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Abstract

We present ARTrackV2, which integrates two pivotal as-
pects of tracking: determining where to look (localization)
and how to describe (appearance analysis) the target ob-
ject across video frames. Building on the foundation of its
predecessor, ARTrackV2 extends the concept by introduc-
ing a unified generative framework to “read out” object’s
trajectory and “retell” its appearance in an autoregressive
manner. This approach fosters a time-continuous method-
ology that models the joint evolution of motion and visual
features, guided by previous estimates. Furthermore, AR-
TrackV2 stands out for its efficiency and simplicity, obviating
the less efficient intra-frame autoregression and hand-tuned
parameters for appearance updates. Despite its simplicity,
ARTrackV2 achieves state-of-the-art performance on prevail-
ing benchmark datasets while demonstrating a remarkable
efficiency improvement. In particular, ARTrackV2 achieves
an AO score of 79. 5% on GOT-10k and an AUC of 86. 1%
on TrackingNet while being 3.6× faster than ARTrack.

1. Introduction
Visual object tracking [6, 22, 31, 34, 35, 39, 46], a corner-

stone in the realm of computer vision, has seen transforma-
tive advances over the past decade. Its applications span a
diverse array of fields, from autonomous vehicles to surveil-
lance, and from augmented reality to human-computer inter-
action. At its core, visual tracking involves the continuous
localization of an object within a video sequence, typically
initiated from the first frame.

In this research area, previous approaches have mainly
focused on either trajectory estimation or appearance model-
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Figure 1. Frameworks and performance comparison of trackers
following the sequence generation paradigm. (a) SeqTrack views
tracking as sequence prediction. (b) ARTrack introduces trajectory
evolution. (c) ARTrackV2 incorporates joint trajectory-appearance
evolution. (d) Performance comparison.

ing. Traditional methods, such as the application of Kalman
filters [4, 8, 56] and Particle filters [2, 28], emphasize pre-
dicting the object’s motion by leveraging historical states.
In contrast, modern learning-based methods aim to under-
stand and track the visual features of the target object, often
employing a template-matching framework. However, these
approaches typically adopt frame-level training strategies,
overlooking the temporal dependencies across frames. Some
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methods attempt to handle appearance changes over time
using dynamic templates, which are updated using heuristic
rules [23] or learnable modules [13, 14, 58].

The recent shift towards a generative paradigm [9] in vi-
sual tracking [11, 54], conceptualizing the task as sequence
generation, has established new performance benchmarks.
This approach simplifies the process, directly predicting the
object coordinates sequentially. SeqTrack [11], as shown in
Figure 1(a), introduces an intra-frame sequence model that
generates four tokens of the bounding box autoregressively.
It also showcases that prepending previous coordinate to-
kens in inference could improve accuracy further. On the
contrary, ARTrack [54] concentrates on inter-frame autore-
gression (Figure 1(b)). It advocates video sequence-level
training (rather than frame-level) to maintain consistency
between training and testing in terms of data distributions
and task objectives [36]. Overall, this generative framework
has its flexibility to use historical trajectory tokens, referred
to as trajectory prompts, to continuously model trajectory
evolution.

In this paper, we go one step further and introduce a
joint trajectory-appearance autoregression tracker. Building
upon the foundation of its predecessor, ARTrackV2 extends
the concept by implementing a unified generative frame-
work that models the evolution of both trajectory and appear-
ance. The intuition behind this idea is simple: if the tracker
successfully tracks an object, it should not only “read
out” object’s position, but also “retell” its appearance.
Alongside the time-series modeling of trajectory proposed
by ARTrack, we maintain an autoregressive model to simul-
taneously reconstruct the object’s appearance, using a set
of appearance prompts, as illustrated in Figure 1(c). These
tokens, on the one hand, function similarly to dynamic tem-
plates, interacting with the search region through attention
mechanisms. Beyond that, they are trained to rebuild the
object’s appearance, requiring an understanding of visual
feature evolution. We design a masking strategy that inten-
tionally prevents the attention from appearance tokens to tra-
jectory ones, preventing the appearance model from merely
cropping visual features based on the predicted trajectory.

Furthermore, ARTrackV2 distinguishes itself through its
operational simplicity and efficiency. Different from Seq-
Track and ARTrack, it utilizes a pure encoder architecture
to process all tokens within a frame, in parallel. ARTrackV2
abandons intra-frame autoregression that impedes tracking
efficiency while maintaining the time-autoregressive frame-
work (aka, inter-frame autoregression). Unlike many con-
temporary tracking systems that require multiple training
stages [13, 14, 58] or hand-tuned parameters for template
updates [11, 23], ARTrackV2 undergoes end-to-end train-
ing within a single stage. This approach yields outstanding
performance on various benchmark datasets, with the base
model achieving an impressive AUC score of 71. 6% on La-

SOT and 84. 9% on TrackingNet. Notably, it accomplishes
this while exhibiting a substantial 3.6× speed improvement
compared to ARTrack, as demonstrated in Figure 1(d). our
top-performing model achieves an even higher AUC score
of 73.6% on LaSOT and an impressive 86.1% on Track-
ingNet, significantly outperforming SeqTrack and ARTrack
while maintaining remarkable speed improvements of ap-
proximately 3× to 5×.

To summarize, ARTrackV2 enhances its predecessor in
the following ways:

• Extend the concept: we complement the generative
framework for visual tracking to encompass both tra-
jectory generation and appearance reconstruction.

• Strengthen inter-frame autoregression: we uphold
the time-autoregressive model to jointly evolve trajec-
tory and appearance. Also, we introduce sequence data
augmentation to improve accuracy.

• Eliminate intra-frame autoregression: we employ a
pure encoder architecture that enables parallel process-
ing of all tokens within a frame, moving away from the
less efficient intra-frame autoregressive decoder.

2. Related Work
Tracking Framework. Prevailing trackers [3, 12, 15, 16,
26, 37, 68] often employ a template-matching framework
reference template to match target within the search region.
Initially, these approaches employ a backbone to integrate vi-
sual features [7,13,41,61], then divide tracking into multiple
subtasks [1, 5, 38, 48, 50, 67] such as object scale estima-
tion and center point localization, divide and conquer with
specific heads. Meanwhile, they introduce complex post-
processings, overlooking potential temporal dependencies.
Recently, the generative paradigm [11,54] redefines tracking
as a sequence generation task. After visual integration, this
approach unified multiple tracking subtasks as an intra-frame
sequence model in an autoregressive manner. This methodol-
ogy simplified the tracking framework and leveraged preced-
ing trajectory tokens to model trajectory evolution, but im-
peded efficiency by introducing intra-frame autoregression.
Thus, we propose a pure encoder architecture that enables
parallel processing of all tokens, abandoning intra-frame au-
toregression while preserving a time-autoregression nature.

Appearance Modeling. To handle the appearance varia-
tion that often occurs in tracking scenarios, typical discrimi-
native approaches [13, 14, 58] use a trained score model to
discriminate whether the tracked region contains the target.
Recently, SeqTrack [11] introduced a likelihood-based strat-
egy that uses the likelihood of generated tokens to select dy-
namic templates without incremental training. Moreover, the
above methods rely on hand-tuned parameters such as the up-
date interval and threshold for specific benchmarks [3,15,68].
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Furthermore, both of them model appearance in discrete
frames [5, 16, 40, 52, 59, 60, 64]. In contrast, we present gen-
erative autoregressive appearance reconstruction to model
appearance evolution in successive video with end-to-end
single-stage training, fully exploiting the temporal potential.

3. Method
3.1. Revisiting ARTrack

ARTrack [54] constitutes a sequence generation frame-
work for visual tracking, with its primary focus on the gener-
ation of time-series coordinates. This is achieved by utilizing
a shared vocabulary to tokenize the object’s trajectory, repre-
senting it as a discrete sequence of coordinates. Subsequently,
the framework employs an encoder-decoder architecture to
assimilate visual information and progressively model the
sequential evolution of the trajectory prompted by preceding
coordinate tokens. This modeling is expressed as a condi-
tional probability:

𝑃
(
Y 𝑡 |Y 𝑡−𝑁 :𝑡−1 , (C ,Z ,X 𝑡)

)
, (1)

Here, Z and X 𝑡 represent the given template and search
images at time step 𝑡, C serves as the command token, and
Y signifies the target sequence associated with X .

Beyond frame-level training and optimization, ARTrack
is learned over video sequence with structure objectives to
obviate bias between the training and testing phases in data
distributions and task objectives. Furthermore, a task-specific
SIoU loss [25] is utilized to improve accuracy.

Motivation. At the core of tracking lies the challenge of
determining where to focus attention and how to accurately
describe the target. ARTrack offers valuable insights by em-
phasizing the importance of continuous trajectory evolu-
tion, allowing for precise “reading out” of the object’s po-
sition. However, it falls short in effectively “retelling” the
object’s changing appearance over time. Furthermore, AR-
Track employs an approach known as intra-frame autoregres-
sion, which involves generating four tokens of the bounding
box sequentially. This intra-frame autoregression method
significantly hampers tracking efficiency. To address these
limitations, we introduce ARTrackV2, which leverages joint
trajectory-appearance evolution and utilizes a pure encoder
architecture to enhance processing speed.

3.2. Joint Trajectory-Appearance Autoregression

The framework of ARTrackV2 is depicted in Figure 2.
We expand upon the concept introduced in ARTrack by
synchronously modeling the evolution of both trajectory and
appearance, thus reinforcing inter-frame autoregression. This
is formulated as a probability expression:

𝑃
(
Y 𝑡 ,Z 𝑡 ,S𝑡 |Y 𝑡−𝑁 :𝑡−1 ,Z 𝑡−1 ,S𝑡−1 , (C ,Z0 ,X 𝑡)

)
(2)
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Figure 2. ARTrackV2 framework. Initially, we utilize a Trans-
former encoder to process all tokens within a frame in parallel,
with a masking strategy shown on the top right. Subsequently, ap-
pearance tokens are directed to a reconstruction decoder, where
the object’s appearance within the ongoing search region is recon-
structed. Simultaneously, the confidence token is fed into an MLP
to predict the IoU between the estimated and ground truth bounding
boxes, serving as a measure of the quality of appearance tokens.

Here, Z0 represents the initial template, which remains static
throughout tracking. The appearance tokens function as dy-
namic templates, denoted as Z 𝑡−1 and Z 𝑡 , the confidence
token denoted as S𝑡−1 and S𝑡 , in red, effectively describ-
ing the temporal evolution of the target’s appearance in a
continuous manner.

Pure Encoder Architecture. In the context of genera-
tive paradigm trackers [41, 61], there is an efficiency draw-
back associated with intra-frame autoregression compared
to the prevailing tracking methods. Therefore, in our pur-
suit of simplicity and efficiency, we opt for a transformer
encoder [19, 29] that can process all tokens within a frame
in parallel. Initially, both the template and search images
are divided into patches, flattened, and projected to form a
sequence of token embeddings. Similarly to ARTrack, we
map the object’s trajectory across frames to a common coor-
dinate system and tokenize it as trajectory prompts, utilizing
a shared vocabulary [9, 10, 55]. We then concatenate visual
tokens, trajectory tokens, and four command tokens (each
representing one of the four bounding box tokens), add po-
sitional and identity embeddings, and input them into the
transformer encoder. This approach eliminates the need for
intra-frame autoregression while still maintaining the time-
autoregressive nature of the framework, thereby improving
overall efficiency.
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Autoregressive Appearance Reconstruction. We employ
a set of appearance tokens along with a reconstructed de-
coder to recreate the target’s appearance within the current
search region. These appearance tokens, termed “appearance
prompts”, operate akin to dynamic templates. For each video
clip, they initialize as the template within the first frame.
In each subsequent frame, they interact with the current
search region to extract the target’s appearance, through the
transformer encoder. Then appearance tokens enter the re-
constructed decoder, which rebuilds the target’s appearance
formed as the feature map of the search region cropped based
on the object’s position. The output of the reconstructed de-
coder continuously updates the appearance tokens, which
propagate into subsequent frames. However, a challenge
arises when the target becomes invisible, either due to be-
ing out of view or significantly occluded. In such instances,
invisible appearance propagation can erroneously guide the
model to “read out” non-sensical target localization in the
following frames. To address this, we instruct the appearance
tokens to maintain their current state in scenarios devoid of
visual cues, to prevent unwarranted appearance evolution,
ensuring accurate model behavior. This process allows the
model to capture appearance variation over time while pre-
serving its autoregressive nature.

Appearance Evolution Indicator. In scenarios involv-
ing complex conditions such as full occlusion, improper
evolution of appearance can result in loss of target. To
tackle this challenge, we propose a solution that guides the
model’s evolution of appearance with an indicator. Our ap-
proach employs a learnable confidence token, initialized by
xavier uniform, and a confidence prediction module
comprises a three-layer perceptron. Moreover, we adopt In-
tersection over Union (IoU) as the indicator’s metric based
on the fact that it aligns with common tracking evaluation
metrics. In continuous frames, the confidence token inter-
acts with all tokens through the transformer encoder. This
interaction implicitly guides the appearance tokens regard-
ing whether to evolve or maintain their current state. Sub-
sequently, the confidence token feeds into the perceptron,
predicting the IoU between the model’s estimations and the
ground truth boxes. Like appearance tokens, the estimated
indicator updates the previous confidence token and propa-
gates into the subsequent frame.

Oriented Masking. To prevent the model from exclusively
fixating on cropping visual features solely based on predicted
localization and overlooking the understanding of appear-
ance evolution, we implement an attention masking strategy
within the transformer encoder. Beyond MixFormer [13],
which concerns intrinsic characteristics within templates to
eliminate potential interactive distractors, our approach in-
volves restricting appearance tokens. We force appearance
tokens to solely interact with the search region (for recon-

structing the target’s appearance) and confidence token (for
instructing appearance evolution). This deliberate process
aims to deter appearance tokens from simply cropping vi-
sual features based on target localization, and then limits the
comprehension of appearance evolution.

3.3. Sequence Augmentation

When compared to frame-level training, which involves
sampling image pairs from videos [3, 37, 51], sequence-level
training [36, 54] aligns the training and testing data distribu-
tions by exclusively sampling successive video clips instead
of individual image pairs. However, this approach results in
a sharp reduction in the amount of training data available.
To overcome this challenge, we investigate sequence-level
augmentation methods.

Drawing inspiration from multiple object tracking tech-
niques [32,47,63,66], we experiment with fixed- and random-
interval sampling, but both of these methods negatively im-
pact tracking accuracy. We observe that these approaches
disrupt the natural progression of temporal information, lead-
ing the tracker to learn spurious temporal interactions.

As a result, our criterion for designing augmentation is
to preserve the time-series nature of the data. We propose a
straightforward yet effective augmentation strategy known as
“reverse augmentation”. Given a video sequence, we invert it
with a certain probability to expand the training dataset.

3.4. Training and Inference

ARTrackV2 emphasizes video sequence-level training
and facilitates joint trajectory-appearance evolution in an
end-to-end manner.

Training. Similar to its predecessor, ARTrackV2 under-
goes sequence-level training. We employ a structured ob-
jective that maximizes the log-likelihood of trajectory se-
quences. Moreover, we incorporate a task-agnostic SIoU
loss [25] to enhance the measurement of spatial correlation.

While modeling the trajectory over time, ARTrackV2
also maintains an autoregressive model to reconstruct the
appearance. Drawing inspiration from MAE [29], we intro-
duce the reconstruct token masking strategy, after processing
the transformer encoder, we sample a subset of appearance
tokens and mask them. This creates a challenging task to
prevent the overfitting of reconstruction. Subsequently, we
compute the mean squared error (MSE) between the recon-
structed tokens and the target within the search region or
the preceding appearance tokens, depending on whether the
object is visible. To avoid poor quality appearance evolution,
we introduce the confidence prediction module, trained by
L1 loss between actual and predicted IoU.

For each video clip, the cached trajectory prompts are
initialized with the bounding box from the first frame, and
the appearance tokens are set to match the template. Both
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the trajectory-appearance prompts and the confidence to-
ken are iteratively propagated into subsequent frames in an
autoregressive manner. The overall tracker is optimized by
sequence-level loss function, which is defined as follows:

ℒ = ℒce + 𝜆SIoUℒSIoU + 𝜆mseℒmse + 𝜆L1ℒL1 , (3)

where ℒce, ℒSIoU, ℒmse and ℒL1 are the cross-entropy loss,
SIoU loss, MSE loss, and IoU L1 loss respectively. The
values of 𝜆 serve as weights to balance the contribution of
each loss term.

Inference. During inference, we initialize the trajectory
and appearance tokens as previously described. Subse-
quently, we simultaneously generate the trajectory sequence
from the estimated likelihood with argmax sampling and
reconstruct the target’s appearance. This process is carried
out in an autoregressive manner, where the trajectory, appear-
ance, and confidence token are iteratively propagated into
subsequent frames. It is worth noting that, during the recon-
struction process, we intentionally refrain from appearance
tokens masking, unlike the training phase.

4. Experiments
4.1. Implementation Details

The models are trained with 8 NVIDIA RTX A6000
GPUs, with training times ranging from approximately 26
to 120 hours, depending on the specific experimental config-
urations.

Model Variants. We trained three variants of ARTrackV2
with different configurations as follows:

• ARTrackV2256. Backbone: ViT-Base; Template size:
[128×128]; Search region size: [256×256];

• ARTrackV2384. Backbone: ViT-Base; Template size:
[192×192]; Search region size: [384×384];

• ARTrackV2-L384. Backbone: ViT-Large; Template
size: [192×192]; Search region size: [384×384].

Training Strategy. We adhere to established protocols for
training and evaluating our models, consistent with ARTrack.
The training dataset includes GOT-10k [33] (with 1k se-
quences removed from the GOT-10k train split, as per [58]),
TrackingNet [45], and LaSOT [21]. To ensure a fair evalua-
tion of the GOT-10k test set, our models learn from the entire
GOT-10k training split following its one-shot protocol.

Models are optimized using AdamW [43] with a weight
decay of 5 × 10−2. The learning rate for the backbone is set
to 8 × 10−6, while other parameters use a learning rate of
8 × 10−5. The training process comprises 60 epochs, with
960 video sequences in each epoch. Each sequence consists
of 32 frames, constrained by GPU memory limitations.

Furthermore, in line with ARTrack [54], and to align
with established trackers [11, 24, 30, 49] that are trained
using image datasets such as COCO2017 [42], we employ
frame-level training to pre-train our models. During this
process, we utilize four training datasets and apply image
data augmentation techniques, including horizontal flip and
brightness jittering, which are consistent with OSTrack [61]
and SeqTrack [11]. The pre-trained models are optimized
using AdamW with a weight decay of 10−4, with the learning
rate for the backbone and other parameters set the same as
previously mentioned. Our pre-trained model undergoes 240
epochs of training, with 60k matching pairs processed per
epoch.

4.2. Main Results

We evaluate the performance of our proposed
ARTrackV2256 and ARTrackV2-L384 on several bench-
marks, including GOT-10k [33], TrackingNet [45],
LaSOT [21] and LaSOText [20].

GOT-10k [33]. GOT-10k is a comprehensive generic ob-
ject tracking dataset comprising video sequences featuring
real-world moving objects with manually annotated bound-
ing boxes. The dataset advocates for a one-shot protocol,
which necessitates that trackers are trained exclusively on the
GOT-10k training split to ensure that the object classes in the
training and testing sets do not overlap. Adhering to this pro-
tocol, our ARTrackV2 is trained exclusively on the GOT-10k
training split and evaluated on the test set. As demonstrated
in Table 1, our ARTrackV2-L384 outperforms state-of-the-
art trackers across all metrics. Notably, our ARTrackV2256
and ARTrackV2384 surpasses other trackers with higher res-
olution and larger backbones except ARTrack.

TrackingNet [45]. TrackingNet is an extensive tracking
dataset comprising over 30,000 videos that cover a wide
range of real-world scenarios and content. Each video is
annotated with manually labeled bounding boxes. We as-
sess the performance of ARTrackV2 on its test set which
contains 511 videos covering diverse object categories, as
illustrated in Table 1. This table shows that not only does our
ARTrackV2384 outperform all other trackers in AUC, but our
ARTrackV2-L384 also establishes a new state-of-the-art in
three matrices on this large-scale benchmark.

LaSOT [21]. LaSOT is a benchmark designed for long-
term tracking, comprising 280 videos in its test set, effec-
tively assessing the tracker’s robustness in extended video
sequences. Table 1 demonstrates that our ARTrackV2256
achieves comparable performance to ARTrack384, de-
spite having lower input resolution. Furthermore, our
ARTrackV2-L384 significantly enhances performance, set-
ting a new state-of-the-art while running at 49 FPS, which is
over 5× faster than SeqTrack-L384 (9 FPS).
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Methods GOT-10k* TrackingNet LaSOT LaSOText

AO(%) 𝑆𝑅0.5(%) 𝑆𝑅0.75(%) AUC(%) 𝑃𝑁𝑜𝑟𝑚(%) 𝑃(%) AUC(%) 𝑃𝑁𝑜𝑟𝑚(%) 𝑃(%) AUC(%) 𝑃𝑁𝑜𝑟𝑚(%) 𝑃(%)

SiamFC255 [3] 34.8 35.3 9.8 57.1 66.3 53.3 33.6 42.0 33.9 23.0 31.1 26.9
ECO224 [17] 31.6 30.9 11.1 55.4 61.8 49.2 32.4 33.8 30.1 22.0 25.2 24.0

DiMP288 [44] 61.1 71.7 49.2 74.0 80.1 68.7 56.9 65.0 56.7 39.2 47.6 45.1
SiamR-CNN255 [51] 64.9 72.8 59.7 81.2 85.4 80.0 64.8 72.2 - - - -

Ocean255 [67] 61.1 72.1 47.3 - - - 56.0 65.1 56.6 - - -
TrDiMP352 [53] 67.1 77.7 58.3 78.4 83.3 73.1 63.9 - 61.4 - - -

SLT-TrDiMP352 [36] 67.5 78.8 58.7 78.1 83.1 73.1 64.4 73.5 - - - -
TransT256 [12] 67.1 76.8 60.9 81.4 86.7 80.3 64.9 73.8 69.0 - - -

STARK320 [58] 68.8 78.1 64.1 82.0 86.9 - 67.1 77.0 - - - -
SwinTrack-B384 [41] 72.4 80.5 67.8 84.0 - 82.8 71.3 - 76.5 49.1 - 55.6
MixFormer-L320 [13] - - - 83.9 88.9 83.1 70.1 79.9 76.3 - - -

OSTrack384 [61] 73.7 83.2 70.8 83.9 88.5 83.2 71.1 81.1 77.6 50.5 61.3 57.6
CTTrack-B320 [49] 71.3 80.7 70.3 82.5 87.1 80.3 67.8 77.8 74.0 - - -
CTTrack-L320 [49] 72.8 81.3 71.5 84.9 89.1 83.5 69.8 79.7 76.2 - - -
TATrack-B224 [30] 73.0 83.3 68.5 83.5 88.3 81.8 69.4 78.2 74.1 - - -
TATrack-L384 [30] - - - 85.0 89.3 84.5 71.1 79.1 76.1 - - -

GRM-B256 [24] 73.4 82.9 70.4 84.0 88.7 83.3 69.9 79.3 75.8 - - -
GRM-L320 [24] - - - 84.4 88.9 84.0 71.4 81.2 77.9 - - -
MixViT288 [13] 72.5 82.4 69.9 83.5 88.3 82.0 69.6 79.9 75.9 - - -

MixViT-L384 [13] 75.7 85.3 75.1 85.4 90.2 85.7 72.4 82.2
✿✿✿✿
80.1 - - -

SeqTrack-B256 [11] 74.7 84.7 71.8 83.3 88.3 82.2 69.9 79.7 76.3 49.5 60.8 56.3
SeqTrack-L384 [11] 74.8 81.9 72.2 85.5

✿✿✿✿
89.8

✿✿✿✿
85.8 72.5 81.5 79.3 50.7 61.6 57.5

ARTrack256 [54] 73.5 82.2 70.9 84.2 88.7 83.5 70.4 79.5 76.6 46.4 56.5 52.3
ARTrack384 [54] 75.5 84.3 74.3 85.1 89.1 84.8 72.6 81.7 79.1 51.9 62.0 58.5

ARTrack-L384 [54] 78.5 87.4 77.8
✿✿✿✿
85.6 89.6 86.0 73.1 82.2 80.3

✿✿✿✿
52.8

✿✿✿✿
62.9 59.7

ARTrackV2256 75.9 85.4 72.7 84.9 89.3 84.5 71.6 80.2 77.2 50.8 61.9 57.7
ARTrackV2384 ✿✿✿✿

77.5
✿✿✿✿
86.0

✿✿✿✿
75.5 85.7

✿✿✿✿
89.8 85.5

✿✿✿✿
73.0

✿✿✿✿
82.0 79.6 52.9 63.4

✿✿✿✿
59.1

ARTrackV2-L384 79.5 87.8 79.6 86.1 90.4 86.2 73.6 82.8 81.1 53.4 63.7 60.2

Table 1. State-of-the-art comparison on GOT-10k [33], TrackingNet [45], LaSOT [21] and LaSOText [20]. Where * denotes only trained on
GOT-10k. The number in the subscript denotes the search region resolution. Best in bold, second best underlined, and third best

✿✿✿✿✿✿✿✿
underwave.

LaSOText [20]. LaSOText serves as an extension of LaSOT,
including an additional 150 videos. These new sequences
introduce challenging tracking scenarios, such as occlusions
and variations in small objects. To demonstrate the robust-
ness of our models in handling these difficult scenarios, we
evaluate ARTrackV2 and present the results in Table 1. Re-
markably, our ARTrackV2-L384 outperforms ARTrack-L384
and establishes a new state-of-the-art performance, operating
at a speed of 49 FPS, which is 3× faster than ARTrack.

4.3. Accuracy vs. Latency

In comparison to ARTrack, we have eliminated intra-
frame autoregression to enhance inference speed, resulting
in nearly a 3× improvement in inference efficiency without
compromising accuracy. To illustrate this improvement, we
conducted a comparative analysis of state-of-the-art trackers
on GOT-10k using the one-shot protocol, as depicted in
Figure 3. Our ARTrackV2-L384 achieves a new state-of-the-
art with an impressive AO of 79.5%, while ARTrackV2256
delivers competitive performance at 94 FPS, surpassing other
trackers with higher resolutions and larger backbones.
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Figure 3. Comparison of accuracy vs. latency trade-off for different
tracking methods in GOT-10k (one-shot setting).

4.4. Experimental Analyses

We analyze the main properties of the ARTrackV2. For
the following experimental studies, we follow the GOT-10k
test protocol unless otherwise noted. Default settings are
marked in gray .

19053



model variants AO 𝑆𝑅0.5 𝑆𝑅0.75 FPS Params(M)

ARTrack [54] 73.5 82.2 70.9 26 172
− intra-frame autoregression 71.4 80.2 67.9 68 172

pure encoder architecture 71.0 79.9 68.2 116 92
+ appearance evolution 74.2 83.1 71.4 98 101
+ confidence prediction 74.7 83.7 72.1 94 101
+ masking strategy 75.2 84.8 72.4 94 101
+ sequence augmentation 75.9 85.4 72.7 94 101

Table 2. Summary of cumulative effects.

Summary of Cumulative Effect. We conduct compre-
hensive ablation studies to analyze our proposed approach,
considering several key aspects: evaluating the impact of
the pure encoder architecture, assessing the effectiveness of
autoregressive appearance evolution, examining the contri-
bution of the confidence prediction module, validating the
masking strategy, and exploring the benefits of sequence-
level data augmentation. Additionally, we systematically
evaluate the cumulative effects of integrating these various
components, and the results are summarized in Table 2.

We observed that adopting the pure encoder architecture
significantly improved tracking efficiency. However, this im-
provement came at the cost of a decrease in accuracy, which
we attributed to the lack of intra-frame temporal information.
To address this, we introduced autoregressive appearance
evolution which leveraged appearance reconstructions, con-
fidence prediction, attention masking strategy, and sequence
data augmentation to strengthen inter-frame autoregression.
These modifications teach the model to “retell” the object’s
appearance variation in a time-autoregressive manner. As
a result of these enhancements, we complement generative
paradigm trackers to joint evolution of trajectory and appear-
ance, achieving substantial improvements in model perfor-
mance, and ultimately establishing state-of-the-art results.

appearance model single-stage thresholds tuning AO

discriminative (score-based) ✗ ✓ 74.5
discriminative (likelihood-based) ✓ ✓ 74.1

generative (reconstruction) ✓ ✗ 75.9

Table 3. Appearance model comparison.

Appearance Model. In this subsection, we delve into the
generative appearance model in ARTrackV2. This model
differs from previous discriminative models, which deter-
mine whether the cropped region from the search image,
using the tracking result, is reliable for updating the template.
Discriminative approaches typically require an additional
stage to train a score model [13, 14, 58] to classify whether
the tracked region contains the target object, thus breaking
the single-stage end-to-end learning framework. SeqTrack
introduces a likelihood-based strategy that uses the likeli-
hood of the generated coordinate tokens to select dynamic

tracker

crop

score model tracker
generate

(a) discriminative model (b) generative model 

score-and-crop learn to reconstruct 

update?
threshold

Figure 4. Comparison of appearance modeling approaches. (a)
discriminative model adopts a score-and-crop strategy to decide
updates. (b) generative model learns to reconstruct the template.

templates in a single stage. Moreover, these methods often
involve hand-tuning parameters for each individual dataset,
including score/likelihood thresholds and update frequency.
As depicted in Figure 4, ARTrackV2 employs a unified ap-
proach to appearance evolution. Instead of score-and-crop, it
learns to recreate the template in a continuous autoregressive
manner. It also adopts a masking strategy to prevent atten-
tion from appearance tokens to trajectory ones. We compare
these different appearance models in Table 3, demonstrating
that our generative model performs better than score-based
or likelihood-based discriminative approaches.

reconstruction objective AO 𝑆𝑅0.5 𝑆𝑅0.75

image reconstruction 74.8 83.9 71.1
feature reconstruction 75.9 85.4 72.7

Table 4. Reconstruction objective.

Reconstruction Objective. The quality of the appearance
tokens is ascertained through an adequate reconstruction
objective of the target, which can be in the image pixel
domain or in the latent feature domain. To investigate this,
we conducted exploratory experiments, as outlined in Table
4. Our findings indicate that “feature reconstruction” leads
to a noteworthy improvement of approximately 1.1% on
the AO metric. This improvement demonstrates that feature
reconstruction is more effective in appearance evolution. In
contrast, image reconstruction may tend to excessively focus
on intricate details or background information. In scenarios
characterized by motion blur and occlusion settings, this
approach encounters challenges in accurately reconstructing
the target at the pixel level.

indicator metric AO 𝑆𝑅0.5 𝑆𝑅0.75

w/o 75.1 84.7 71.9
confidence 74.9 84.4 71.5

distance 75.1 84.5 72.2
visibility 74.6 84.2 71.3

IoU 75.9 85.4 72.7

Table 5. Appearance evolution indicator.

Appearance Evolution Indicator. To ensure quality ap-
pearance evolution, it is necessary to employ indicators that
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Figure 5. Attention visualization. (a): Search region and template.
The red boxes denote the ground truth. (b)-(e): Appearance tokens
to search the cross-attention map of ARTrackV2.

guide the reconstruction of appearance tokens. These indica-
tors serve to characterize the evolution quality. In our analy-
sis of different metrics’ impact on the model, we present the
findings in Table 5. The metric labeled “confidence” [13,58]
denotes the confidence assigned to the current template, in-
dicating whether it contains the target. The “distance” [23]
represents the cosine distance between the features of the
appearance tokens and the target’s appearance feature within
the ongoing search region. The “visibility” [33] quantifies
the visibility ratio of the target in the search region. Lastly,
the “IoU” metric measures the Intersection over Union be-
tween the predicted and the ground truth bounding boxes.

Contrary to previous research findings [13, 15, 23, 27,
58, 65], our investigation has revealed that employing IoU
as the reconstruction indicator leads to superior accuracy.
This observation can be primarily attributed to the fact that
when compared to alternative methods, the IoU metric is
more closely aligned with the evaluation metric utilized
for tracking. Consequently, it provides a precise reflection
of the quality of evolution. We also note that the visibility
metric yields unsatisfactory results. GOT-10k provides an
assessment of object visibility segmented into 9 levels, but
the boundaries between these levels are often vague and may
contain noisy labels. This poses a challenge for models in
precisely evaluating the target’s visibility.

Visualization and Analysis. To gain deeper insights into
the autoregressive appearance evolution, we generate cross-
attention maps about appearance tokens to the search re-
gion while evolving trajectory and appearance. In order to
demonstrate the versatility of our model, we challenge it with
complex scenarios that pose significant tracking difficulties,
including appearance variation, partial occlusion, distribu-

tion, and motion blur, as shown in Figure 5. Perceptibly, our
model adeptly captures the appearance evolution in succes-
sive frames within each of these challenging scenarios.

When confronted with rapid changes in target appearance
and partial occlusions, traditional trackers tend to respond in-
adequately to these short-term variations. Furthermore, incor-
rect updates to the target’s appearance in such scenarios can
render the tracker agnostic to the target in subsequent frames.
Our approach leverages the mutual complementation of both
appearance and trajectory evolution, consecutively pinpoint-
ing the object’s location. Joint evolution constructs a more
comprehensive representation of the target, thus strengthen-
ing inter-frame autoregression in scenarios with incoherent
visual or motion cues.

sequence augmentation AO 𝑆𝑅0.5 𝑆𝑅0.75

fixed interval 74.8 84.6 71.3
random interval 75.1 84.9 70.9
reverse video 75.9 85.4 72.7

Table 6. Sequence augmentation comparison.

Sequence Augmentation. Sequence-level data augmenta-
tion [18, 57, 62] is a widely used technique in video tasks,
but it is rarely employed in visual tracking due to the preva-
lent use of frame-level training. In contrast, we embrace
sequence-level training, where models are trained using
video clips instead of image pairs. Therefore, it is neces-
sary to explore video data augmentation, as demonstrated in
Table 6. We experimented with sampling the video at fixed
or random intervals to augment the training data. Unfortu-
nately, both approaches led to a decrease in precision as they
disrupted temporal continuity. In contrast, reverse augmen-
tation, which simply plays the video backward, maintains
the data distribution well. This straightforward method in-
creases the AO in GOT-10k by 0.7%. Notice that, even if
we sample frames with specific FPS, our ARTrackV2 shows
robust SoTA performance across varied FPS benchmarks.

5. Conclusion

We present ARTrackV2, a new tracker that builds upon
the previous version by incorporating a unified generative
framework that evolves trajectory and reconstructs appear-
ance together. In a continuous time-series, ARTrackV2 si-
multaneously tracks the target’s location and models appear-
ance changes. By propagating trajectory and appearance
information across frames, the model enhances inter-frame
autoregression. Additionally, we utilize an encoder architec-
ture that allows for parallel processing of all elements within
a frame, eliminating the need for less efficient intra-frame
autoregression. ARTrackV2 showcases significant improve-
ments in performance and efficiency.
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