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Abstract

There are five types of trajectory prediction tasks: de-
terministic, stochastic, domain adaptation, momentary ob-
servation, and few-shot. These associated tasks are defined
by various factors, such as the length of input paths, data
split and pre-processing methods. Interestingly, even though
they commonly take sequential coordinates of observations
as input and infer future paths in the same coordinates as
output, designing specialized architectures for each task is
still necessary. For the other task, generality issues can lead
to sub-optimal performances. In this paper, we propose Sin-
gularTrajectory, a diffusion-based universal trajectory pre-
diction framework to reduce the performance gap across the
five tasks. The core of SingularTrajectory is to unify a variety
of human dynamics representations on the associated tasks.
To do this, we first build a Singular space to project all types
of motion patterns from each task into one embedding space.
We next propose an adaptive anchor working in the Singular
space. Unlike traditional fixed anchor methods that some-
times yield unacceptable paths, our adaptive anchor enables
correct anchors, which are put into a wrong location, based
on a traversability map. Finally, we adopt a diffusion-based
predictor to further enhance the prototype paths using a cas-
caded denoising process. Our unified framework ensures the
generality across various benchmark settings such as input
modality, and trajectory lengths. Extensive experiments on
five public benchmarks demonstrate that SingularTrajectory
substantially outperforms existing models, highlighting its
effectiveness in estimating general dynamics of human move-
ments. Code is publicly available at https://github.
com/inhwanbae/SingularTrajectory .

1. Introduction

Extensive studies of trajectory prediction methods have been
conducted in the computer vision field for several decades
[20, 52]. They have demonstrated its importance in various
applications, including crowd simulation, social robot navi-
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Figure 1. An overview of our SingularTrajectory framework. All
relevant human trajectory prediction tasks can be represented in our
Singular space, a unified feature embedding space for human dy-
namics. Using the embedding features, our diffusion-based model
for a universal trajectory prediction makes prediction for all the
tasks in this same space.

gation, obstacle avoidance and security and surveillance sys-
tems, etc. Trajectory prediction takes sequential coordinate
values of agents as input and infers their future pathways in
common [1, 19, 83]. Such tasks vary depending on the appli-
cation. The tasks are determined with respect to the number
of input/output, data processing, and the use of geological
information.

The tasks for trajectory prediction can be categorized
into five groups: (1) Stochastic prediction is to predict 20
multi-modal future trajectories from one observation with
8 frames [19]. Each future trajectory consists of 12 frames.
(2) Deterministic prediction takes one observation with 8
frames, but infers only one future trajectory with 12 frames
[1]. (3) The momentary observation uses only two frames to
predict 20 multi-modal future paths with 12 frames [77]. (4)
Domain adaptation splits training data with respect to places
in datasets, trains a model on one place, and then checks
the transferability to other places [93]. (5) The few-shot
task only uses partial data to build a dataset-efficient model
[53], as illustrated in Fig. 1. Until now, each specialized
architecture for a task type has provided performance gains.

However, two questions arise. First, why do state-of-
the-art models for one task undergo significant performance
drops when applied to other trajectory prediction tasks? Sec-
ond, is it feasible to design a general predictor that works
across the five tasks?

As answers to these questions, we present a universal tra-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17890



jectory predictor to achieve generality in predictions, named
SingularTrajectory. The main idea is to unify the modalities
of human dynamic representations across the five tasks. To
do this, we first introduce a Singular space, an embedding
space consisting of representative motion patterns for each
task. The motion patterns play a role in the basis function
for pedestrian movements, and are extracted using Singular
Value Decomposition (SVD). They are then projected onto
Singular space.

We next propose an environment-adaptive anchor work-
ing in the Singular space. Unlike traditional fixed anchor
methods [6, 29] that sometimes fail to handle different tar-
get data distribution, our adaptive anchor is able to correct
prototype paths from the adaptive anchor in Singular space
if they are put into the wrong locations, based on an input
traversability map. Lastly, we generate socially-acceptable
future trajectories for all agents in scenes with a diffusion-
based predictor which denoises residuals of perturbed pro-
totype paths. Thanks to the cascaded denoising process
of diffusion models, we refine the prototype paths. Here,
historical pathways, agent interactions, and environmental
information are provided as conditions to guide them in the
Markov chain of the denoising diffusion processes.

Experimental results demonstrate that our SingularTrajec-
tory can successfully represent pedestrian motion dynamics,
and significantly improve prediction accuracy for the five
tasks on challenging public benchmark datasets.

2. Related Works
We review previous studies on trajectory prediction that have
attempted to address various benchmark scenarios.

2.1. Pedestrian Trajectory Prediction

Ways of predicting pedestrian future trajectories have been
studied for a long time in the computer vision field. Pioneer-
ing works [20, 52, 60, 95] model an invisible social norm
based on motion dynamics as an energy minimization prob-
lem. Introducing recurrent neural networks [1, 19, 64, 97]
achieves significant improvements by providing highly se-
quential representations of high-level shape of paths. These
methods determine the most probable path, called deter-
ministic trajectory prediction. The following works model
mutual influences among agents using attention mechanisms
[17, 23, 64, 83], graph convolutional networks [2, 9, 27, 41,
53, 54, 75], graph attention networks [5, 22, 28, 38, 39, 66,
82], and transformers [4, 18, 55, 68, 86, 87, 97, 98]. Ad-
ditional visual information allows us to leverage environ-
mental constraints from traversability maps [13–15, 28, 37,
46, 47, 49, 50, 63, 65, 74, 75, 79, 81, 85, 94, 99, 102]. De-
pending on the constraints, predictors take either recurrent
[1, 8, 10, 11, 18, 19, 30, 43, 44, 51, 56, 61, 64, 92, 100, 101]
or simultaneous approaches [2, 3, 35, 53, 66, 67, 89] to ex-
trapolate the future pathways.

Meanwhile, with the success of generative models, the
importance of multimodality has begun to emerge, called
stochastic trajectory prediction. Stochastic prediction en-
ables us to consider all of an agent’s possible future path-
ways. For example, an agent at a crossroads may either walk
straight or turn left/right. Here, the stochastic prediction
infers all potential future modes. This approach has become
mainstream in this field. Starting from Social-GAN [19],
a bivariate Gaussian distribution [1, 2, 34, 53, 66, 69, 70,
93, 96, 97], generative adversarial network [14, 19, 22, 28,
36, 40, 63, 74, 78, 102], and conditional variational autoEn-
coder [7, 10, 23, 30, 31, 33, 45, 64, 76, 84, 88, 91] have
been adopted for stochastic trajectory prediction. Anchor-
conditioned methods can explicitly represent different modal-
ities by prototyping possible paths [6, 29]. Most recently,
diffusion-based models have revealed their tremendous rep-
resentation capacities in numerous tasks [16, 21, 57, 71–
73], proving its potential for stochastic trajectory predic-
tion [18, 25, 48, 62]. In this study, we take full advantage
of both the anchor-conditioned approach and the diffusion-
based model to achieve the explainability and generalizabil-
ity of the trajectory prediction tasks.

2.2. Various Trajectory Prediction Tasks

Beyond the standard benchmark protocol of stochastic pre-
diction, there are three other variants of this task: momen-
tary observation, domain adaptation, and few-shot learning.
Works in [12, 55, 77] only take two frames as input for the
momentary trajectory prediction. Multi-task learning, self-
supervised learning, and knowledge distillation techniques
have been used to extract rich features from the limited data.
Another works [24, 93, 103] focuses on domain adaptation
across trajectory domains, captured from different surveil-
lance views. A transferable graph neural network is intro-
duced to adaptively learn domain-invariant knowledge. The
others [53, 101] adopt few-shot learning for better training
efficiency.

Although these works take and infer the sequential coor-
dinates of agent trajectories in common, there is no unified
model for all the tasks. Despite the tremendous efforts to
design a specialized architecture for one task, they cannot
be applied to the other tasks without suffering significant
performance drops. In the next section, we will describe how
to design a unified architecture, which consistently produces
promising results on the five associated tasks.

3. Methodology
We describe how to learn a general representation of human
motions. We first define a general trajectory prediction prob-
lem in Sec. 3.1 and provide preliminaries of explicit formula-
tions on the SVD and diffusion process in Sec. 3.2. We then
introduce a motion feature extraction to build our Singular
space, and a projection of any trajectory from each task onto
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it in Sec. 3.3. Next, we propose an environment-adaptive
anchor using motion vectors and input image in Sec. 3.4.
Finally, we present the SingularTrajectory predictor based
on the diffusion model in Sec. 3.5.

3.1. Problem Definition

Trajectory prediction aims to predict the future paths of
agents based on their historical path and surrounding con-
texts. Suppose that at each timestamp t, there are N pedes-
trians in a scene with the 2D spatial coordinate position
{pn

t ∈R2|n∈ [1, ..., N ]}. A pedestrian historical trajectory
Xn over Thist timesteps can be represented as the cumulative
coordinates Xn = {pn

t |t ∈ [1, ..., Thist]}. Similarly, future
trajectories Yn for the time duration Tfut to be predicted can
be written as Yn={pn

t |t∈ [Thist+1, ..., Thist+Tfut]}. The pre-
diction system takes both the historical trajectories for all N
people X = {Xn|n∈ [1, ..., N ]} and the scene image map
I for environmental information as input. The deterministic
prediction system infers one sequence of the most reliable
future trajectory Ŷ = {Ŷn|n∈ [1, ..., N ]}. For the stochas-
tic prediction, because of the indeterminacy of the future
movements, S multiple pathways for all the N pedestrians
Ŷ = {Ŷ s

n |n∈ [1, ..., N ], s∈ [1, ..., S]} are generated so that
at least one sample is close to the ground-truth trajectory.

3.2. Preliminaries

Singular Value Decomposition. Singular Value Decom-
position (SVD) decomposes a matrix into three resultant
matrices. Given a matrix A, its SVD is represented as:

A = UΣ V ⊤, (1)

where U is an orthogonal left singular vector matrix, whose
columns are eigenvectors of A×A⊤. Σ is a diagonal matrix
with the singular values of A, consisting of K non-negative
values in descending order. V is a right singular vector
matrix, which is also orthogonal and its columns are the
eigenvectors of A⊤×A.

To remove the redundant part of the raw data, the trunca-
tion technique is often applied to the results after the decom-
position. The idea behind the truncated SVD is to approxi-
mate the original matrix A with the lower rank. With the K
to determine the number of singular values to retain, Σ can
be simplified to ΣK which contains only the K largest sin-
gular values. Similarly, U and V ⊤ are reduced to UK and
V ⊤
K by keeping the first K columns and rows, respectively.

This process eliminates the smallest singular values, which
are not needed to express the original data and often corre-
spond to noise or redundant information. This is useful for
practical scenarios dealing with large and potentially sparse
matrices because we can reconstruct a close approximation
of the original data with significantly less storage space.
Diffusion models. The diffusion model operates by trans-
forming a noisy distribution, represented by the noise vector

yM , into the desired data y0 through a series of M diffu-
sion steps. These steps involve intermediate latent variables
{ym|m ∈ [1, . . . ,M ]}, and encompass both the diffusion
and denoising processes. The diffusion process adds a small
amount of noise to data in order to obtain the standard nor-
mal distribution q(yM ) from the distribution q(y0) using
the Markov chain as:

q(y1:M |y0) :=

M∏
m=1

q(ym|ym−1)

q(ym|ym−1) := N
(
ym;

√
1− βmym−1, βmI

) (2)

where βt is a small positive constant and a variance schedule
for adding noise. The denoising process uses the ym to
recover y0 with a learnable network as follows:

pθ(y0:M ) := p(yM )

M∏
m=1

pθ(ym−1|ym),

pθ(ym−1|ym) := N (ym−1; ϵθ(ym,m), βmI).

(3)

where yM ∼ N (0, I) is an initial noise sampled from the
Gaussian distribution p(yM ), and θ denotes the learnable
parameter of the diffusion model. ϵθ is a learnable denoising
model of a clean datay0, and a corrupted data ym at a step
m. The objective is to train the neural network so that the de-
noising process predicts the true data-generating distribution
well. This is often done by maximizing the evidence lower
bound, ensuring that the samples generated by the diffusion
model are indistinguishable from the real data.

3.3. Unifying the Motion Space

The trajectory prediction model uses a learnable network to
capture the relationship in consideration of the input coor-
dinates of pedestrians, input images and output coordinates
for each pedestrian. Since expectations for input and output
trajectories are different for each associated task (e.g., length
and multimodality), they should be viewed as different data
spaces even if they use the same coordinate systems. We
introduce a method to merge raw data in each space into a
Singular space for human motion dynamics.
Singular space construction. To discover motion dynam-
ics from the raw data, we first extract primitive motion fea-
tures. Inspired by the successful low-rank approximation of
raw trajectory data using eigenvectors in [6], we also employ
a similar strategy using singular vectors from the truncated
SVD to extract principal motion components from the entire
training dataset.

First, we cut-off paths of all pedestrians in the dataset
into Twin lengths through a sliding window to create a total
of L gist of trajectory set A ∈ RL×(2×Twin). Here, A is a
temporary matrix to extract a motion vector from a set of
trajectory in the initialization phase. Next, we decompose A
to obtain truncated matrices UK ∈ RL×K , ΣK ∈ RK×K
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Figure 2. Visualization of the trajectories in Singular space. (a) The
circle and triangle markers indicate the history and future trajectory
coordinates, respectively. Each color also refers to each associated
task. (b-d) Each marker in the Singular space corresponds to each
trajectory in raw data. And, the slicing planes, representing a set
of arrows, mean human dynamics of straight forward motions and
turning motions.

and V ⊤
K ∈ RK×(2×Twin). Here, V ⊤

K is a set of K spatio-
temporal motion vectors vk ∈ R2×Twin representing the most
dominant motion dynamics of pedestrians. Since vk are or-
thogonal to each other, we define a Singular space coordinate
system using the K singular vectors as basis vectors for each
axis. In Singular space, trajectories A can be a coordinate
of A = UK · ΣK ∈ RL×K , indicating that each motion
vector has an influence on reconstructing the L trajectories.
In other words, we can project the A into the coordinate in
Singular space A as follows:

A = A× (V ⊤
K )−1 = A× VK , (4)

where (V ⊤
K )−1 can be simplified into VK with the property

of an orthogonal matrix1.
In the Singular space, we can now concentrate on the mo-

tion flow by using the coefficients of motion patterns, instead
of considering every position over time. Note that the re-
sults from the SVD depend highly on various factors such as
the window size for inputs/outputs, data processing, and the
differences in the raw data caused by geological variations.
Due to the issue, works using SVD only convert the output
space [26, 59, 80] or conduct separate decompositions for
each of input and output data spaces [6]. However, in this
case, they cause inconsistent representations of motion dy-
namics, even for the same pedestrian, which leads to a lack
of generality. In the next step, we introduce a new method
to address this issue.
Projection of any trajectory into Singular space. We
aim to express the input/output trajectories X and Y of the
five associated tasks in Singular space all at once. Our core
idea stems from the notion that all pedestrians share the same
human motion dynamics and thus will likely show a similar
pattern. Starting with the projection function Eq. (4), which
is a projection matrix for the fixed trajectory length Twin,
we extend it to any length Thist and Tfut, which varies from
task to task. To handle the motion patterns regardless of
their lengths, we interpolate vk ∈ R2×Twin to vx,k ∈ R2×Thist .

1For better understanding, we display the coordinate variable in the
Singular space using the calligraphic font

Figure 3. An example of the adaptive anchor generation. (a) The
initial prototype anchor P is placed on the last observation coordi-
nate of a person. In this instance, four prototype paths (highlighted
in red) are incorrectly placed at the non-traversable locations. (b)
Vector field F⃗I(x, y) is computed to guide toward in the nearest
traversable areas. (c) The initial prototype paths are then tailored
to the environment using the vector field.

Since the motion pattern can be seen as a 2-dimensional
curve, we use Cardinal B-splines to make a transformation
matrix CThist ∈ R(2×Thist)×(2×Twin) using the Irwin-Hall distri-
bution. The constant value C depends only on the length, so
vx,k can be approximated. The trajectory X ∈ RN×(2×Thist)

is projected to the coordinate X ∈ RN×(2×Thist) in Singular
space as follows:

vx,k = CThist × vk. (5)

X = X ×CThist × VK . (6)

In the same way as Eq. (6), the trajectory Y ∈ RN×(2×Tfut)

also can be projected to Y ∈ RN×K using VK and CTfut .
Through this process, Singular space can represent a vari-

ety of trajectories even with different lengths, including mo-
tion vectors for the input/output as well as the task-specific
data, as visualized in Fig. 2. Establishing a common ground
for the trajectory representation is crucial for our model’s
adaptability and robust performances across different tra-
jectory prediction benchmarks. Moreover, the strategy of
focusing on the overall motion flow, rather than frame-by-
frame coordinates, further improves the model’s capacity
to understand and predict socially compliant trajectories in
diverse real-world scenarios.

3.4. Adaptive Anchor

Beyond the trajectory data integration, we also introduce
how to incorporate environmental contexts into trajectory
predictors. To do this, we propose an adaptive anchor which
is expressed as a set of motion vectors from input images
and consists of prototype paths in Singular space.
Prototype anchor formation. Previous anchor-based hu-
man trajectory prediction approaches [6, 29] use a fixed an-
chor for any pedestrian, and the anchor is refined for output
trajectories. Although these methods can explicitly model
the multimodality, they sometimes fail to handle the case
where the prototype path is put into wrong locations, or
blocked by static obstacles. This is because the wrong proto-
types are treated as a hard constraint. To avoid this problem,
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we use the input image as a traversability map to correct the
wrong prototype paths.

We start with the converted future trajectory Y in the
whole dataset Y using Sec. 3.3. Following [6, 59], the
coordinates Y are then clustered into S centroids, which can
be viewed as groups of components representing different
multimodal futures. In addition, each centroid in Singular
space is used as an initial prototype path Ps for constructing
an anchor P ∈ RS×K . But, these initial prototype paths are
still fixed, so they still have a limitation which is unlikely to
consider environmental information.
Adaptive anchor generation. To make use of environ-
mental information, we introduce a module to deform the
anchor. Using an off-the-shelf semantic segmentation model
from [46], we can obtain binary traversable maps Imap from
an input image. We then derive a vector field F⃗I(x, y) to
fix the wrongly located prototype path by directing it to a
nearest traversable regions. If the initial prototype path Ps is
in the wrong place, we deform it by adding the vector fields
into the initial anchor until they reach equilibrium states to
obtain the final prototype paths P ′

s as follows:

P ′
s = Ps + F⃗I(PsV

⊤
K C−1

Tfut
). (7)

Through this process, the prototype path is re-located toward
the nearest walkway, as demonstrated in Fig. 3. In other
words, the anchor plays a role in the environment-adaptive
prototype paths, unlike the existing fixed anchor methods.

Because the prototype paths are in Singular space, the
scene image can be implicitly represented as the adaptive
anchor. In addition, the scene image can be approximated
with the set of motions. By projecting the scene images into
the Singular space, our model understands the surrounding
environment. This holistic approach, integrating both coordi-
nate and environmental cues, sets the stage for more realistic
and reliable trajectory predictions.

3.5. Diffusion-Based SingularTrajectory Model

As the final step, we develop a framework called Singular-
Trajectory, a unified model that works well across the five
tasks. Leveraging the Singular space and the adaptive anchor,
our diffusion-based SingularTrajectory model can precisely
forecast potential future paths.
Denoising a perturbed trajectory anchor. Unlike pre-
vious diffusion-based predictors, which directly forecast
the future path from Gaussian noise [18, 25], we devise a
stepwise refinement from the adaptive anchor for a realistic
trajectory. Here, historical pathways X , environmental infor-
mation P , and agent interactions G(X ,P) are encoded and
used as conditions to guide the denoising processes. To bet-
ter capture agents interactions G in the denoising process, we
adopt the transformer model. Similar to other transformer-
based trajectory predictors [18, 48], our SingularTrajectory

encodes spatio-temporal information to account for agent-
agent and agent-environment interactions using X and P ,
respectively. These conditions are then concatenated into
one feature vector representation and fed into the diffusion
model ϵθ(ym,m,X ,P,G) to learn, by contrasting the mo-
tion patterns from previous diffusion steps to distinguish
the added noise, and to close the reality gap by generating
socially-acceptable future paths Ŷ .

This refinement process works in a cascading manner by
{P, ..., Ŷ}Mm=1 as follows:

Ŷ = P + p(yM )

M∏
m=1

pθ(ym−1|ym). (8)

By predicting only the residuals ym ∈ RS×K to adjust
the anchors, the problem is simplified, in that the model is
able to use a prior knowledge on the initial state. With this
process, we thus ensure more precise and reliable trajectory
generations, achieving generality in various environments
and applications.
Implementation details. To construct Singular space, we
empirically set K to 4. We set Twin =Tfut =12 in order to
prevent information loss due to the approximation of the mo-
tion vector during prediction. For an anchor diffusion model,
we devise a one-layer transformer for encoding motion and
context information, where the dimension is set to 256 with
4-head attention. We set M = 10 and schedule the diffusion
timesteps following DDIM [72]. To train the SingularTrajec-
tory in an end-to-end manner, we use a mean square error
(MSE) as a loss function between the output and a random
Gaussian noise for the current iteration. The training is per-
formed with AdamW optimizer [42], with a learning rate
of 0.001 and batch size of 512 for 256 epochs. All the ex-
periments are conducted on a single NVIDIA A6000 GPU,
which usually takes about an hour to train each scene.

4. Experiments

In this section, we conduct comprehensive experiments to
verify the generality of our SingularTrajectory model for the
trajectory prediction tasks. We first describe our experimen-
tal setup in Sec. 4.1. We then provide comparison results
with state-of-the-art models on public benchmark datasets
in Sec. 4.2. Finally, we perform an extensive ablation study
demonstrating the effect of each component of our method
in Sec. 4.3.

4.1. Experimental Setup

Datasets. To compare our SingularTrajectory with state-
of-the-art baselines, we conduct quantitative evaluations on
two common datasets, ETH [60] and UCY [32], for all the
associated tasks. The ETH and UCY datasets consist of vari-
ous motions of 1,536 pedestrians across five unique scenes:
ETH, Hotel, Univ, Zara1 and Zara2. They are recorded in
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Domain Adaptation
(ADE)

A2* B2* C2* D2* E2* *2*

A2B A2C A2D A2E AVG B2A B2C B2D B2E AVG C2A C2B C2D C2E AVG D2A D2B D2C D2E AVG E2A E2B E2C E2D AVG AVG

STGCNN [53] 1.83 1.58 1.30 1.31 1.51 3.02 1.38 2.63 1.58 2.15 1.16 0.70 0.82 0.54 0.81 1.04 1.05 0.73 0.47 0.82 0.98 1.09 0.74 0.50 0.83 1.22
PECNet [45] 1.97 1.68 1.24 1.35 1.56 3.11 1.35 2.69 1.62 2.19 1.39 0.82 0.93 0.57 0.93 1.10 1.17 0.92 0.52 0.93 1.01 1.25 0.83 0.61 0.93 1.31

AgentFormer [98] 1.73 1.64 1.87 1.57 1.70 1.49 1.76 2.13 1.73 1.78 1.73 0.19 2.01 1.79 1.43 1.71 2.05 1.92 1.32 1.75 1.96 1.91 1.89 1.91 1.92 1.72
MID [18] 1.26 1.43 1.65 1.43 1.44 1.23 0.87 0.98 0.77 0.96 1.61 0.63 0.81 0.58 0.91 1.42 0.75 0.81 0.74 0.93 1.47 0.68 0.88 0.91 0.98 1.04

EigenTrajectory[6] 0.39 0.71 0.73 0.45 0.57 0.95 0.68 0.51 0.42 0.64 0.94 0.32 0.49 0.37 0.53 1.10 1.03 1.36 0.43 0.98 0.92 0.51 0.62 0.52 0.64 0.67

T-GNN [93] 1.13 1.25 0.94 1.03 1.09 2.54 1.08 2.25 1.41 1.82 0.97 0.54 0.61 0.23 0.59 0.88 0.78 0.59 0.32 0.64 0.87 0.72 0.65 0.34 0.65 0.96
K0 [24] 0.45 0.78 0.68 0.59 0.63 0.87 0.65 0.49 0.36 0.59 1.08 0.46 0.44 0.36 0.59 1.13 0.56 0.59 0.53 0.70 1.13 0.39 0.59 0.48 0.65 0.63

Adaptive [24] 0.36 0.64 0.53 0.45 0.50 0.90 0.62 0.50 0.36 0.60 1.11 0.46 0.48 0.42 0.62 1.11 0.52 0.54 0.47 0.66 1.05 0.34 0.56 0.44 0.60 0.59

SingularTrajectory 0.29 0.59 0.51 0.42 0.45 0.66 0.55 0.45 0.35 0.50 0.79 0.30 0.48 0.36 0.48 0.73 0.29 0.55 0.36 0.49 0.64 0.23 0.55 0.45 0.47 0.48

Domain Adaptation
(FDE)

A2* B2* C2* D2* E2* *2*

A2B A2C A2D A2E AVG B2A B2C B2D B2E AVG C2A C2B C2D C2E AVG D2A D2B D2C D2E AVG E2A E2B E2C E2D AVG AVG

STGCNN [53] 3.24 2.86 2.53 2.43 2.77 5.16 2.51 4.86 2.88 3.85 2.30 1.34 1.74 1.10 1.62 2.21 1.99 1.41 0.88 1.62 2.10 2.05 1.47 1.01 1.66 2.30
PECNet [45] 3.33 2.83 2.53 2.45 2.79 5.23 2.48 4.90 2.86 3.87 2.22 1.32 1.68 1.12 1.59 2.20 2.05 1.52 0.88 1.66 2.10 1.84 1.45 0.98 1.59 2.29

AgentFormer [98] 3.60 3.54 4.52 3.95 3.90 3.76 3.67 5.17 3.42 4.01 3.77 3.49 4.12 3.76 3.79 3.88 3.75 4.27 3.61 3.88 3.82 3.55 3.74 4.32 3.86 3.89
MID [18] 2.42 2.77 3.22 2.77 2.80 2.34 1.66 1.87 1.44 1.83 3.13 1.28 1.74 1.24 1.85 2.73 1.49 1.67 1.54 1.86 2.87 1.41 1.88 1.93 2.02 2.07

EigenTrajectory[6] 0.76 1.43 1.56 0.96 1.18 2.10 1.38 1.07 0.86 1.35 2.01 0.64 1.10 0.82 1.14 2.42 1.03 1.36 0.97 1.44 2.04 0.51 1.29 1.11 1.24 1.27

T-GNN [93] 2.18 2.25 1.78 1.84 2.01 4.15 1.82 4.04 2.53 3.14 1.91 1.12 1.30 0.87 1.30 1.92 1.46 1.25 0.65 1.32 1.86 1.45 1.28 0.72 1.33 1.82
K0 [24] 0.94 1.72 1.51 1.29 1.37 1.81 1.33 1.02 0.75 1.23 2.17 0.91 0.94 0.81 1.21 2.18 0.98 1.20 1.03 1.35 2.12 0.68 1.22 1.03 1.26 1.28

Adaptive [24] 0.69 1.34 1.12 0.91 1.02 1.85 1.27 1.05 0.76 1.23 2.26 0.92 1.03 0.94 1.29 2.23 1.02 1.17 1.00 1.36 2.07 0.63 1.19 0.94 1.21 1.22

SingularTrajectory 0.57 1.19 1.08 0.81 0.91 1.16 1.17 0.97 0.73 1.01 1.36 0.62 1.11 0.79 0.97 1.22 0.52 1.18 0.73 0.92 1.07 0.43 1.15 0.94 0.90 0.94

Table 1. Comparison of our SingularTrajectory with other state-of-the-art methods in domain adaptation task. Following [24, 93], we
deterministically predict one future path for all dataset pairs (ADE/FDE). Bold: Best, Underline: Second best.

Stochastic ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social-GAN [19] 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
STGCNN [53] 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75

STAR [97] 0.57/1.11 0.19/0.37 0.35/0.75 0.26/0.57 0.25/0.58 0.33/0.68
PECNet [45] 0.61/1.07 0.22/0.39 0.34/0.56 0.25/0.45 0.19/0.33 0.32/0.56

MID [18] 0.57/0.93 0.21/0.33 0.29/0.55 0.28/0.50 0.20/0.37 0.31/0.54
LBEBM [58] 0.60/1.06 0.21/0.38 0.28/0.54 0.21/0.39 0.15/0.30 0.29/0.53

Trajectron++[64] 0.61/1.03 0.20/0.28 0.30/0.55 0.24/0.41 0.18/0.32 0.31/0.52
GroupNet [88] 0.46/0.73 0.15/0.25 0.26/0.49 0.21/0.39 0.17/0.33 0.25/0.44

AgentFormer [98] 0.46/0.80 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.40
GP-Graph [4] 0.43/0.63 0.18/0.30 0.24/0.42 0.17 /0.31 0.15/0.29 0.23/0.39

NPSN [5] 0.36/0.59 0.16/0.25 0.23/0.39 0.18/0.32 0.14/0.25 0.21 /0.36
EqMotion [90] 0.40/0.61 0.12/0.18 0.23/0.43 0.18/0.32 0.13 /0.23 0.21 /0.35

EigenTrajectory[6] 0.36/0.53 0.12/0.19 0.24/0.43 0.19/0.33 0.14/0.24 0.21 /0.34
SocialVAE [91] 0.41/0.58 0.13/0.19 0.21 /0.36 0.17 /0.29 0.13 /0.22 0.21 /0.33

LED [48] 0.39/0.58 0.11 /0.17 0.26/0.43 0.18/0.26 0.13 /0.22 0.21 /0.33

SingularTrajectory 0.35 /0.42 0.13/0.19 0.25/0.44 0.19/0.32 0.15/0.25 0.21 /0.32

Table 2. Evaluation on the stochastic trajectory prediction task.

surveillance views, and the trajectories are labeled in world
coordinates.

Benchmarks. We evaluate our model for the five trajectory
prediction tasks: (1) stochastic prediction, (2) deterministic
prediction, (3) momentary observation, (4) domain adapta-
tion, and (5) few-shot learning. The stochastic trajectory pre-
diction employs a leave-one-out strategy [5, 19, 22, 53, 66]
for training and inference across the five ETH-UCY scenes.
In the scenes, the initial 3.2 seconds (equivalent to Thist=8
frames) of all paths are used as input, and the subsequent 4.8
seconds (corresponding to Tfut =12 frames) are predicted.
The model generates S=20 paths, and one with the lowest
error is chosen as the final prediction. In the deterministic
prediction, the trajectory prediction methods generate only
S=1 path. For the momentary observation, the observation
length is Thist = 2 whereas still Tfut = 12. For the domain
adaptation, models are trained on each of the five scenes
individually, and then evaluated on the other scenes, instead

Deterministic ETH HOTEL UNIV ZARA1 ZARA2 AVG

STGCNN [53] 1.04/1.93 0.88/1.63 0.71/1.34 0.66/1.22 0.57/1.06 0.77/1.44
PECNet [45] 1.20/2.73 0.68/1.51 0.78/1.71 0.82/1.85 0.62/1.46 0.82/1.85

AgentFormer [98] 1.67/3.65 1.61/3.59 1.62/3.53 1.85/4.13 1.68/3.74 1.69/3.73
MID [18] 1.42/2.94 0.64/1.30 0.76/1.62 0.74/1.59 0.60/1.31 0.83/1.75

EigenTrajectory[6] 0.93/2.05 0.33/0.64 0.58/1.23 0.45/0.99 0.34/0.75 0.53/1.13

Social-LSTM [1] 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Social-GAN [19] 1.13/2.21 1.01/2.18 0.60/1.28 0.42 /0.91 0.52/1.11 0.67/1.41
SR-LSTM [100] 1.01/1.93 0.35/0.72 0.66/1.38 0.56/1.23 0.44/0.90 0.60/1.23

STAR-D [97] 0.97/2.00 0.32/0.73 0.56/1.25 0.44/0.96 0.35/0.77 0.53/1.14
Trajectron++[64] 1.02/2.09 0.33/0.63 0.52 /1.16 0.42 /0.94 0.32 /0.71 0.52/1.11

SingularTrajectory 0.72 /1.23 0.27 /0.50 0.57/1.12 0.44/0.93 0.35/0.73 0.47 /0.90

Table 3. Evaluation on the deterministic trajectory prediction task.

of using the leave-one-out strategy. In the few-shot learning,
they are trained using only 10% of the training set, and then
assessed on the entire test set. To measure the prediction
performances, two common metrics are used for all the tasks,
Average Displacement Error (ADE) and Final Displacement
Error (FDE), measuring the average and destination error
between prediction and its ground-truth path, respectively.

4.2. Evaluation Results

Stochastic prediction task. In Tab. 2, since the ETH/UCY
dataset release, many state-of-the-art models have made new
records. Among them, our model also achieves performance
competitive with the comparison methods. Our model re-
gards historical, social, and environmental conditions of
observations and images as the most important factors for
successfully generating multimodal trajectories.
Deterministic prediction task. Next, we evaluate our
model in the deterministic trajectory prediction task in Tab. 3.
Our SingularTrajectory model has the best performance over
both these latest state-of-the-art models, and the models op-
timized for deterministic prediction. In particular, our model

17895



Figure 4. Visualization of prediction results on (a) momentary observation task and (b) few-shot task. To aid visualization, the best trajectory
among S=20 samples are reported.

Momentary ETH HOTEL UNIV ZARA1 ZARA2 AVG

STGCNN [53] 1.24/2.23 0.77/1.44 0.45/0.81 0.38/0.57 0.35/0.58 0.64/1.13
PECNet [45] 0.63/1.04 0.28/0.53 0.28/0.49 0.25/0.44 0.19/0.34 0.33/0.57

AgentFormer [98] 1.10/2.11 0.50/1.02 0.52/1.10 0.56/1.18 0.43/0.89 0.62/1.26
MID [18] 0.63/1.05 0.29/0.49 0.30/0.56 0.30/0.56 0.22/0.40 0.35/0.61

EigenTrajectory[6] 0.46/0.76 0.17 /0.28 0.25/0.44 0.19 /0.35 0.15 /0.27 0.25 /0.42

STT [55] 0.72/1.45 0.48/0.48 0.53/1.09 0.64/1.21 0.44/0.88 0.57/0.93
STT+DTO [55] 0.62/1.22 0.29/0.56 0.58/1.14 0.45/0.98 0.34/0.74 0.46/0.93
MOE-Next [77] 0.71/1.57 0.30/0.58 0.52/1.12 0.38/0.81 0.33/0.73 0.45/0.96

MOE-Traj++ [77] 0.64/1.12 0.20/0.33 0.33/0.62 0.22/0.42 0.17/0.32 0.31/0.56

SingularTrajectory 0.45 /0.67 0.18/0.29 0.24 /0.43 0.19 /0.33 0.17/0.28 0.25 /0.40

Table 4. Evaluation on the momentary observation task.

exhibits significant performance improvements in the ETH
and HOTEL scenes. These scenes have noisy observation
paths, which have a negative impact on the prediction. We
are able to achieve accurate predictions by leveraging the
overall motion flow, which acts as a low-pass filter over the
noisy sequence, in Singular space.
Momentary observation task. In Tab. 4, the state-of-the-
art predictors for momentary observation mainly focus on
the coordinates themselves, leading to a performance drop,
given only two frames. Some models for this task try to
bridge these gaps, but have not been sufficient. Fortunately,
with the benefit of our Singular Space, even with only a two-
frame input, our model can successfully represent the overall
long-term flow. Note that our SingularTrajectory with two-
frame observation demonstrates the closest performance to
state-of-the-art stochastic prediction models with an entire
history frame; even this is achieved without any masked tra-
jectory complement or knowledge distillation. Consequently,
this allows it to accurately pinpoint the future locations of
pedestrians, whose examples are displayed in Fig. 4.
Domain adaptation task. We next evaluate the perfor-
mance of SingularTrajectory in a domain adaptation task.
For simplicity, the ETH, HOTEL, UNIV, ZARA1, and
ZARA2 scenes are denoted as A, B, C, D, and E, respec-
tively. For example, ‘A2B’ means that a model is trained on
the ETH scene and tested on the HOTEL scene. As demon-
strated in Tab. 1, our SingularTrajectory model shows the
performance nearly equivalent to those of models specif-
ically designed for deterministic prediction. Particularly,

Few-Shot ETH HOTEL UNIV ZARA1 ZARA2 AVG

STGCNN [53] 0.89/1.63 1.22/2.48 0.90/1.61 0.68/1.25 1.36/2.12 1.01/1.82
PECNet [45] 0.72/1.46 0.29/0.53 0.58/0.93 0.27/0.44 0.22/0.38 0.41/0.75

AgentFormer [98] 1.60/2.65 1.02/1.64 1.13/1.90 1.19/2.01 1.08/1.59 1.20/1.96
MID [18] 0.57/0.92 0.21/0.33 0.32/0.60 0.27/0.49 0.24/0.42 0.32/0.55

EigenTrajectory[6] 0.39/0.64 0.13/0.21 0.25 /0.43 0.21 /0.39 0.15 /0.27 0.23/0.39

SingularTrajectory 0.35 /0.46 0.14 /0.21 0.26 /0.44 0.21 /0.36 0.18/0.31 0.23 /0.35

Table 5. Evaluation on the few-shot trajectory prediction task.

our model produces impressive results in the challenging
B2A, C2A, D2A and E2A scenarios where even models spe-
cialized in domain adaptation fail. Our SingularTrajectory
framework specializes in learning general human motions,
and is not limited to a specific domain, enabling accurate
predictions even in extreme cases.
Few-shot task. Finally, the results for the few-shot task
are reported in Tab. 5, whose examples are in Fig. 4. As
expected, our SingularTrajectory significantly outperforms
the existing models. With limited data, the existing works,
except the diffusion-based model, tend to easily overfit. In
contrast, our methods make it possible to explicitly desig-
nate future prototype paths, while taking full advantage of
the expression ability of the diffusion model. In particular,
even with only 10% of the data, our model achieves sub-
stantial improvements with respect to both data efficiency
and performance. Figure 5 illustrates several cases where
there are differences between the predictions of Singular-
Trajectory and other comparison methods. Previous works
often show significant performance drops in other associated
tasks compared to stochastic prediction tasks. In contrast,
our model consistently predicts the best trajectories across
multiple tasks.

4.3. Ablation Studies

The number of motion vectors K. First, we conduct a
component study by varying the dimension K of Singular
space in Tab. 6. To find the best number of singular vectors in
general, we carry out experiments across all five tasks using
ZARA1 scene where there are both human-environmental
and human-human interactions, following [93]. As the num-
ber of motion vectors K increases, more detailed movements
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Figure 5. Visualization of prediction consistency across five tasks.
The more consistent the prediction is the better.

K Deterministic Stochastic Momentary Domain Few-shot Average

1 0.52 / 1.03 0.30 / 0.55 0.31 / 0.58 0.51 / 1.07 0.34 / 0.61 0.40 / 0.77
2 0.51 / 1.01 0.20 / 0.32 0.20 / 0.33 0.50 / 1.06 0.23 / 0.37 0.33 / 0.62
3 0.45 / 0.93 0.19 / 0.33 0.20 / 0.33 0.47 / 1.03 0.22 / 0.38 0.31 / 0.60
4 0.44 / 0.93 0.19 / 0.32 0.19 / 0.33 0.47 / 1.03 0.21 / 0.36 0.30 / 0.59
5 0.43 / 0.94 0.19 / 0.33 0.20 / 0.34 0.46 / 1.04 0.22 / 0.37 0.30 / 0.60
6 0.43 / 0.94 0.19 / 0.32 0.20 / 0.34 0.46 / 1.04 0.22 / 0.37 0.30 / 0.60

Table 6. Ablation study on the Singular space dimension K.

Adoption Deterministic Stochastic Momentary Domain Few-shot Average

Direct 0.75 / 1.47 0.27 / 0.48 0.31 / 0.54 0.78 / 1.60 0.27 / 0.48 0.48 / 0.91
Initial 0.47 / 0.95 0.22 / 0.40 0.22 / 0.39 0.50 / 1.17 0.23 / 0.40 0.33 / 0.66

Residual 0.44 / 0.93 0.19 / 0.32 0.19 / 0.33 0.47 / 1.03 0.21 / 0.36 0.30 / 0.59
Independent 0.46 / 0.94 0.21 / 0.39 0.21 / 0.39 0.49 / 1.16 0.21 / 0.39 0.32 / 0.65

Jointly 0.44 / 0.93 0.19 / 0.32 0.19 / 0.33 0.47 / 1.03 0.21 / 0.36 0.30 / 0.59

Table 7. Ablation study on the adoption of diffusion model.

are captured. In contrast, when using the smaller K, it com-
presses the space, mainly to represent the overall motion
flow. The performance tends to plateau when K is larger
than 3, as long as K is not too small to cover most move-
ments. We set K=4 as the dimension for the Singular space
because it shows the most effective prediction results across
all tasks.
Trajectory denoising methods. Next, we evaluate three
types of diffusion models for the trajectory prediction tasks,
as shown in Tab. 7. First, we use a basic model similar to
MID [18], which directly denoises from a Gaussian noise to
a trajectory. This method fails to achieve good performances.
The use of an anchor as an intermediate state, similar to
LED [48], which reduces the denoising steps by skipping
the initial denoising steps, seems to validate its generality.
This demonstrates that our adaptive anchor can function as a
good initializer for the diffusion model, particularly showing
nearly identical outcomes in the stochastic, momentary ob-
servation, and few-shot tasks when predicting a multimodal
path. However, we confirm that our scheme, which denoises
only a residual by adding perturbation to a prototype path
in Fig. 6, showcases the best performance in all the tasks.
Additionally, compared to refining the prototype paths inde-
pendently, regarding them as a batch dimension, our model
can accurately predict the future when prototype paths are
jointly refined.

Figure 6. Visualization of anchor refinement. The denoising process
progressively refines the prototype paths at each diffusion step m.

M Deterministic Stochastic Momentary Domain Few-shot Average

1 0.45 / 0.95 0.20 / 0.34 0.20 / 0.35 0.48 / 1.05 0.21 / 0.37 0.31 / 0.61
2 0.44 / 0.93 0.19 / 0.33 0.20 / 0.34 0.47 / 1.04 0.20 / 0.36 0.30 / 0.60
5 0.44 / 0.93 0.19 / 0.33 0.20 / 0.34 0.47 / 1.04 0.20 / 0.36 0.30 / 0.60

10 0.44 / 0.93 0.19 / 0.32 0.19 / 0.33 0.47 / 1.03 0.21 / 0.36 0.30 / 0.59
25 0.44 / 0.93 0.19 / 0.32 0.20 / 0.34 0.47 / 1.03 0.20 / 0.36 0.30 / 0.60

Table 8. Ablation study on the diffusion steps M .

Diffusion steps M . Lastly, we check how many steps in
the diffusion model are needed for the cascaded refinement
of the adaptive anchor. In Tab. 8, we confirm that the best
performance comes from M=10. This is because the DDIM
scheduler accelerates its convergence and the prototype path
provides a rough initial trajectory, and so fewer denoising
steps are sufficient. However, as the number of denoising
steps increases, the information in the initial prototype path
becomes attenuated due to the noise. As a result, we observe
a slight decrease in performance.

5. Conclusion
In this study, we introduce SingularTrajectory, a universal
trajectory predictor model for all related trajectory prediction
tasks. By unifying trajectory modalities into one Singular
space, our approach standardizes trajectory data with shared
motion dynamics, which eliminates the need for task-specific
adjustments. The incorporation of an adaptive anchor system
further personalizes the prototype paths, allowing them to
interpret and adapt to environmental contexts and enhanc-
ing the reliability of the trajectory prediction. By success-
fully incorporating Singular space into the diffusion model,
our SingularTrajectory framework successfully achieves the
state-of-the-art results across five different benchmarks. This
establishes SingularTrajectory itself as a general solution that
covers a multitude of scenarios.
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