ing within the latent space of gradient information (i.e.
∇xJ(x) in Eq. (3)).

Algorithm 1: Quasi-Newton for sparse-view CT
Data: y (sparse sinogram)
Manual choice of the regularization termR;
H0 ← In×n;
x0 ← A†y;
for t ∈ {0, . . . , T − 1} do

st ← −Ht∇xJ(xt)
xt+1 ← xt + st
zt ← ∇xJ(xt+1)−∇xJ(xt)
ρt ← 1/(zT

t st)
Ht+1 ← (I−ρtstzT

t )Ht(I−ρtztsTt )+ρtsts
T
t

3. Methodology
QN-Mixer is a novel second-order unrolling network in-
spired by the quasi-Newton (Sec. 3.1) method. It ap-
proximates the inverse Hessian matrix with a latent BFGS
algorithm and includes a non-local regularization term,
Incept-Mixer, designed to capture non-local relationships
(Sec. 3.2). To cope with the significant computational bur-
den associated with the full approximation of the inverse
Hessian matrix, we use a latent BFGS algorithm (Sec. 3.3).
An overview of the proposed method is depicted in Fig. 2,
and the complete algorithm is presented in Sec. 3.4.

3.1. Quasi-Newton method

The quasi-Newton method can be applied to solve Eq. (2)
and the iterative optimization solution is expressed as:

xt+1 = xt − αtHt∇xJ(xt), (5)

where Ht ∈ Rn×n represents the inverse Hessian matrix
approximation at iteration t, and αt is the step size. The
BFGS method updates the Hessian matrix approximation in
each iteration. This matrix is crucial for understanding the
curvature of the objective function around the current point,
guiding us to take more efficient steps and avoiding unnec-
essary zigzagging. In the classical BFGS approach, the line
search adheres to Wolfe conditions [10, 13]. A step size of
αt = 1 is attempted first, ensuring eventual acceptance for
superlinear convergence [21]. In our approach, we adopt a
fixed step size of αt = 1. The algorithm is illustrated in
Algorithm 1.

3.2. Regularization term: Incept-Mixer

Recent research on unrolling networks has often focused on
selecting the representation of the regularization term gradi-

25320



1x1 conv 1x1 conv 3x3 pool

1x1 conv 3x3 conv 5x5 conv 1x1 conv

L
ayerN

orm

H
eight-M

L
P

L
ayerN

orm

C
hannel-M

L
P

W
idth-M

L
P

Figure 3. Architecture of our regularization block. It is referred
to as “Incept-Mixer” and denoted as G in Eq. (4)

ent (i.e. G in Eq. (4)), ranging from conv-nets [7, 44, 56] to
more recent attention-based nets [12, 54]. In alignment with
this trend, we introduce a non-local regularization block
named Incept-Mixer and depicted in, Fig. 3. This block
is crafted by drawing inspiration from both the multi-layer
perceptron mixer [46] and the inception architecture [45],
leveraging the strengths of each: capturing long-range in-
teractions through the attention-like mechanism of MLP-
Mixer and extracting local invariant features from the in-
ception block. This design choice is evident in the ablation
study (see Tab. 6) where Incept-Mixer outperforms both al-
ternatives.

Starting from an image xt ∈ Rh×w×c at iteration t, we
pass it through an Inception block to create a feature map
ft ∈ Rh×w×d, where d is the depth of features. Subse-
quently, ft undergoes patchification using a CNN with a
kernel size and stride of p, representing the patch size. This
process yields patch embeddings, et = patchify(ft) ∈
R

h
p×w

p ×d. These embeddings are then processed through
a Mixer Layer with token and channel MLPs, layer nor-
malization, and skip connections for inter-layer information
flow, following [46]:

Mixer(et) = Mix(MLPc,Mix([MLPh,MLPw] , et), (6)

where Mix(Layer, et) = Layer(LN(et)) + et, with LN as
layer normalization. MLPh, MLPw are applied to height
and width features, respectively, and MLPc to rows and
shared. Finally, after N such mixer layers, the regularized
sample is transformed back to an image through a patch ex-
pansion step to obtain G(xt). Consequently, the iterative
optimization solution is as follows:

xt+1 = xt −Ht∇xJ(xt),

where ∇xJ(xt) = λtA
† (Axt − y) + G(xt).

(7)

Here, G(xt) denotes the Incept-Mixer model, representing
the learned gradient of the regularization term.

3.3. Latent BFGS update

We propose a memory-efficient latent BFGS update. Draw-
ing inspiration from LDMs [41], at step t, given the gradient
value ∇xJ(xt) ∈ Rh×w×c, the encoder E encodes it into
a latent representation rt = E(∇xJ(xt)) ∈ Rlh·lw . Im-
portantly, the encoder downsamples the gradient by a factor
fE = h

hl
= w

wl
. Throughout the paper, we explore different

downsampling factors (see Tab. 5) fE = 2k, where k ∈ N is
the number of downsampling stacks. Encoding the gradient
reduces the optimization variable size of BFGS (i.e. Ht ∈
R(lh·lw)×(lh·lw)), thereby decreasing the computational cost
associated with high memory demand. The direction is then
computed in the latent space st = −Htrt, and finally, the
decoderD reconstructs the update from the latent direction,
giving D(st) = D(−HtE(∇xJ(xt))) ∈ Rh×w×c. It is
noteworthy that E and D are shared across the algorithm
iterations, as shown in Fig. 2.

3.4. Proposed algorithm of QN-Mixer

Algorithm 2: QN-Mixer (latent BFGS update)
Data: y (sparse sinogram)
H0 ← I(lh·lw)×(lh·lw);
x0 ← A†y;
r0 ← E(∇xJ(x0));
for t ∈ {0, . . . , T − 1} do

st ← −Htrt
xt+1 ← xt +D(st)
rt+1 ← E(∇xJ(xt+1))
zt ← rt+1 − rt
ρt ← 1/(zT

t st)
Ht+1 ← (I−ρtstzT

t )Ht(I−ρtztsTt )+ρtsts
T
t

Our method, builds on the BFGS update [10, 13] rank-
one approximation for the inverse Hessian. This approxi-
mation serves as a preconditioning matrix, guiding the de-
scent direction. In contrast to [14], which directly learns
the inverse Hessian approximation from data, our approach
incorporates the mathematical equations of the BFGS al-
gorithm for more accurate approximations. The full QN-
Mixer algorithm is illustrated in Algorithm 2.

4. Experiments
In this section, we initially present our experimental set-
tings, followed by a comparison of our approach with other
state-of-the-art CT reconstruction methods. Finally, we
delve into the contribution analysis of each component in
our model.
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Method
No noise (N0 = 0) Low noise (N1 = 106) High noise (N2 = 5× 105)

nv = 32 nv = 64 nv = 128 nv = 32 nv = 64 nv = 128 nv = 32 nv = 64 nv = 128

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
FBP 22.65 40.49 27.29 57.94 33.04 79.50 22.09 32.73 26.51 49.56 31.69 71.09 19.05 15.56 22.71 25.74 26.52 40.87
FBPConvNet [19] 30.32 85.11 35.42 90.15 39.71 94.64 30.20 84.46 35.09 89.72 39.06 94.08 29.91 82.52 34.13 87.85 36.89 91.28
DuDoTrans [49] 30.48 84.70 35.37 91.87 40.62 96.41 30.34 83.72 35.36 91.42 39.75 95.49 30.09 81.83 34.09 88.67 37.08 93.44
Learned PD [1] 35.88 92.09 41.03 96.28 43.33 97.31 35.78 92.21 39.03 94.79 41.65 96.44 33.80 89.23 37.34 93.23 39.17 94.69
LEARN [7] 37.58 94.65 42.26 97.25 43.11 97.57 36.95 93.63 39.91 95.82 42.17 97.11 34.38 90.51 37.15 93.53 39.38 95.18
RegFormer [54] 38.71 95.42 43.56 97.76 47.95 98.98 37.21 94.73 41.65 96.92 44.38 98.02 35.93 92.78 38.53 94.84 40.52 96.19

QN-Mixer (ours) 39.51 96.11 45.57 98.48 50.09 99.32 37.50 94.92 42.46 97.70 44.27 98.11 35.91 92.49 38.73 94.92 40.51 96.27

Table 1. Quantitative evaluation on AAPM of state-of-the-art methods (PSNR in dB and SSIM in %). Bold: Best, under: second best.

Gound Truth FBP FBPConvNet DuDoTrans Learned PD LEARN RegFormer QN-Mixer (ours)
PSNR/SSIM 24.26/48.04 31.40/87.05 30.81/85.46 35.47/91.78 37.34/94.46 38.16/95.26 38.53/95.64

PSNR/SSIM 24.59/47.27 32.25/82.32 33.39/87.44 38.42/94.35 40.04/96.20 41.29/96.95 43.30/98.02

PSNR/SSIM 21.66/35.60 28.12/76.15 27.99/68.23 31.78/86.64 33.99/89.14 34.00/88.89 36.51/94.49

Figure 4. Visual comparison on AAPM. From top to bottom: the results under the following conditions: first (nv=32, N1), second
(nv=64, N1), third (nv=32, N0). The last row presents out-of-distribution (OOD) results with a randomly overlaid circle on a test image.
The display window is set to [−1000, 800] HU.

4.1. Experimental Setup

Datasets. We evaluate our method on two widely
used datasets: the “2016 NIH-AAPM-Mayo Clinic Low-
Dose CT Grand Challenge” dataset (AAPM) [35] and the
DeepLesion dataset [55]. The AAPM dataset comprises
2378 full-dose CT images from 10 patients, while DeepLe-
sion is the largest publicly accessible multi-lesion real-
world CT dataset, including 4427 unique patients.
Implementation details. For AAPM, we select 1920
training images from 8 patients, 244 validation images from
1 patient, and 214 testing images from the last patient. For
DeepLesion, we select a subset of 2000 training images and
300 testing images randomly from the official splits. All
images are resized to 256 × 256 pixels. To simulate the
forward and backprojection operators, we use the Operator
Discretization Library (ODL) [39] with a 2D fan-beam ge-
ometry (512 detector pixels, source-to-axis distance of 600
mm, axis-to-detector distance of 290 mm). Sparse-view CT
images are generated with nv ∈ {32, 64, 128} projection
views, uniformly sampled from a full set of 512 views cov-
ering [0, 2π]. To mimic real-world CT images, we intro-

duce mixed noise to the sinograms, combining 5% Gaussian
noise and Poisson noise with an intensity of 1× 106.

Training details. For each set of nv views, we train our
model for 50 epochs using 4 Nvidia Tesla V100 (32GB
RAM). We employ the AdamW optimizer [32] with a learn-
ing rate of 1 × 10−4, weight decay 1 × 10−2, and utilize
the mean squared error loss with a batch size of 1. Ad-
ditionally, we incorporate a learning rate decay factor of
0.1 after 40 epochs. Unrolling iterations for QN-Mixer are
set to T = 14. Incept-Mixer uses a patch size of p = 4,
d = 96 embedding dimension, and N = 2 mixer lay-
ers. The inverse Hessian size is 642 × 642 with k = 2
downsampling blocks. E comprises cascading 3x3 CNNs
with max-pooling for downsampling, culminating in a 1x1
CNN layer for a one-channel latent gradient. D utilizes 2x2
ConvTranspose operations. Both E and D layers incorpo-
rate instance normalization and PReLU activation. Follow-
ing [54], A† is implemented using the FBP algorithm for
the pseudo-inverse of A.

Evaluation metrics. Following established evaluation pro-
tocols [1, 49, 54], we employ the structural similarity index
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Gound Truth FBP FBPConvNet DuDoTrans Learned PD LEARN RegFormer QN-Mixer (ours)
PSNR/SSIM 25.73/40.03 35.28/87.35 36.66/90.01 37.81/92.60 40.29/96.28 42.08/97.15 44.41/98.14

PSNR/SSIM 31.72/72.20 38.85/93.74 41.26/95.78 41.25/96.02 41.07/96.50 45.51/98.40 48.58/99.13

Figure 5. Visual comparison on DeepLesion of state-of-the-art methods. Rows display results under different conditions: (nv=64, N1)
and (nv=128, N1). Display windows are set to [−1000, 800] HU for the first row and [−200, 300] HU for the second row.

Method nv = 32 nv = 64 nv = 128

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
FBP 21.55 31.65 26.07 47.17 31.49 69.63
FBPConvNet [19] 30.74 80.41 34.64 87.36 38.69 92.94
DuDoTrans [49] 32.11 79.86 36.02 88.14 40.47 93.81
Learned PD [1] 34.02 88.44 37.56 92.46 40.79 95.32
LEARN [7] 35.76 92.12 39.83 95.66 41.34 96.21
RegFormer [54] 37.38 93.89 41.70 96.78 46.10 98.39

QN-Mixer (ours) 39.39 95.67 43.75 97.73 48.62 98.64

Table 2. Quantitative evaluation on DeepLesion for state-of-the-
art methods (PSNR in dB and SSIM in %). With Poisson noise
level of N1 = 106. Bold: Best, under: second best.

measure (SSIM) with parameters: level 5, a Gaussian ker-
nel of size 11, and standard deviation 1.5, as our primary
performance metric. Furthermore, we supplement our as-
sessment with the peak signal-to-noise ratio (PSNR).
State-of-the-art baselines. We compare QN-Mixer to
multiple state-of-the-art competitors: (1) post-processing
based denoising methods, i.e., FBPConvNet [19], and Du-
DoTrans [49]; (2) first-order unrolling reconstruction net-
works, i.e., Learned Primal-Dual [1], LEARN [7], and Reg-
Former [54]. Note that we replace the pseudo-inverse oper-
ator used by LEARN with the FBP algorithm, as it has been
demonstrated to be more effective according to [54]. To en-
sure a fair comparison, we utilize the code-base released
by the authors when possible or meticulously implement
the methods based on the details provided in their papers.
All approaches undergo training and testing on the same
datasets, as elaborated in implementation details.

4.2. Comparison with state-of-the-art methods

Quantitative comparison. We compared our model
with state-of-the-art baselines on two public datasets. For
AAPM, models were trained and tested across three pro-
jection views (nv ∈ {32, 64, 128}) and three noise levels,
namely no noise N0 = 0, low noise N1 = 106, and high
noise N2 = 5 × 105 (see Tab. 1). For DeepLesion, models
were trained and tested on the same three projection views
and a noise level of N1 = 106 (see Tab. 2). Visual re-

Method nv = 32 nv = 64 nv = 128

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
FBP 21.38 33.36 26.08 50.29 31.43 73.06
FBPConvNet [19] 28.05 75.96 32.50 82.90 35.45 88.14
DuDoTrans [49] 28.11 68.17 32.71 83.26 36.41 90.36
Learned PD [1] 31.96 87.10 36.40 92.57 37.63 93.17
LEARN [7] 34.48 90.15 36.89 91.85 38.32 94.67
RegFormer [54] 34.49 89.98 36.95 91.48 38.02 92.44

QN-Mixer (ours) 36.84 94.84 42.11 97.78 45.69 98.82

Table 3. Quantitative evaluation on out-of-distribution (OOD)
AAPM test dataset of state-of-the-art methods (PSNR in dB and
SSIM in %). Bold: Best, under: second best.

sults are provided in Fig. 4 (AAPM) and Fig. 5 (DeepLe-
sion). Impressively, our method achieves state-of-the-art
results on DeepLesion across all projection views. It out-
performs the second-best baseline, RegFormer, with an av-
erage improvements of +2.23 dB in PSNR and +1.02% in
SSIM. On AAPM without noise, we achieve state-of-the-art
results across all projection views and improve the second
best by an average +1.65 dB and +0.58%. In the pres-
ence of low noise, QN-Mixer achieves state-of-the-art re-
sults performance in all cases except nv=128 with −0.11
dB and shows an average improvements of +0.33 dB and
+0.35% over RegFormer. With high noise, our method per-
forms nearly on par in nv=32 (−0.02 dB and −0.29%),
achieves state-of-the-art in nv=64 (+0.2 dB and +0.08%),
and competes closely in nv=128 (−0.01 dB and +0.08%).
As noise increases, we attribute the decline in improvement
to the compressed gradient information in the latent BFGS,
influenced by sinogram changes, and the utilization of the
FBP algorithm instead of the pseudo-inverse.
Performance comparison on OOD textures. We eval-
uate frozen model performance on CT images featuring
a randomly positioned white circle with noise-free sino-
grams, as illustrated in the third row of Fig. 4. The rationale
and details are provided in the supplementary material. In
Tab. 3, QN-Mixer attains state-of-the-art results across all
nv views. First-order unrolling networks such as LEARN
and RegFormer exhibit significant PSNR degradation of

25323



−3.1 dB and −4.22 dB, respectively, for nv=32, while our
method demonstrates a milder degradation of −2.67 dB.
Visual comparison. As it can be seen on Fig. 4 and Fig. 5,
FBPConvNet and DuDoTrans show significant blurring and
pronounced artifacts when nv=32. While Learned PD and
LEARN show satisfactory performance, they struggle with
intricate details, like in the liver and spine. In contrast, Reg-
Former produces high-quality images but faces challenges
in generalizing to OOD data. QN-Mixer excels in produc-
ing high-quality images with fine details, even under chal-
lenging conditions such as nv=32 views and OOD data.

Method #Iters Epoch time (s) Time (ms) #Params (M) Memory (GB)

Post-processing based denoising
FBPConvNet [19] - 68 12.4 31.1 1.30
DuDoTrans [49] - 92 60.1 15.0 1.38

First-order unrolling reconstruction networks
Learned PD [1] 10 82 47.2 0.25 0.81
LEARN [7] 30 780 679.8 4.50 1.85
RegFormer [54] 18 700 598.9 5.00 10.19

Second-order unrolling Quasi-Newton
QN-Mixer (ours) 14 594 610.2 8.50 7.83

Table 4. Comparison of computational efficiency. Training
epoch time is reported in seconds, #Params in M and memory costs
for state-of-the-art methods on AAPM with nv = 32 views.

Efficiency comparison. The results in Tab. 4 show
that QN-Mixer is more computationally efficient than Reg-
Former, with a 1.3× reduction in memory usage. Fur-
thermore, our training time demonstrates a significant en-
hancement, realizing a speed improvement of 106 seconds
per epoch compared to first-order unrolling methods like
LEARN and RegFormer. Additionally, our method requires
only 14 iterations, in contrast to the 30 and 18 iterations
needed by LEARN and RegFormer, respectively.

Hessian size PSNR ↑ SSIM ↑
82 × 82 35.69 93.71
162 × 162 38.11 95.31
322 × 322 39.37 96.01
642 × 642 39.51 96.11

Table 5. Ablation on the
inverse Hessian approxi-
mation size.

Method PSNR ↑ SSIM ↑
QN with different learned regularization
Inception 31.65 85.28
U-Net 34.29 92.92
MLP-Mixer 36.89 93.87
Incept-Mixer 39.51 96.11

Pseudo-inverse A† vs Filtered Back Projection (FBP)
QN-Mixer+A† 38.94 95.83
QN-Mixer+FBP 39.51 96.11

First vs second order Quasi-Newton (QN)
Incept-Mixer+first-order 37.45 94.25
Incept-Mixer+QN 39.51 96.11

Table 6. QN-Mixer ablation.

4.3. Ablation Study

In this section, we leverage the AAPM dataset with nv=32
views by default, and no noise is introduced to the sinogram.
Inverse Hessian approximation size. The results in Tab. 5
emphasize the significant impact of the inverse Hessian ap-
proximation size on our performance. When too small, a
notable degradation is observed (e.g., 82× 82), while larger
sizes result in performance improvements as the approx-
imation approaches the full inverse Hessian. Exceeding

642×642 was unfeasible in our experiments due to memory
constraints.
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Figure 6. Ablation on the number of unrolling iterations. Left:
PSNR (dB); Right: SSIM (%)
Number of unrolling iterations. In Fig. 6, we visually
depict the influence of the number of unrolling iterations
on the performance of QN-Mixer and RegFormer. Notably,
the performance of both methods shows improvement with
an increase in the number of iterations. When subjected to
an equal number of iterations, our method consistently sur-
passes RegFormer in performance. Remarkably, we achieve
comparable results to RegFormer even with only 10 itera-
tions, demonstrating the efficiency of our approach.
Regularization term. In Tab. 6, we evaluate the impact of
the regularization term in our framework. Our Incept-Mixer
is compared against various learned alternatives, including
the Inception block [45] and MLP-Mixer block [46]. Ad-
ditionally, employing the pseudo-inverse A† instead of the
FBP results in a less pronounced degradation (−0.57 dB
and −0.28%), enhancing the interpretability of QN-Mixer.
Finally, we test our Incept-Mixer in the first-order frame-
work, highlighting the significance of the second-order la-
tent BFGS approximation with a significant improvement
(+2.06 dB and +1.86%).

5. Conclusion
In this paper, we investigate the application of deep second-
order unrolling networks for tackling imaging inverse prob-
lems. To this end, we introduce QN-Mixer, a quasi-Newton
inspired algorithm where a latent BFGS method approx-
imates the inverse Hessian, and our Incept-Mixer serves
as the non-local learnable regularization term. Extensive
experiments confirm the successful sparse-view CT recon-
struction by our model, showcasing superior performance
with fewer iterations than state of-the-art methods. In sum-
mary, this research offers a fresh perspective that can be
applied to any iterative reconstruction algorithm. A limi-
tation of our work is the memory requirements associated
with quasi-Newton algorithm. We introduced a memory
efficient alternative by projecting the gradient to a lower
dimension, successfully addressing the CT reconstruction
problem. However, its applicability to other inverse prob-
lems may be limited. In future work, we aim to extend our
approach to handle larger Hessian sizes, broadening its ap-
plication to a range of problems.
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