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Abstract

Language models have demonstrated impressive ability in
context understanding and generative performance. Inspired
by the recent success of language foundation models, in this
paper, we propose LMTraj (Language-based Multimodal
Trajectory predictor), which recasts the trajectory prediction
task into a sort of question-answering problem. Departing
from traditional numerical regression models, which treat
the trajectory coordinate sequence as continuous signals, we
consider them as discrete signals like text prompts. Specially,
we first transform an input space for the trajectory coordi-
nate into the natural language space. Here, the entire time-
series trajectories of pedestrians are converted into a text
prompt, and scene images are described as text information
through image captioning. The transformed numerical and
image data are then wrapped into the question-answering
template for use in a language model. Next, to guide the
language model in understanding and reasoning high-level
knowledge, such as scene context and social relationships
between pedestrians, we introduce an auxiliary multi-task
question and answering. We then train a numerical tokenizer
with the prompt data. We encourage the tokenizer to separate
the integer and decimal parts well, and leverage it to capture
correlations between the consecutive numbers in the lan-
guage model. Lastly, we train the language model using the
numerical tokenizer and all of the question-answer prompts.
Here, we propose a beam-search-based most-likely predic-
tion and a temperature-based multimodal prediction to im-
plement both deterministic and stochastic inferences. Apply-
ing our LMTraj, we show that the language-based model can
be a powerful pedestrian trajectory predictor, and outper-
forms existing numerical-based predictor methods. Exten-
sive experiments show that our LMTraj can successfully un-
derstand social relationships and accurately extrapolate the
multimodal futures on the public pedestrian trajectory pre-
diction benchmark. Code is publicly available at https:
//github.com/inhwanbae/LMTrajectory .

*Corresponding author

Figure 1. Traditional vs. Our language-based trajectory pre-
diction, LMTraj. Given each observation data, (a) traditional pre-
dictors directly use the numerical values; (b) the proposed method
converts the raw trajectory data to the linguistic prompt, and then
captures reasoning social relations to predict a socially acceptable
future with the question-answering template.

1. Introduction

Forecasting pedestrian trajectories in crowded environments
is essential for path planning, social robots and autonomous
maneuvering systems. The mainstream models used for this
task take the position of pedestrians in world-coordinates
as input, and infer their possible future paths by regressing
a set of coordinate sequences [1, 3, 6, 14, 27, 32, 41, 49,
50, 64, 73, 96, 99, 102, 106, 124, 139]. Capturing social
relations between pedestrians, based on their distance and
motion similarity, has resulted in impressive performance
improvements [73, 99, 115, 116, 139, 140].

Meanwhile, recent advances in language models have
demonstrated their ability to provide context understanding
and conditional generation across a spectrum of tasks [30,
59, 92]. The language models also offer accurate results
when solving mathematical problems [104, 149]. This is
because the language models can provide higher-level con-
notations [45, 131, 134], and benefit from tokenizers [44]
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and extensive knowledge embedded in large pretrained mod-
els [87, 88]. The beauty of the language models is to account
for social reasoning [113] beyond the physics-based interac-
tions. As a result, we can intuitively expect improvement in
interaction modeling when a language model is introduced
in trajectory prediction. However, there are remaining chal-
lenges before they can be practically applied: (1) since it is
trained on text data, the text tokenizer often does not work
on numerical data; (2) it does not consider numerical data
with decimal precision; (3) it does not attempt to extrapolate
the time-series data using the numerical data itself.

In this paper, we investigate the feasibility of using nat-
ural language processing (NLP) to infer the future trajecto-
ries of pedestrians. We attempt to bridge the gap between
traditional trajectory predictors and the capability of con-
temporary language models, offering a holistic solution for
forecasting in crowded scenarios. Here, we introduce the
Language-based Multimodal Trajectory predictor (LMTraj),
which reevaluates language models from their foundational
levels for numerical forecasting, as illustrated in Fig. 1. Our
LMTraj consists of four steps: (1) We convert the raw tra-
jectory coordinates and scene images into textual prompts.
The raw coordinates are transformed into a set of decimal
notations, and the images are converted into natural lan-
guage through an image captioning model. Both prompts are
then integrated into the question-answering (QA) template
as context information. (2) We introduce supplementary
tasks to push the model to learn a higher level of context
understanding. Auxiliary questions about the number of
group members and collision occurrences drive the model
to consider social relationships when forecasting future tra-
jectories. (3) We conduct an in-depth analysis of tokenizers,
which have been largely overlooked by existing models. Our
numerical tokenizer, optimized using the trajectory prompt,
splits text and numbers clearly so that the model can learn
correlations between sequential natures. (4) We enable the
language model to infer future trajectories in both determin-
istic and stochastic manners. To generate the most likely and
multimodal trajectories, we incorporate beam-search and
temperature-tuning techniques.

Lastly, we evaluate the language model as a numerical
regressor through both zero-shot and supervised approaches.
We perform a zero-shot evaluation using prompt engineer-
ing on the two language foundation models. To take full
advantage of the language model, we integrate all the pro-
posed components into our LMTraj model. By effectively
incorporating the proposed methods, our model achieves
state-of-the-art results using a variety of public pedestrian
trajectory prediction benchmarks, which are commonly re-
garded as the area of numerical regressors.

2. Related Works

2.1. Pedestrian Trajectory Prediction

Beginning with physics-based mathematical formulation
methods [33, 71, 81, 135], trajectory forecasting has sig-
nificantly improved under the numerical-based prediction
paradigm. Following advances in convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs), tra-
jectory prediction become capable of inferring socially-
acceptable paths using social interactions and motion mod-
eling. One pioneering work is Social-LSTM [1], which
recurrently predicts future coordinates using a long short-
term memory (LSTM), while the social interaction between
neighboring agents is modeled by aggregating hidden states
via a pooling mechanism. Employing methods such as
attention mechanisms [28, 36, 96, 117], graph convolu-
tional networks (GCNs) [3, 40, 73, 107], graph attention
networks (GATs) [6, 34, 41, 56, 57, 99, 116], or transform-
ers [5, 17, 20, 31, 75, 85, 101, 120, 121, 139, 140, 148]
allows us to directly model mutual influences among agents.
Plus, additional environmental information can lead to bet-
ter prediction results [21–23, 41, 55, 65, 66, 68, 69, 95, 98,
106, 107, 112, 114, 132, 141, 145]. Subsequent works take
either recurrent [1, 11, 15, 16, 26, 31, 32, 42, 46, 60, 62, 63,
70, 77, 84, 96, 109, 119, 128, 130, 142, 143] or simultane-
ous approaches [2–4, 7, 35, 52, 73, 79, 99, 100] to extrap-
olate the future trajectories. Recent works combine proba-
bilistic inferences with the bivariate Gaussian distribution
[1, 3, 13, 50, 73, 74, 90, 99, 102, 103, 129, 137, 139], Gen-
erative Adversarial Network (GAN) [22, 32, 34, 41, 54, 58,
95, 106, 110, 145], Conditional Variational AutoEncoder
(CVAE) [10, 15, 36, 46, 47, 49, 64, 96, 108, 118, 123, 126,
144] and diffusion [31, 37, 67, 91] for multi-modal trajectory
generation.

Departing from the mainstream methods, works in [19,
65] predict heatmaps at the pixel level in images for possi-
ble future paths. Like the classification task, some works
[23, 55, 78] have output classified positions on a discretized
(Manhattan) grid. Unfortunately, they reach a limit because
the trajectory prediction task requires forecasting accurate
pathways based on social norms.

2.2. Language-Based Reasoning and Prediction

Transformer architectures and their training schemes have
led to the notable development of language foundation mod-
els in the NLP field. In particular, BERT [39] employs a
masked language modeling (MLM), which randomly masks
a certain percentage of words and trains the model to predict
them. GPT-2 [87] uses a causal language modeling (CLM),
an autoregressive method for predicting the next token.
T5 [89] involves sequence-to-sequence (Seq2Seq) modeling,
using an encoder-decoder architecture to generate the output
sequence. These unique models stand out in various genera-
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tive tasks, including machine translation [12, 127, 136], text
generation [30, 59, 92], and question-answering [8, 25, 86].

Beyond the NLP field, language foundational models
have also exhibited superior performance in vision-language
tasks and solving mathematical problems. This includes
classification [88, 146], generation [24, 147], and problem-
solving [104, 149]. These works explore the application of
foundational language models, with the goal of extending
the scope of the pre-training/fine-tuning paradigm.

Most recently, there have been attempts to incorporate
language priors into time-series forecasting [9, 76, 105].
For instance, ForecastQA [38] proposes a QA benchmark
with timestamp constraints to verify its forecasting ability
regarding future events. Xue et al. [134] study mobility
prediction, inferring how people move in cities. Inspired by
chatbot applications, PromptCast [131] has made predictions
on weather temperature, energy consumption, and customer
flow. The most relevant work to ours [45] uses linguistic in-
termediate representations for trajectory prediction, solving
action-related reasoning through language priors. However,
they cannot fully take advantage of the linguistic model, in
that they inherently use pre-trained tokenizers learned from
text data. In particular, their approach is not suitable for tra-
jectory prediction tasks because of the inconsistent analysis
of numerical data. Furthermore, when dealing with coordi-
nate sequences, existing numerical regressors are directly
utilized as auxiliary modules to language models, inhibiting
a higher level of understanding like social interactions.

3. Methodology
Our approach shifts the paradigm from conventional trajec-
tory prediction to a prompt-based perspective. We recast the
trajectory prediction task in a sentence-to-sentence manner,
which uses the numerical input and output as a prompt and
applies a language model for the purpose of numerical fore-
casting. In this work, we propose a language-based trajectory
prediction framework, LMTraj, consisting of LMTraj-ZERO
and LMTraj-SUP, using both zero-shot and supervised ap-
proaches, respectively.

We start with a numerical definition of the trajectory fore-
casting task in Sec. 3.1. We then describe our considerations
in converting the numerical trajectories and images into text
prompts and designing prompt templates to obtain desirable
responses from language models for both LMTraj-ZERO
and LMTraj-SUP in Sec. 3.2. Using these text prompts, we
obtain the best performance with the language model-based
trajectory predictor, LMTraj-SUP, as described in Sec. 3.3.
In Sec. 3.4, we introduce how to build the language models,
whose implementation details can be found in Sec. 3.5.

3.1. Problem Definition

The problem of trajectory prediction involves forecasting
the time-series future coordinates of each agent from their

historical coordinate sequences. This task can be regarded
as a sequence-to-sequence problem. Formally, given a scene
image I and a past observation trajectory with length Tobs, it
can be denoted as Sn, obs={(xt

n, y
t
n)∈R2 | t∈ [1, ..., Tobs]},

where (xt
n, y

t
n) is the 2D coordinate of a specific pedestrian

n at time t. In the same way, a ground truth future trajectory
for the prediction length Tpred can be written as Sn, pred =
{(xt

n, y
t
n)∈R2 | t∈ [Tobs+1, ..., Tobs+Tpred]}. The prediction

model takes both Sobs and I as input. It either predicts one
most-likely path Ŝpred or generates K possible multi-modal
future trajectories Ŝ k

pred, which are called deterministic and
stochastic predictions, respectively.

3.2. Data Space Conversion to Prompt

To make predictions using a language model, we first need
to convert the raw data into text prompts. The most common
data used in trajectory prediction is a numerical coordinate
sequence and top-down view images of a scene. In this sec-
tion, we start by transforming the pedestrian trajectory and
environmental data. The converted data are then aggregated
into linguistic sentences using a QA template for the input
and output of the language model.
Converting trajectory coordinates into the prompt. We
convert the entire float-type coordinate value to a text string
with decimal representation. Compared to the binary nu-
merical system, which is commonly used for network input,
decimal representation is more compatible with natural lan-
guage. In this process, we round the continuous values to
discrete values with two decimal places for the word coordi-
nate system in order to efficiently use the prompt. We leave it
as an integer value if the trajectory is in the pixel coordinate
system. Second, to represent the sequence of 2D coordinates,
we concatenate the xt

n and ytn coordinates using a comma
separator and round bracket, and combine the time-series
coordinates {(xt

n, y
t
n) | t} using the square bracket, as shown

in Tab. 1. By using the different bracket symbols, it becomes
easier to parse the spatio-temporal information. With this
trick, we transform both the history and future trajectories
Sn, obs, Sn, pred into text prompts PSn, obs , PSn, pred , and repeat
the process for all N pedestrians in the scene.
Converting image data into the prompt. We convert the
scene image I into prompts PI as well. Inspired by image
captioning, we employ the BLIP-2 model [51], trained on
ImageNet [94], to extract text descriptions that depict the
agent-moving scene. Taking the image description prompt
as input, the model is able to learn various environmental
details, such as the placement of buildings and vehicles, the
density of people, and the flow of pedestrians. This helps
the model to determine moving speeds and behavior pat-
terns, similar to a traditional map encoding using pretrained
segmentation models [65].
Converting predictions into the prompt. Next, the nu-
merical coordinate prompt and the scene description prompt
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Prompt Type Field Template

PSn, obs - - “[({x1n}, {y1n}), ({x2n}, {y2n}), ..., ({xTobs
n }, {yTobs

n })]”

TSn, obs - - “Pedestrian {n} moved along the trajectory {PSn, obs} for
{Tobs} frames.”

Tforecast

Input Question “What trajectory does pedestrian {n} follow for the next {Tobs}
frames?”

Context “{PI} {TS1, obs} {TS2, obs} ... {TSN , obs}”

Output Answer “Pedestrian {n} will move along the trajectory {Sn, pred} for the
next {Tpred} frames.”

Tdest

Input Question “At which coordinates does pedestrian {n} arrive after the next
{Tpred} frames?”

Context “{PI} {TS1, obs} {TS2, obs} ... {TSN , obs}”

Output Answer “Pedestrian {n} will arrive at coordinate
({xTobs+Tpred

n }, {yTobs+Tpred
n }) after the next {Tpred} frames.”

Tdir

Input Question “In which direction will pedestrian {n} move in the future?”
Context “{PI} {TS1, obs} {TS2, obs} ... {TSN , obs}”

Output Answer “Pedestrian {n} will
{move forward|move backward|move left|move right|stop}.”

Tmimic

Input Question “Which pedestrian seems to walk similarly to pedestrian {n}?”
Context “{PI} {TS1, obs} {TS2, obs} ... {TSN , obs}”

Output Answer Case 1: “Pedestrian {n} walks similarly to pedestrian {k}.”
Case 2: “Pedestrian {n} will walk alone.”

Tgroup

Input Question “With which pedestrians does pedestrian {n} form a group?”
Context “{PI} {TS1, obs} {TS2, obs} ... {TSN , obs}”

Output Answer Case 1: “Pedestrian {n} forms a group with pedestrian {k}.”
Case 2: “Pedestrian {n} will walk alone.”

Tcol

Input Question “With which pedestrian does pedestrian {n} have a collision risk?”
Context “{PI} {TS1, obs} {TS2, obs} ... {TSN , obs}”

Output Answer Case 1: “Pedestrian {n} has a collision risk with pedestrian {k}.”
Case 2: “Pedestrian {n} has no collision risk.”

Table 1. QA templates to convert raw trajectory data into prompts.

are preprocessed before being fed into LMTraj. For trajec-
tory prediction with a language model, we need to make
it suitable for the NLP task. Note that the QA task gives
context information to a language model and asks questions
to ensure the correct answers. We introduce a question-
answering template Tforecast = {PC ,PQ,PA} for trajectory
forecasting. We provide the history coordinates of all agents
in a scene as context PC and ask the model to predict the
future trajectory for a specific pedestrian n using PQ. The
answer we expect is PA. This template-based description
can effectively transform the data into text [133].

3.3. Domain Shift to Sentence Generation

After the conversion process, we revisit each component
of the conventional NLP pipelines, and introduce a domain
adaptation for LMTraj-SUP.
Optimizing the tokenizer for numeric data. The first
thing that we revisit is the tokenizer. A tokenizer is an
essential component that breaks text down into smaller
units called tokens, which are used as the preliminary step
in conventional NLP models to parse and understand lan-
guages [43, 44, 72, 82].

Following a conventional NLP pipeline [80, 122], we use
a tokenizer to convert the QA prompt into a form that the
LMTraj-SUP can understand. In this step, existing studies
directly employ pretrained tokenizers [72, 82]. However, we
figure out that when they are optimized for text data, they
often fail to properly represent the numerical data. When
using this tokenizer, numbers are irregularly split into tokens,
and occasionally, special characters like periods and commas

Figure 2. Comparison of the text-pretrained tokenizer and our
numeric data-optimized tokenizer. Under brackets with yellow or
white highlight colors indicate that the corresponding letters have
been tokenized. The green color highlights that the token contains
an integer with 6.

are grouped together, as shown in Fig. 2(b). This can disturb
the training for consecutiveness and associations between
adjacent numbers.

To address this issue, we train a new tokenizer for the nu-
merical data using our QA prompts PC , PQ and PA consist-
ing of numerical coordinates and image description prompts.
As demonstrated in Fig. 2(f), our numerical tokenizer clearly
breaks down words, integers and decimal parts well. In
addition, because the total number of tokens for the same
sentence is reduced by removing the unnecessary splitting
problem, LMTraj-SUP can become lighter and faster.

Multi-task training for social relation reasoning. In tra-
jectory prediction tasks, the most crucial component is mod-
eling interactions between agents. To enhance the reasoning
capacity with social relations, we develop a training scheme
for our LMTraj-SUP. It is a widely known technique which
allows language models to achieve high-level knowledge un-
derstanding through multi-task learning [39, 87, 89]. While
LMTraj-SUP can learn to perform prediction tasks only with
the forecasting QA prompt, we introduce auxiliary tasks
to fully take advantage of its understanding and reasoning
ability for both scene context and social dynamics.

The five auxiliary tasks are as follows: destination sug-
gestion, moving direction prediction, similar pattern search,
group member prediction, and collision possibility assess-
ment. We implement these synthetic tasks using pseudo la-
bels and QA templates Tdest, Tdir, Tmimic, Tgroup and Tcol in the
same way as the forecasting task. Table 1 lists up the prompt
templates, and LMTraj-SUP yields the six types of outputs.
By explicitly teaching various social relations, LMTraj-SUP
can better capture, understand, and use social norms. Among
the outputs, LMTraj-SUP can extract common features for
agent motions, and leverage social knowledge (e.g., group
walking and collision avoidance) learned from each auxiliary
task to enhance the fidelity of the main forecasting task.
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Tokenizer
Summary Input sentence Output sentence

# Vocab # Mixed Clarity Cover # Token Rouge # Token Rouge

Pretrained 32000 504 98.43 1.00 566.25 1.00 44.47 1.00

Char 59 0 100 1.00 952.80 1.00 77.48 1.00
Word 13586 13497 0.655 1.00 142.21 1.00 12.10 1.00

Unigram 1113 0 100 1.00 421.63 1.00 27.46 1.00
BPE 1224 0 100 1.00 402.73 1.00 27.46 1.00

Table 2. Evaluation of the tokenizer characteristics. # Vocab: the to-
tal number of unique words in the tokenizer, # Mixed: The number
of unique entries that contain both characters and numerals, Clarity:
Percentage of non-mixed cases in vocab, Cover: Coverage of the
tokenizer that can cover all sentences in the dataset, # Token: The
average number of tokens per sentence. Rouge: ROUGE-1 score
between the original sentences and their reconstructed ones after
tokenization.

Generating most-likely and multimodal outputs. Lastly,
we tune the text generation stage, where LMTraj-SUP infers
the output. In trajectory prediction, it is crucial to generate
all possible multiple paths Ŝ k

pred or the single most likely
path Ŝpred. Numerical regression-based methods predict a
deterministic path using encoder-decoder architectures, and
extend it to stochastic inferences for diverse multiple paths
by introducing a random latent vector as an additional input.

In the same way, to use a language model in this task, it
must be able to produce diverse multiple outputs. We assume
that if we can effectively leverage the stochasticity of the
language model, inherently based on distributional seman-
tics [18], it can function as a probability-based numerical
approach. We handle the stochasticity by introducing a text-
generation technique. Using beam search [29], LMTraj-SUP
can predict the path P̂A with the highest probability search
controlled by a hyperparameter on a depth d. On the other
hand, the model can generate diverse outputs P̂ k

A by modu-
lating the token probability using a temperature parameter τ
in LMTraj-SUP. By using these tricks, the language-based
model can perform at par with and even potentially replace
existing predictor methods.

3.4. Forecasting With the Language Model

Lastly, we incorporate our proposed methods into the trajec-
tory forecasting model. To do this, we adopt two widely-used
approaches in computer vision and natural language tasks: (1)
conducting zero-shot evaluation through prompt engineering
of a pretrained language foundation model, LMTraj-ZERO
and (2) an end-to-end supervision, LMTraj-SUP.
LMTraj-ZERO: Zero-shot prediction in the language
foundation model. Prompt-tuning is a method that fine-
tunes a language model, not by retraining it but by optimizing
the input prompt that goes into a frozen pre-trained model to
produce a desired output [53, 83]. The advantage of prompt-
tuning is that it allows us to leverage the existing/extensive
knowledge embedded within large pre-trained models.

In this work, we also use pre-trained large language mod-

Zero-shot Stop Linear Kalman
filter

AutoTraj-
ectory [62]

LMTraj-ZERO
-GPT-3.5 -GPT-4

ETH 2.84/4.82 1.00/2.23 0.94/2.13 N / A 1.07/1.82 0.80 /1.64
HOTEL 1.15/2.09 0.32/0.62 0.26/0.50 N / A 0.42/0.65 0.20 /0.37
UNIV 1.36/2.47 0.52/1.17 0.55/1.20 0.89/1.45 0.56/0.98 0.37 /0.77

ZARA1 2.51/4.61 0.43/0.96 0.45/0.98 0.48/0.91 0.47/0.91 0.33 /0.66
ZARA2 1.38/2.53 0.33/0.73 0.34/0.75 0.50/1.03 0.39/0.71 0.24 /0.50

AVG 1.85/3.31 0.52/1.14 0.51/1.11 0.62/1.13 0.58/1.01 0.39 /0.79
SDD 64.0/116.7 18.8/38.0 16.6/33.9 N / A 17.8/29.1 10.9 /21.0
GCS 76.0/138.8 18.9/40.7 18.3/39.4 N / A 27.7/44.8 12.7 /25.5

Table 3. Comparison of LMTraj-ZERO methods with other zero-
shot methods (ADE/FDE, Unit: meter for ETH/UCY and pixel for
SDD/GCS). Bold: Best, Underline: Second best.

els, GPT-3.5 and GPT-4, not trained for the purpose of tra-
jectory forecasting. Following [131], we optimize the input
prompt with the following steps: (1) We make an initial
forecasting QA prompt PQ to instruct LMTraj-ZERO on
what the desired output should be; (2) The prompts are fed
into LMTraj-ZERO; (3) The outputs P̂ k

A are evaluated by
transforming them back into the numerical coordinates Ŝ k

pred,
ensuring a fair comparison with the conventional metrics. In
all the processes, the language model is frozen and is neither
trained nor fine-tuned.
LMTraj-SUP: Supervision of language-based predictor.
Next, we evaluate the maximum capacity and performance
of the language model through end-to-end training. First of
all, we analyze various structures of sentence-to-sentence
language models to choose the best model for forecasting. In
trajectory prediction, it has been proven that predicting the
trajectories through an encoder-decoder architecture is better
than using a procedural generation from recurrent models
due to the error accumulation issue [4, 64, 73]. Therefore,
instead of using a CLM, we choose the Seq2Seq model,
an encoder-decoder language model. Similar to the zero-
shot predictors, the set of context and question sentences
{PC ,PQ} are given to the network, and the output sentences
P̂A are transformed back into numerical data Ŝpred. The
difference between LMTraj-ZERO and LMTraj-SUP lies in
the multi-task QA template, whose loss is back-propagated
to train LMTraj-SUP.

3.5. Implementation Details

To demonstrate the zero-shot performance of the proposed
LMTraj-ZERO, we use GPT-3.5 and GPT-4 as foundational
language models for prompt engineering. In this experiment,
since the proposed model does not require a training proce-
dure, we exclude the tokenizer optimization and multi-task
training methods. Each API call for one trajectory inference
takes about 20 seconds, so we carry out a multi-process by
creating a thread pool of 1,000 units to evaluate all paths in
the datasets. We ensure prediction fidelity from the output
sentence by retrying if responses are not aligned with the
desired answer format.
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Deterministic Social-
LSTM [1]

Social-
GAN [32]

SR-LSTM†

[142]
STGAT

[34]
STAR-D†

[139]
Trajectron
++† [96]

PECNet
[64] MID [31] GP-Graph

[5]
SocialVAE

[126] NPSN [6] EigenTraj
ectory [7] LMTraj-SUP

ETH 1.09 / 2.35 1.13 / 2.21 1.01 / 1.93 0.88 / 1.66 0.97 / 2.00 1.02 / 2.09 1.20 / 2.73 1.42 / 2.94 0.89 / 1.78 0.97 / 1.93 0.95 / 2.04 0.92 / 2.03 0.65 / 1.04
HOTEL 0.79 / 1.76 1.01 / 2.18 0.35 / 0.72 0.56 / 1.15 0.32 / 0.73 0.33 / 0.63 0.68 / 1.51 0.64 / 1.30 0.47 / 1.03 0.40 / 0.78 0.32 / 0.57 0.29 / 0.57 0.26 / 0.46
UNIV 0.67 / 1.40 0.60 / 1.28 0.66 / 1.38 0.52 / 1.13 0.56 / 1.25 0.52 / 1.16 0.78 / 1.71 0.76 / 1.62 0.56 / 1.19 0.54 / 1.16 0.59 / 1.23 0.57 / 1.21 0.57 / 1.16

ZARA1 0.47 / 1.00 0.42 / 0.91 0.56 / 1.23 0.41 / 0.91 0.44 / 0.96 0.42 / 0.94 0.82 / 1.85 0.74 / 1.59 0.40 / 0.87 0.44 / 0.97 0.42 / 0.89 0.45 / 0.99 0.51 / 1.01
ZARA2 0.56 / 1.17 0.52 / 1.11 0.44 / 0.90 0.31 / 0.68 0.35 / 0.77 0.32 / 0.71 0.62 / 1.46 0.60 / 1.31 0.35 / 0.77 0.33 / 0.74 0.31 / 0.68 0.34 / 0.75 0.38 / 0.74

AVG 0.72 / 1.54 0.67 / 1.41 0.60 / 1.23 0.54 / 1.11 0.53 / 1.14 0.52 / 1.11 0.82 / 1.85 0.83 / 1.75 0.53 / 1.13 0.54 / 1.12 0.52 / 1.08 0.51 / 1.11 0.48 / 0.88
SDD 31.2 / 57.0 27.3 / 41.4 31.4 / 56.8 28.0 / 41.3 28.8 / 51.4 22.7 / 42.0 29.8 / 65.1 25.2 / 57.6 24.7 / 49.0 24.2 / 49.3 22.1 / 38.0 20.7 / 41.9 17.5 / 34.5
GCS 40.2 / 67.2 33.6 / 50.5 31.9 / 48.4 31.8 / 49.3 29.3 / 46.5 16.9 / 35.1 28.3 / 61.2 19.4 / 41.5 16.7 / 34.9 16.6 / 35.0 16.5 / 36.3 17.6 / 37.2 16.9 / 34.8

Stochastic Social-
GAN [32]

Social-
STGCNN[73]

PECNet†
[64]

Trajectron
++† [96]

AgentFor
mer [140] MID† [31] GP-Graph

[5] NPSN [6] SocialVAE
[126]

EqMotion
[125]

EigenTraj
ectory [7] LED [67] LMTraj-SUP

ETH 0.77 / 1.40 0.65 / 1.10 0.61 / 1.07 0.61 / 1.03 0.46 / 0.80 0.57 / 0.93 0.43 / 0.63 0.36 / 0.59 0.41 / 0.58 0.40 / 0.61 0.36 / 0.53 0.39 / 0.58 0.41 / 0.51
HOTEL 0.43 / 0.88 0.50 / 0.86 0.22 / 0.39 0.20 / 0.28 0.14 / 0.22 0.21 / 0.33 0.18 / 0.30 0.16 / 0.25 0.13 / 0.19 0.12 / 0.18 0.12 / 0.19 0.11 / 0.17 0.12 / 0.16
UNIV 0.75 / 1.50 0.44 / 0.80 0.34 / 0.56 0.30 / 0.55 0.25 / 0.45 0.29 / 0.55 0.24 / 0.42 0.23 / 0.39 0.21 / 0.36 0.23 / 0.43 0.24 / 0.43 0.26 / 0.43 0.22 / 0.34

ZARA1 0.35 / 0.69 0.34 / 0.53 0.25 / 0.45 0.24 / 0.41 0.18 / 0.30 0.28 / 0.50 0.17 / 0.31 0.18 / 0.32 0.17 / 0.29 0.18 / 0.32 0.19 / 0.33 0.18 / 0.26 0.20 / 0.32
ZARA2 0.36 / 0.72 0.31 / 0.48 0.19 / 0.33 0.18 / 0.32 0.14 / 0.24 0.20 / 0.37 0.15 / 0.29 0.14 / 0.25 0.13 / 0.22 0.13 / 0.23 0.14 / 0.24 0.13 / 0.22 0.17 / 0.27

AVG 0.53 / 1.04 0.45 / 0.75 0.32 / 0.56 0.31 / 0.52 0.23 / 0.40 0.31 / 0.54 0.23 / 0.39 0.21 / 0.36 0.21 / 0.33 0.21 / 0.35 0.21 / 0.34 0.21 / 0.33 0.22 / 0.32
SDD 13.6 / 24.6 20.8 / 33.2 10.0 / 15.9 11.4 / 20.1 8.7 / 14.9 7.6 / 14.3 9.1 / 13.8 8.6 / 11.9 8.1 / 11.7 7.9 / 11.9 8.1 / 13.1 8.5 / 11.7 7.8 / 10.1
GCS 15.9 / 32.6 14.7 / 23.9 17.1 / 29.3 12.8 / 24.2 10.2 / 16.9 10.7 / 18.2 7.8 / 13.7 7.7 / 13.4 7.4 / 11.9 7.6 / 13.1 7.4 / 12.5 N / A 7.1 / 9.6

Table 4. Comparison of LMTraj-SUP methods with other state-of-the-art deterministic and stochastic methods (ADE/FDE, Unit: meter for
ETH/UCY and pixel for SDD/GCS). †: Issues raised in the authors’ GitHubs are fixed, Bold: Best, Underline: Second best.

For the supervised training, we leverage the full poten-
tial of our LMTraj-SUP model by integrating all proposed
techniques in Secs. 3.2 and 3.3. We use the BPE model [97]
for the tokenizer, and encoder-decoder, T5 [89], as our back-
bone language model. The two models are trained using all
the multi-task QA templates. T5 is trained using a cross-
entropy loss between the generated outputs and the tokenized
ground-truth answers in an end-to-end manner. The hyper-
parameters d and τ in Sec. 3.3 are empirically set to 2 and 0.7,
respectively. AdamW optimizer [61] is used, whose batch
size is 512 and learning rate is 1e-4 over 200 epochs. The
training time takes about 4 hours, leveraging a distributed
data parallel pipeline on a machine of 8 NVIDIA 4090 GPUs.

4. Experiments
In this section, we conduct comprehensive experiments to
verify the effectiveness of our language-based approach for
trajectory prediction. We first describe the experimental
setup in Sec. 4.1. We then provide comparison results with
various zero-shot and supervised trajectory prediction meth-
ods in Sec. 4.2. We lastly conduct an extensive ablation
study to validate the effect of each component in our method
in Sec. 4.3.

4.1. Experimental Setup

Datasets. We conduct experiments on four public datasets:
ETH [81], UCY [48], Stanford Drone Dataset (SDD) [93],
and the Grand Central Station (GCS) [138] dataset to com-
pare our LMTraj model with state-of-the-art trajectory pre-
dictors. The ETH and UCY datasets consist of five subset
scenes (ETH, Hotel, Univ, Zara1 and Zara2) with 1,536
pedestrians recorded with the surveillance camera. We use
the standard train-val-test split and adopt the leave-one-out
strategy [1, 32] for the training and evaluation. SDD has
5,232 trajectories of six agent categories, including pedestri-

ans, cars, and bicyclists, in eight different university campus
scenes from a top-down drone view. GCS shows a highly
congested terminal scene with 12,684 pedestrians stream-
ing to the exit. We follow the standard benchmark protocol
in [6, 32, 34, 73, 99] that the first 3.2 seconds (Tobs = 8
frames) are used as observations, and the following 4.8 sec-
onds (Tpred=12 frames) are predicted.
Evaluation protocols. To evaluate the tokenizer for LM-
Traj, we use the Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) score from the NLP task to measure
the text similarity. Specifically, ROUGE-1 checks the over-
lap ratio of each word between the source and target sentence.
In order to measure the prediction accuracy of LMTraj, we
use two metrics as accuracy measures: Average Displace-
ment Error (ADE) and Final Displacement Error (FDE). The
ADE and FDE compute the Euclidean distance between a
predicted and a ground-truth path and their destination, re-
spectively. Following [32], we generate K=1 samples for
the most-likely evaluation and K=20 samples for the multi-
modal trajectory prediction. For the multimodal predictions,
we generate multiple outputs and then choose the best path
for the performance evaluation.

4.2. Evaluation Results

Evaluation of the numerical tokenizer. First, we check
the efficiency of our numerical tokenizers compared to pre-
trained tokenizers in [89] trained on texts. To find the most
suitable tokenizer type for numerical trajectory data, we test
four types: char, word, unigram, and byte pair encoding
(BPE) using six forecasting QA prompts. In particular, the
Char-based model [111] breaks the text down into individual
characters, while the word-based model [82] splits the text
into words, which are separated by whitespace. BPE [97]
tokenizes sentences by iteratively searching the text and
by repeatedly merging the most frequent sequence pairs of
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Figure 3. Visualization of prediction results on (a) zero-shot and two supervised trajectory prediction benchmarks: (b) deterministic and (c)
stochastic approach. To aid visualization for the stochastic approach, we report one best trajectory of K = 20 samples each.

letters in a vocabulary. The Unigram model [43] uses an
approach similar way to BPE, but generates a vocabulary by
lexicalizing byte pairs based on probability values for neigh-
boring characters. Additionally, the pretrained model em-
ploys the unigram model trained on 750GB of web crawled
text data [89].

Table 2 shows that all five methods cover all the words in
the trajectory prompts well. Since no vocabulary is missing,
the input and output sentences are exactly the same as the
original sentence after tokenization. However, the pretrained
and word tokenizers often have a mixture of letters and num-
bers. As shown in Fig. 2-(b,d), certain tokens combine letters
and numbers, and even multiple tokens are used to represent
the integer part of the number 6. This disturbs LMTraj’s un-
derstanding of the sequential nature of the numbers. While a
Char tokenizer is capable of separating numerical and letter
notation, it requires too many tokens for tokenization, as in
Fig. 2-(c). Both unigram and BPE tokenizers effectively dis-
tinguish between letters and numbers while decreasing the
average number of tokens by merging multi-digit numbers
into a single token in Fig. 2-(e,f). This directly reduces the
computational complexity of LMTraj. We select the BPE
tokenizer for our LMTraj-SUP model, thanks to its ability to
represent a sentence with a smaller number of tokens.
Evaluation of the zero-shot approach. To demonstrate
the potential of prompt engineering with language founda-
tion models for trajectory prediction, we conduct a quantita-
tive comparison between LMTraj-ZERO and various zero-
shot methods. We provide three algorithmic approaches and
one learnable model. The ‘Stop’ operates by stopping walk-
ing at the final observation point without making predictions,
while ‘Linear’ and ‘Kalman filter’ methods serve as state
extrapolation techniques. AutoTrajectory [62] is trained in
an unsupervised manner without any ground-truth trajectory
label. As shown in Tab. 3 and Fig. 3-(a), we observe that
our method achieves the best performance among all the

zero-shot methods. Particularly, using LMTraj-ZERO with
GPT-4 yields results superior to that of GPT-3.5, indicat-
ing the model has better performance when combined with
larger language foundation models. LMTraj-ZERO with
GPT-4 shows comparable performance to the supervised
model, Social-STGCNN [73]. This opens the possible study
of zero-shot trajectory prediction.
Evaluation of the supervised approach. Next, to check
the maximum performance of the linguistic approach, we
compare LMTraj-SUP to both deterministic and stochas-
tic trajectory prediction methods. As shown in Tab. 4,
LMTraj-SUP outperforms the deterministic predictions on
most datasets, while the other models reached a plateau. This
demonstrates the effectiveness of the LMTraj-SUP for rea-
soning about complex social relationships in Fig. 4 as well as
performing beam search based on cumulative probabilities
for the most likely path, as visualized in Fig. 3-(b). This
provides a significant advantage over the previous works that
rely on the graph-based social interaction modeling and the
greedy selection of footsteps.

In addition, LMTraj-SUP also shows promising results
for stochastic trajectory prediction. By understanding po-
tential future behavior patterns through scene descriptions
and social reasoning, LMTraj-SUP, generating sentences of
realistic trajectories, achieves better performance than the
previous works. As shown in Fig. 3-(c), our LMTraj-SUP
successfully generates multimodal trajectories using the tem-
perature tuning technique to diversify the outputs, as in NLP.
This means that our approach offers a new potential solution
to the limited performance of existing physics-based social
relationships.

4.3. Ablation Studies

Effectiveness of the numerical tokenizer. We compare
the effectiveness of the text-based pretrained tokenizer with
our numerical tokenizer for stochastic trajectory prediction.
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Figure 4. Visualization of the social reasoning using observed paths
and the corresponding trajectory prediction results.

Model ETH HOTEL UNIV ZARA1 ZARA2 AVG

Tokenizer
Pretrained 0.85/1.49 0.46/0.93 0.97/2.00 0.55/1.06 0.43/0.89 0.65/1.28
Numerical 0.65 /1.04 0.26 /0.46 0.57 /1.16 0.51 /1.01 0.38 /0.74 0.48 /0.88

Size
Small 0.65 /1.04 0.26/0.46 0.57/1.16 0.51/1.01 0.38 /0.74 0.48/0.88

Medium 0.68/1.17 0.26/0.45 0.57/1.16 0.51/1.02 0.39/0.76 0.48/0.91
Large 0.71/1.22 0.26/0.46 0.57/1.16 0.50 /1.00 0.38 /0.73 0.48/0.91

Multi-task
No 0.74/1.27 0.31/0.59 0.74/1.51 0.53/1.06 0.41/0.79 0.55/1.04
Yes 0.66 /1.07 0.26/0.46 0.57/1.16 0.52 /1.02 0.38/0.74 0.48/0.89

Depth

d=1 0.66/1.05 0.26/0.46 0.57/1.17 0.51 /1.00 0.38/0.75 0.48/0.89
d=2 0.65 /1.04 0.26/0.46 0.57/1.16 0.51 /1.01 0.38/0.74 0.48/0.88
d=3 0.66/1.07 0.26/0.46 0.57/1.16 0.52/1.02 0.38/0.74 0.48/0.89
d=4 0.67/1.09 0.26/0.46 0.57/1.16 0.52/1.03 0.38/0.73 0.48/0.89
d=5 0.67/1.10 0.26/0.46 0.57/1.16 0.52/1.03 0.38/0.74 0.48/0.90

Temperature

τ=0.1 0.49/0.70 0.19/0.31 0.41/0.80 0.34/0.64 0.29/0.53 0.34/0.60
τ=0.3 0.45/0.58 0.15/0.21 0.29/0.52 0.26/0.45 0.22/0.38 0.27/0.43
τ=0.5 0.42/0.54 0.13/0.17 0.24/0.41 0.21/0.36 0.19/0.31 0.24/0.36
τ=0.7 0.41 /0.51 0.12 /0.16 0.22 /0.34 0.20 /0.32 0.17 /0.27 0.22 /0.32
τ=0.9 0.42/0.53 0.13/0.18 0.22 /0.35 0.22/0.35 0.18/0.27 0.23/0.34

Table 5. Ablation studies on each component of LMTraj-SUP
(ADE/FDE, meter). Bold: Best, Underline: Second best.

In Tab. 5, our LMTraj-SUP with the numerical tokenizer
outperforms the pretrained tokenizer in deterministic predic-
tion accuracy. This shows the advantage of our approach for
numerical tasks, by allowing the model to better understand
numerical information from sentences.
Model size. Next, we vary the sizes of the backbone
Seq2Seq model in Tab. 5. As expected, the performance
varies slightly with increasing model size, but the gain is
marginal. As a result, we choose the smallest and the light-
weight model for the real-time prediction.
Multi-task training strategy. To enhance the model’s abil-
ity to reason about social interactions, we include a multitask
training in the forecasting pipeline. As reported in Tab. 5,
the multi-task training strategy improves the performance
compared to a single-task training strategy. This improve-
ment suggests that integrating domain knowledge pushes the
model to better understand group behaviors and collision
avoidance, helpful for the main forecasting task.
Beam-search and temperature analysis. We conduct a
parameter study for both the deterministic and stochastic
predictions. Table 5 validates that using beam search with
a depth of d= 2 and the temperature-tuning with τ = 0.7
produces the best performance. In addition, adjusting the
temperature parameter τ affects the level of uncertainty in the
multi-modal generation, allowing for controlled variations
within socially acceptable limits in Fig. 5

Figure 5. Visualization of the most-likely and multimodal trajectory
generation capability of our LMTraj-SUP (τ : temperature).

Model
Accuracy Complexity

ADE FDE GPU memory Training Inference

PECNet [64] 0.32 0.56 1733 MB 0.3 h 57.0 ms
MID [31] 0.31 0.54 2929 MB 6.9 h 35.0 ms

STAR [139] 0.26 0.53 1735 MB 36.3 h 97.0 ms
AgentFormer [140] 0.23 0.40 9639 MB 22.0 h 8.2 ms
SocialVAE [126] 0.21 0.33 1762 MB 2.1 h 73.0 ms

LMTraj-SUP 0.22 0.32 1401 MB 3.8 h 18.3 ms

Table 6. Computational complexity analysis of our LMTraj-SUP
with other numerical-based trajectory prediction models. ‘Infer-
ence’ measures the average inference time per trajectory.

Computational cost. Lastly, we check the computational
efficiency of LMTraj-SUP in Tab. 6. Due to the structural
nature of the language model that sequentially predicts the
next token, the inference time is a little slower than the
fastest model. However, it produces promising results with
the reasonable GPU memory consumption as well as real-
time inference.

5. Conclusion
This paper demonstrates the ability of language models to
understand and extrapolate spatio-temporal numeric infor-
mation from trajectory data. We shift the domain of the tra-
jectory prediction task to a question-answering task, which
provides historical data as context and then forecasts fu-
tures when answering the given question templates. The
history data, transformed into a text prompt format, can of-
fer rich information for the language model, and capture
human dynamics. We show that both the prompt engineer-
ing of the language foundation models and their end-to-end
training can successfully predict accurate future paths in
zero-shot and supervised manners using our LMTraj-ZERO
and LMTraj-SUP, respectively. In addition, the specialized
techniques for large language models, including tokenizer
optimization, multi-task learning, beam-search, and temper-
ature tuning scheme, allow our model to better comprehend
high-level social reasoning, and to operate like conventional
deterministic and stochastic trajectory predictor models.
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