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Figure 1. Visual Quality vs. Rendering Speed comparisons between our monocular 3D head avatars and prior state-of-the-art methods
including NeRFBlendshape [14], INSTA [42], PointAvatar [41] and MonoAvatar [5]. Our approach achieves real-time rendering (i.e. > 30
mean FPS) with a 512 x 512 resolution, while produces comparable visual quality comparing to prior SOTAs [5], and gives significantly
better results on challenging expressions than prior efficient avatars [14, 41, 42]. Webpage augmentedperception.github.io/monoavatar-plus

Abstract

3D head avatars built with neural implicit volumetric
representations have achieved unprecedented levels of pho-
torealism. However, the computational cost of these meth-
ods remains a significant barrier to their widespread adop-
tion, particularly in real-time applications such as virtual
reality and teleconferencing. While attempts have been
made to develop fast neural rendering approaches for static
scenes, these methods cannot be simply employed to sup-
port realistic facial expressions, such as in the case of a dy-
namic facial performance. To address these challenges, we
propose a novel fast 3D neural implicit head avatar model
that achieves real-time rendering while maintaining fine-
grained controllability and high rendering quality. Our key
idea lies in the introduction of local hash table blendshapes,
which are learned and attached to the vertices of an under-
lying face parametric model. These per-vertex hash-tables
are linearly merged with weights predicted via a CNN, re-
sulting in expression dependent embeddings. Our novel rep-
resentation enables efficient density and color predictions
using a lightweight MLP, which is further accelerated by a
hierarchical nearest neighbor search method. Extensive ex-
periments show that our approach runs in real-time while
achieving comparable rendering quality to state-of-the-arts
and decent results on challenging expressions.

1. Introduction

The demand of high performing photo-realistic human
avatars has dramatically increased with emerging VR/AR
applications, e.g. VR gaming [2, 33], virtual assistant [3],
tele-presence [28], and 3D videos [15, 26]. How to build
efficient high quality avatars from monocular RGB videos
becomes a promising direction due to the convenience of
monocular data acquisition. While early works mostly
adopt surface-based models for convenient controllability,
recent methods (e.g. MonoAvatar [5]) leverage a sophisti-
cated pipeline to build human avatars on neural radiance
fields, which delivers vivid animations as well as signifi-
cantly better rendering quality, especially over challenging
parts such as hairs and glasses. On the downside, these ap-
proaches tend to be prohibitively slow, and most of the com-
putation is consumed by the neural radiance field inference
with large Multilayer Perceptrons (MLPs).

Recently, fast approaches for neural radiance fields (e.g.
hash encoding in Instant NGPs [27]) have been proposed,
which are designed mostly for static scenes or pre-recorded
temporal sequences. Despite their great success, it is
not straightforward to extend these approaches for human
avatars, which requires real-time rendering of dynamic fa-
cial performances when controlling the avatar. NeRFBlend-

*Work was conducted while Zigian Bai was an intern at Google.
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shape [14] address these issues by learning multiple feature
hash tables, one for each face blendshape. These hash ta-
bles are linearly combined with blending weights to ren-
der the target facial expression via hash encoding. How-
ever, the expressiveness of the avatar is compromised by the
global nature of the blending shapes, which cannot accu-
rately capture vertex-level local deformations. On the other
hand, INSTA [42] proposes to build the appearance model
in a canonical space using a vanilla Instant NGPs [27] with
expression codes as the additional MLP input to capture
dynamic details, which is then transformed into target ex-
pression via a face parametric model (i.e. 3D morphable
model (3DMM)). However, the lightweight MLP used in
the vanilla Instant NGPs limits their model capacity, result-
ing in inferior animation quality, especially on extreme ex-
pressions.

In this work, we propose a novel 3D neural avatar sys-
tem that achieves efficient inference while maintaining fine-
grained controllability and high fidelity quality. To achieve
this, we introduce mesh-anchored hash table blendshapes,
where we attach multiple, small hash tables to each of the
3DMM mesh vertices. These hash tables act as per-vertex
“local blendshapes™ (i.e., each “blendshape” is controlled
by one local hash table) and influence only a local region.
The mesh-anchored blendshapes are linearly merged with
per-vertex weights predicted by a convolutional neural net-
work in UV space from avatar driving signals, such as
expression and head rotation. This results in expression-
dependent hash table embeddings which offer several ad-
vantages over a global linear combination of blendshapes.
Indeed by associating hash tables with individual vertices,
we enhance the expressiveness of the model, allowing for
more localized and nuanced facial expressions. This con-
trasts with global blendshapes, which apply uniform trans-
formations across the entire face, limiting expressiveness.

In more detail, our model starts from 3D query points,
uses hash encoding [27] to gather the merged hash table em-
beddings from k-nearest-neighbor vertices around the query
point, and predicts the density and color via a small MLP.
The hash encoding [27] allows us to use a very lightweight
MLP to significantly reduce computation, leading to effi-
cient inference. Additionally, the vertex-attached hash table
blendshapes represent a 3DMM-anchored neural radiance
field (NeRF), which can be easily controlled by the underly-
ing 3DMM and produce high fidelity renderings as demon-
strated by MonoAvatar [5]. To further accelerate our ren-
dering speed, we propose a hierarchical k-nearest-neighbor
search method.

Our contributions are summarized as follows. We pro-
pose a novel approach for high quality and efficient 3D neu-
ral implicit head avatars. At the core of our model, vertex-
attached local hash table blendshapes are proposed to sup-
port efficient rendering, controllability, and capturing fine-

grained rendering details in dynamic facial performances.
We also design a hierarchical querying solution to speed up
the k-nearest-neighbor search when pulling hash table em-
beddings from neighbor vertices. Extensive experiments on
multiple datasets verify that we are able to speed up avatar
rendering to real-time (i.e., average > 30 FPS to render a
512 x 512 video) while maintaining comparable rendering
quality with the state-of-the-art high quality 3D avatar [5]
and being largely superior on challenging expressions than
existing efficient 3D avatars [14, 41, 42].

2. Related Work

Constructing photorealistic digital humans has been a ex-
tensively researched topic. Here, we focus on discussing
prior work on implicit monocular head avatars and effi-
cient rendering. We refer readers to state-of-the-art sur-
veys [12, 32, 43] for a comprehensive literature review.

High Quality Head Avatar. Traditionally, high-quality
head avatars have been achieved under expensive equipment
configurations, such as camera arrays [0, 23, 28], depth
sensors [7], and light stages [15, 25], or require laborious
manual intervention [1]. Recent research efforts have fo-
cused on constructing high quality avatars from monocu-
lar RGB videos. One typical class of approaches [4, 13,
35, 40] use implicit 3D representations (i.e., neural radiance
fields (NeRFs), implicit occupancy fields) to build the head
avatar, which are parameterized by Multilayer perceptrons
(MLPs). Although reasonable results are obtained, their
rendering quality is still unsatisfactory especially for more
challenging expressions. More recently, Bai et al. [5] pro-
posed a head avatar based on 3SDMM-anchored NeRFs with
expression-dependent features produced by a convolution
neural network in UV space. Chen et al. [9] designed lo-
cal deformation fields to capture expression-dependent de-
formations applied on canonical NeRFs. Despite the im-
pressive results, their methods didn’t demonstrate real-time
rendering capability due to expensive inference using large
MLPs. In contrast, with our proposed mesh-anchored hash
table blendshapes (Sec. 3), we achieve much faster render-
ing speed while maintaining high fidelity results.

Efficient Neural Radiance Fields. There has been a
plethora of work in recent years attempting to accelerate
rendering with neural implicit representations for static ob-
jects and scenes. SNeRG [22], DVGO [31] and Plenox-
els [37] propose to directly optimize voxel grids of (neural
or SH) features for faster performance. However, their ap-
proach still requires a large memory footprint to store per-
voxel features in 3D space. KiloNeRF [30] dramatically
accelerates the original NeRF by representing the scene
with thousands of tiny MLPs, however, this approach re-
quires a complex training strategy. TensoRF [8] factorizes
the feature grid into compact components, resulting in sig-

1976



4 Sec. 3.2 Merge Mesh-anchored Hash Table Blendshapes

Sec. 3.1 Mesh-anchored Hash Table
Blendshapes
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Figure 2. Overview of our pipeline. Our core avatar representation is Mesh-anchored Hash Table Blendshapes (Sec. 3

.1), where multiple

small hash tables are attached to each 3DMM vertex. During inference, our method starts from a displacement map encoding the facial
expression, which is then fed into a U-Net to predict hash table weights and per-vertex features. The predicted weights are used to linearly
combine the multiple hash tables attached on each 3DMM vertex (Sec. 3.2). During volumetric rendering (Sec. 3.3 and Fig. 3), for
each query point, we search its k-nearest-neighbor vertices, then pull embeddings from the merged hash tables and concatenate with the
per-vertex feature to decode local density and color via a tiny MLP with two hidden layers.

nificantly higher memory efficiency. Concurrently, Instant
NGPs [27] utilizes multi-resolution hashing for efficient en-
coding, resulting in high compactness. MobileNeRF [10]
propose to represent NeRF based on polygons, which al-
lows leveraging a traditional polygon pipeline to enable
their method to run in real-time on mobile devices. 3D
Gaussian Splatting [17] represents a radiance field with 3D
Gaussian point clouds, and leverages a point rasterization
pipeline to enable fast rendering. These methods, however,
cannot be easily extended to controllable dynamic contents.
More recently, NeRFBlendshape [14] was proposed to han-
dle controllable expressions by learning multiple hash ta-
bles for different global blendshapes and linearly combine
them with expression codes. INSTA [42] transforms all ex-
pressions into a shared 3D canonical space, then adopts the
vanilla Instant NGPs [27] conditioned on expression codes
to model the head avatar. Despite the fast rendering speed
achieved, their methods suffer from unsatisfactory render-
ing quality. PointAvatar [41] utilizes point clouds to rep-
resent the head avatar and uses large MLPs to predict the
colors and motions of each point, leading to slow inference.
Another type of works [11, 18, 19, 34, 36, 39] use 2D con-
volution neural networks to directly synthesize images (i.e.
2D neural rendering) from rasterized 3DMM meshes or low
resolution feature maps generated by volumetric rendering.
Despite their fast speed, the 2D CNNs may break the 3D
consistency, leading to temporally unstable results espe-
cially for high frequency details. In contrast, our method si-
multaneously achieves controllability, high quality, and ef-
ficient rendering with a fully 3D representation.

3. Method

Given a monocular RGB video, our method learns a neural
radiance field (NeRF) based head avatar, which can be ren-

dered under any specified cameras, articulated poses (i.e.,
neck, jaw, and eyes) and facial expressions defined by a face
parametric model (i.e. 3DMM). We use FLAME [20] as the
parametric model in this work, but our method can be gen-
eralized to any other mesh-based parametric models. Fig. 2
shows the overview of our method.

Our goal is to design a 3D neural implicit head avatar
architecture that can simultaneously achieve high image
quality, controllability, and computationally efficient ren-
dering. To achieve this, we propose mesh-anchored hash
table blendshapes (Sec. 3.1) as a novel avatar representa-
tion that can leverage both advantages from recent high-
quality (i.e., 3DMM-anchored NeRF [5]) and efficient (i.e.,
hash encoding [27]) frameworks. More specifically, we pro-
pose to attach multiple small hash tables on each 3DMM
vertex. These vertex-attached hash tables form a set of
local “blendshapes”, which will be linearly merged with
predicted blending weights (Sec. 3.2), and decoded into a
3DMM-anchored NeRF to support fine-grained control and
high fidelity rendering. During NeRF decoding on a query
point (Sec. 3.3), we pull the embeddings from the linearly
merged hash tables attached on k-nearest-neighbor (k-NN)
vertices from the 3DMM mesh. Using hash encoding al-
lows us to use a very light weight MLP (only 2 hidden lay-
ers) to predict the final densities and colors, which is the key
for efficient rendering. To further accelerate our approach to
real-time, we leverage the fact that close query points likely
share similar k-NN vertices, and thus propose to group the
query points into voxels and hierarchically search for k-NN
vertices (Sec. 3.4). Finally, our proposed avatar representa-
tion can be trained with only monocular RGB videos with-
out any 3D scans or multi-view data (Sec. 3.5).
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3.1. Mesh-anchored Hash Table Blendshapes

The core of our model is an avatar representation that can
represent a 3DMM-anchored neural radiance field (NeRF)
while allowing us to adopt the hash encoding [27] tech-
nique for acceleration. Recent approaches manage to adopt
hash encoding into head avatars with different avatar rep-
resentations (i.e., global blendshapes [14] and canonical
NeRF [42]). In contrast, our solution is built upon the most
recent 3DMM-anchored NeRF [5], which is superior for
high quality renderings as demonstrated in our experiments
(Sec. 4.2).

We propose mesh-anchored hash table blendshapes as
the new avatar representation. Given a target expression %
with 3DMM pose code ; and expression code 1);, we first
get the deformed 3DMM mesh V; = Fspum (¥i, 0;) with
J vertices. For the j-th 3DMM mesh vertex v;;, we attach

M small hash tables {Hgm) } s on it, where each hash table
has multiple resolutions following instant NGPs [27]. Intu-
itively, these hash tables form a set of vertex-level “blend-
shapes” anchored on the mesh, where each “blendshape” is
a hash table, whose embeddings encode the information of
a local radiance field around vertex v;;. Given a target ex-
pression to render, these hash table blendshapes are linearly
summed via expression-dependent weights (Sec. 3.2), such
that the merged embeddings encode the fine details specific
to the target expression. Simultaneously, the coarse motion
of the target expression is captured by the 3DMM vertex
movement, which moves the attached hash tables accord-
ingly, and hence the corresponding local radiance field.

3.2. Merge Mesh-anchored Blendshapes

We obtain per-vertex blending weights by running a con-
volution neural network (CNN) on the 3DMM deformation
represented in UV atlas space. Specifically, we calculate
the vertex displacements with respect to the neutral face
D; = Fspmm (¥, 0;) — Fspmm (0, 0). The displacements
are then warped into the UV space and fed into a U-Net to
predict a weights map in RH¢XWeXM \where H, x W/ is the
UV resolution, and M is the number of hash table blend-
shapes on each vertex (pre-defined as 5 in our experiments).
The weights map is then sampled back to 3DMM vertices,
serving as the expression-dependent weights {wz(]m)} M to
take a weighted sum of the embeddings in the hash tables
on each vertex, which produces the merged hash tables

M
Hy= > wiH™. (1)
m=1

The U-Net also produces a UV feature map. We sample a
per-vertex feature f;; from it, similar to MonoAvatar [5].
We empirically found this benefits the geometry quality.
The mesh-anchored hash tables I:IZ ; and features f;; are de-
coded into a neural radiance field as described in Sec. 3.3.
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Figure 3. Pipeline of Neural Radiance Field Decoding (Sec. 3.3).
Our method only needs a very lightweight MLP for NeRF infer-
ence, where a two-hidden-layer MLP is used to predict the density
and the color of each query point.

3.3. Neural Radiance Field Decoding

Given the mesh-anchored hash tables H,; and features f;;
described in Sec. 3.2, the final step is to decode them into
a Neural Radiance Field (NeRF) to render the output image
as shown in Fig. 3. The key idea is to associate a query
point to neighbor vertices, and pull the embeddings from
the attached hash tables via hash encoding [27]. Finally, we
decode these pulled embeddings and the nearest per-vertex
feature into the color and the density of this query point, fol-
lowed by volumetric rendering to obtain the output image.
For a 3D query point g when rendering a particular fa-
cial expression 7, we first obtain its k-nearest-neighbors, de-
noted as { Vi } e, from the 3DMM vertices, with £* de-
noting the nearest vertex index. For each neighbor vertex
v;, with an attached hash table I:Iik, we denote q;j as the
coordinates of q in the tangent space of v;;. We then use
q;% to query the hash table H,, using a hash encoding func-
tion H(-) and obtain the embedding h;, = H(qx; I:Lk)
To interpolate the embeddings from all k-nearest-neighbors,
we use the weighted sum of the inverse distances z; =
1/||qik]|2- Next, the summed embedding, together with the
nearest per-vertex feature f;;« and the query point tangent
coordinate q;x~ of the nearest vertex, are fed into a two-
hidden-layer MLP to predict the density and color as

2k

= @
2k eNK K

Hi = E wrh;, where Wy, =
keNE

[Ci(Q; d),Uz‘(Q)} = Fure (hi, £+, PE(qir-), PE(d))

where wy, is the normalized inverse-distance based weight,
d denotes the camera view direction, PE(-) denotes posi-
tional encoding, c; denotes color, and o; denotes density.
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Finally, we render the output pixel with the given camera
ray r by volumetric rendering, where we reparameterize the
query point with samples on the ray q = r(t) = o + td:

Gl = [ T} rlo), )i

where T(t) = ex; (- /t t Ji(r(s))ds> . 3)

Following prior works [5, 16], we also introduce a per-
frame error-correction warping field during training to re-
duce misalignments due to the noise in 3DMM tracking
and unmodeled per-frame contents such as hair movements.
We feed the query point q, together with a per-frame la-
tent code e;, into an MLP F¢(-) to obtain a rigid trans-
formation applied on the original query point, denoted as
d' = T:(q) = F¢(q, ;). The warped query point q’ is then
used to compute the density and color for volumetric ren-
dering. Since the warping fields are overfit to corresponding
training frames, we disable the warping field during testing
similar to previous works [5, 16], and hence F¢ does not
affect rendering efficiency.

3.4. Hierarchical k-nearest-neighbor Search

As described in Sec. 3.3, our method involves a k-nearest-
neighbor (k-NN) search, which is computationally expen-
sive and cannot be naively accelerated with pre-calculated
structures (e.g., KD-Tree) due to the dynamically chang-
ing search pool (i.e., the 3DMM vertices driven by poses
and expressions). To speed up the process, we propose a
hierarchical k-NN search algorithm following a coarse-to-
fine strategy. The key idea is to group nearby query points
into a cluster as they likely share similar nearest neighbors.
Specifically, we use a 3D grid with resolution 64 and treat
all query points that fall in each voxel as a cluster. For each
cluster, we first search K’ (where K’ > K) nearest neigh-
bors of the voxel center from all 3DMM vertices. Then, for
each query point, we search K nearest neighbors from the
K’ nearest neighbors of the corresponding cluster. In prac-
tice, for a 3DMM with the vertices number of J = 1772,
we set K/ = 12 and K = 3. Our experiments empirically
show that, with a proper grid resolution, this design signifi-
cantly improves the nearest neighbor search speed, and does
not introduce noticeable rendering artifacts, even though the
k-NNs may not be accurate on some of the query points.

3.5. Training

Only monocular RGB videos are required to train our
model. Three losses are used during the training process:
(1) a photometric loss that minimizes the /s-norm distance
between the rendered and ground truth pixel colors over all
camera rays r from all training frames 7. Formally, we have
Ligh = Y ;2. [ICi(r) — Li(r)|l2; (2) a elastic regular-
ization loss Leastic applied on the learned error-correction

warping field 7 (q), which is introduced in Nerfies [29]; (3)
a magnitude regularization loss to encourage small warp-
ing fields, which is defined as Limag = >, la — 7T (a)]l5.
Finally, we combine all three loss terms:

L= Ergb + )\elasticﬁelastic + )\magﬁmagy (4)

where we set Aejastic = 10~% at the beginning of the train-
ing and decay it to 107° after 150k iterations, and set
Amag = 1072, To warm start training, we replace the lo-
norm distance in the photometric loss L.41, with the [5 dis-
tance for the first 10k iterations. Please refer to the supple-
mentary for more details.

4. Experiments

In this section, we first introduce the data and metrics used
for training and evaluation (Sec. 4.1). Then, we show
that our avatar model achieves real-time rendering speed,
while producing superior rendering quality on challenging
expressions than recent efficient avatars [14, 41, 42] and
being comparable to previous high-quality approaches [5]
(Sec. 4.2). Finally, we provide ablation studies to justify the
design choices and hyper-parameters of our avatar represen-
tation, and demonstrate the rendering speed improvements
contributed from each of our newly proposed algorithmic
components.

4.1. Data and Metrics

Data. We use monocular RGB videos of multiple subjects
(i.e., one video for one subject) to train and evaluate our
method, and compare to prior state-of-the-art (SOTA) ap-
proaches. Our dataset consists of 10 videos in total, which
are a mix of videos captured by us, as well as videos from
prior works including PointAvatar [41], INSTA [42], and
MonoAvatar [5]. We filter out the background of the videos
with off-the-shelf segmentation [24] and matting [21] meth-
ods, then crop and resize the videos into a VGA resolution
that preserves the original aspect ratio. We compute the
camera and 3DMM parameters from the videos following
the 3DMM fitting optimization used in INSTA [42]. We re-
serve a short clip from the end of each video as the testing
frames, and use the rest frames for training.

Metrics. Following prior arts [13], we use PSNR, SSIM
(higher is preferable), and LPIPS (lower is preferable) to
measure the image quality. As observed by Zhang et
al. [38], LPIPS is a more effective metric in judging the per-
ceptual quality compared to PSNR and SSIM. When com-
puting PSNR and SSIM, we weigh the mean squared error
map and the SSIM map with a foreground mask (eroded
and smoothed), in order to focus on non-empty areas and
avoid the inaccurate foreground segmentation from domi-
nating the metrics.

1979



To evaluate the computational cost, we measure the ren-
dering speed in frames-per-second (FPS) on a RTX3090Ti
and compare across different approaches with their avail-
able implementations. We also estimate the number of
FLOPs (floating-point operations) of all methods as the the-
oretical measurement for the rendering speed. When esti-
mating FLOPs, we fix the contribution of the ray-marching
part to 16 points sampled along each camera ray. This sim-
plifies the estimate, since the ray-marching varies the num-
ber of FLOPs needed across cameras and scenes, and it ap-
plies to all the considered methods.

4.2. Comparison to State-of-the-art

We compare our method with several prior works, includ-
ing: NeRFBlendshape [13], INSTA [42], PointAvatar [41],
and MonoAvatar [5]. NeRFBlendshape [13] and IN-
STA [42] adopt hash encoding [27] into head avatars, lead-
ing to efficient renderings. PointAvatar [41] leverages point
clouds to represent the head avatar. MonoAvatar [5] is based
on a 3DMM-anchored NeRF, and produces high-quality
renderings but is slow in speed. We use the same camera
and 3DMM parameters to train and test all methods.

From Tab. 1, ours and INSTA [42] are the only 2 methods
that can achieve real-time rendering (i.e., > 30 mean FPS).
However, INSTA is quantitatively inferior than our method
by a large margin, and gives obvious artifacts in Fig. 4, es-
pecially for challenging expressions. PointAvatar [41] has
the potential to run in real-time with an optimized imple-
mentation thanks to its point cloud representation, but their
renderings are overall blurrier than ours, leading to worse
quantitative results. Although NeRFBlendshape [14] gives
relatively good numbers in Tab. 1, it produces severe arti-
facts in dynamically changing regions (e.g., mouth and eye-
brows in Fig. 4) for several median and large expressions
and also gives more floaters, resulting in implausible ani-
mations. We highly suggest readers to see the supplemen-
tary videos for more comparisons. MonoAvatar [5] gives
good rendering qualities and animations, but is one order of
magnitudes slower and slightly blurrier on high frequency
details such as forehead wrinkles, presumably because that
the hash encoding in our model can better capture high fre-
quency contents. Among these compared approaches, our
method is the only one that achieves real-time rendering
while being one of the best on image qualities.

We also compare the theoretical FLOPs of all methods
in Tab. 1, where our method requires the least computation
mostly because of the smaller MLPs we use (e.g., 2 hidden
layers of ours vs. > 5 hidden layers of others). Note that
INSTA [42] is implemented with a highly optimized pure
C++ and CUDA codebase, while other methods use python
(tensorflow/pytorch) with customized CUDA kernels. This
implementation advantage of INSTA makes it running in a
high FPS even with a relatively larger FLOPs.

‘LPIPS SSIM PSNR | Mean FPS GFLOPs

PointAvatar [41] 0.117 0.728 21.12 5.0 933
INSTA [42] 0.149 0.758 22.12| 46.2 266
NeRFBlendshape [14] | 0.110 0.793 22.77 11.2 223
MonoAuvatar [5] 0.114 0.798 22.74 0.5 2385
Ours 0.100 0.795 22.77| 35.9 113
Table 1. Quantitative comparisons with state-of-the-art ap-

proaches. Our method achieves rendering quality among the best,
while supports real-time rendering with a 512 x 512 resolution.

4.3. Ablation Study

In this section we show the impact of the proposed de-
sign choices, in particular proving the importance of mesh-
anchored hash table blendshapes and the proposed hierar-
chical k-NN search.

4.3.1 Mesh-anchored Hash Table Blendshapes

We hereby investigate alternative design choices and differ-
ent hyper-parameters to justify the necessity of our mesh-
anchored hash table blendshapes.

Static Hash + 3DMM Param. We first build a naive alter-
native approach to incorporate hash encoding into 3DMM-
anchored NeRF, by attaching a single hash table to each
vertex. For a query point, we concatenate the 3DMM pose
and expression codes (6;, ;) with the embedding pulled
from the hash tables, and send them into the MLP. Note that
there is no convolution running in UV space. As shown in
Tab. 2 and Fig. 5, obvious rendering artifacts show up, and
the rendering quality metrics drop significantly compared to
our full model. This is presumably because the lightweight
MLP, which is crucial for good efficiency, does not have
enough capacity to process detailed expression-dependent
information from compact 3DMM codes.

Static Hash + UV CNN. We then increase the model capac-
ity by adding back the UV CNN branch, but use only one
hash table per-vertex, i.e., single hash table without blend-
shape formulation. As shown in Tab. 2 and Fig. 5, the ren-
dered images show less artifacts over the previous case, but
still contain blurry textures and floaters compared to our full
model. This demonstrates that the blendshape formulation
of mesh-anchored hash tables are necessary in order to ob-
tain good expression dependent local embeddings, leading
to a superior rendering quality.

Number of Hash Table Blendshapes. Here we investigate
how the number of hash table blendshapes per vertex influ-
ences the final rendering quality. As shown in Tab. 2, we
can see that more blendshapes per vertex leads to higher
rendering qualities, which saturates as the number of tables
increases. In Fig. 5, increasing the number of blendshapes
also gives better details especially for eyelids and ears. Al-
though further adding more blendshapes may produce a bet-
ter quality, we choose to use 5 blendshapes per-vertex as our
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PointAvatar INSTA NeRFBlendshape MonoAvatar Ours Ground Truth
Figure 4. Comparisons on the rendering quality to previous state-of-the-art methods. From left to right, each column contains the images

of: 1) PointAvatar [41], 2) INSTA [42], 3) NeRFBlendshape [14], 4) MonoAvatar [5], 5) Ours, 6) Ground Truth. Our method faithfully

reconstructs the personalized expressions and high-frequency details, achieving one of the best rendering quality with real-time rendering
speed.
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1 Blendshape
(Static Hash + UV CNN)

Static Hash + 3DMM Param 3 Blendshapes 5 Blendshapes (Ours) Ground Truth

Figure 5. Qualitative results of our full model and various alternative design choices to demonstrate the necessity of our mesh-anchored
hash table blendshapes. Please refer to Sec. 4.3.1 for details of each alternative design choice. “Static Hash + 3DMM Param” gives
unfaithful expressions and obvious artifacts around eyes and ears. “Static Hash + UV CNN” produces more faithful expressions, but still
suffers from floaters. By utilizing the blendshape formulation of hash tables, “3 Blendshapes” eliminates most of the artifacts, but produces
blurriness on the details of eyes and ears. “Ours” gives the best rendering quality by increasing the number of blendshapes to 5, leading to

cleaner details of the eyelids and ear boundary.

16 grid resolution 32 grid resolution

64 grid resolution (Ours)

§EgUgEgeG

w/o hierarchical k-NN search Ground Truth

Figure 6. Qualitative results of using different 3D grid resolutions during hierarchical k-NN search and without hierarchical k-NN search
for ablation studies. “16 grid resolution” results in blocky artifacts around mouth and nose. “32 grid resolution” removes blocky artifacts,
but produces floaters inside mouth. “64 grid resolution” produces a similar level of visual quality as “w/o hierarchical k-NN search”.

final setting to maintain a relatively small model size and
computation cost.

4.3.2 Hierarchical £-NN Search

We evaluate our model with and without hierarchical k-NN
search in terms of speed and quality. From the comparison
over rendering speeds (w/: 35.9 FPS; w/o: 26.4 FPS), we
can see that hierarchical k-NN search gives around 36% im-
provements on the frame rate, which is crucial for achieving
real-time rendering. From Fig. 6, we empirically find that
enabling hierarchical k-NN search will not lead to observ-
able drops on the rendering quality, as long as a proper grid
resolution is used (i.e., 64 in our case).

We also investigate the affect of using different 3D grid
resolutions during hierarchical k-NN search. As shown in
Fig. 6, we observe more artifacts around the mouth region
when using smaller 3D grid resolutions (i.e., 32 and 16).
Therefore, we choose to use 64 resolution in our final set-
ting, which is a good trade-off between quality and speed.

5. Discussion

We present a high quality 3D neural volumetric head avatar
that can be rendered efficiently, while only requires monoc-
ular RGB videos for construction. We propose the mesh-
anchored hash table blendshapes as our avatar representa-
tion, which enable a significantly faster rendering speed by
utilizing hash encoding and lightweight MLPs, while still

| LPIPS | SSIM | PSNR

Static Hash + 3DMM Param 0.125 | 0.763 | 21.99
1 Blendshape (Static Hash + UV CNN) | 0.115 | 0.785 | 22.52
3 Blendshapes 0.104 | 0.791 | 22.70
5 Blendshapes (Ours) 0.100 | 0.795 | 22.77

Table 2. Quantitative results for the ablation study. Our full model
(i.e., mesh-anchored hash table blendshapes) consistently outper-
forms alternative design choices discussed in Sec. 4.3.1.

maintaining superior controllability to support realistic fa-
cial animations, and producing vivid expression-dependent
details thank to the local blendshape formulation of hash
tables. The experiments indicate that our approach runs in
real-time at a 512 x 512 resolution, while giving a rendering
quality comparable to state-of-the-art, with better challeng-
ing expressions than prior efficient approaches.

As a limitation, we observe floaters under camera
viewpoints and expressions that are far from the training
distribution, which is a common issue in instant NGPs [27]
based approaches. =~ We also notice that performance
around the mouth interior regions tends to be less stable
because of the relatively poor tracking in these areas on
the training data. Fortunately, the fast rendering could
enable the possibility to adopt more expensive train-
ing strategies, such as regularization terms, adversarial
loss, or joint face fitting refinement during the train-
ing, which could potentially mitigate these issues and
further improve the rendering expressiveness and quality.
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