
ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection

Yichen Bai 1*, Zongbo Han 1*, Bing Cao 1,2† , Xiaoheng Jiang 3 , Qinghua Hu 1,2 , Changqing Zhang 1,2†

1College of Intelligence and Computing, Tianjin University
2Tianjin Key Lab of Machine Learning

3School of Computer and Artificial Intelligence, Zhengzhou University
{ycfate, zongbo, caobing, huqinghua, zhangchangqing}@tju.edu.cn, {jiangxiaoheng}@zzu.edu.cn

Abstract

Out-of-distribution (OOD) detection methods often ex-
ploit auxiliary outliers to train model identifying OOD sam-
ples, especially discovering challenging outliers from aux-
iliary outliers dataset to improve OOD detection. However,
they may still face limitations in effectively distinguishing
between the most challenging OOD samples that are much
like in-distribution (ID) data, i.e., ID-like samples. To
this end, we propose a novel OOD detection framework that
discovers ID-like outliers using CLIP [32] from the vicin-
ity space of the ID samples, thus helping to identify these
most challenging OOD samples. Then a prompt learning
framework is proposed that utilizes the identified ID-like
outliers to further leverage the capabilities of CLIP for OOD
detection. Benefiting from the powerful CLIP, we only need
a small number of ID samples to learn the prompts of the
model without exposing other auxiliary outlier datasets. By
focusing on the most challenging ID-like OOD samples
and elegantly exploiting the capabilities of CLIP, our method
achieves superior few-shot learning performance on various
real-world image datasets (e.g., in 4-shot OOD detection on
the ImageNet-1k dataset, our method reduces the average
FPR95 by 12.16% and improves the average AUROC by
2.76%, compared to state-of-the-art methods). Code is avail-
able at https://github.com/ycfate/ID-like

1. Introduction
When deploying machine learning models in practical set-
tings, it is possible to come across OOD samples that were
not encountered during training. The risk of incorrect de-
cisions rises when it comes to these OOD inputs, which
could pose serious safety issues, particularly in applications
like autonomous driving and medical diagnosis. The system
needs to identify OOD samples in addition to performing
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Figure 1. Hard OOD samples typically contain more features corre-
lated to ID samples, i.e., they behave more ID-like.

well on ID samples in order to produce trustworthy predic-
tions. OOD detection is therefore quite critical for safely
deploying machine learning models in reality.

Existing methods [9, 18, 21] usually focus on detecting
OOD examples only using ID data in training to predict
lower confidence [8, 27] or higher energy [22] for OOD sam-
ples. However, due to the lack of OOD information, these
models struggle to be effective in OOD detection. There-
fore, some studies [10, 22] suggest using auxiliary outliers
to regularize the models and identity OOD samples. Chen
et al. [1] and Ming et al. [29] suggested that selecting more
challenging outlier samples can help the model learn a better
decision boundary between ID and OOD. However, these
auxiliary outliers usually contain limited challenging outliers.
Furthermore, most of these methods require additional out-
lier data, which makes them ineffective when outlier datasets
are unavailable. Recently, Du et al. [4] proposed to synthe-
size virtual outlier data in the feature space of ID data to
construct outliers during training without additional data.
This method shows strong efficacy in distinguishing between
ID and OOD. However, there are two main limitations: i)
it assumes that ID data in the feature space conforms to a
class conditional Gaussian distribution, which does not al-
ways hold in the complex real-world applications [34]; ii) it
requires numerous ID samples to construct a more accurate
distribution of ID data, while obtaining a large number of ID
samples is often costly. Accordingly, in this work, we focus
on flexibly constructing challenging outliers with few-shot
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Figure 2. The standard method can only output the predicted probabilities of samples for each ID class. In contrast, our approach can
automatically learn additional classes that are highly correlated but distinct from the ID classes, thereby effectively identifying challenging
ID-like OOD samples. (Note that the dog-like prompt in the figure is learnable.)

ID samples to improve the identification of OOD samples.
In this paper, we first construct outliers highly correlated

with ID data and introduce a novel ID-like prompts for
OOD detection, thereby effectively identifying challenging
OOD samples. We find that challenging OOD samples often
behave highly correlated with ID data, exhibiting high visual
or semantic similarity, e.g., the local feature of OOD being
relevant to ID (as shown in Fig. 1). Since these ID-like
features of OOD samples lead to erroneous predictions, a
natural idea arises: extracting relevant features from ID sam-
ples to construct challenging OOD samples. To this end, we
perform multiple samplings on vicinity space of ID samples.
Among these samplings, those with lower similarity to the
ID prompts are not classified as ID classes, even they con-
tain the features correlated with ID classes. Therefore, these
samples are naturally selected as challenging OOD samples.
Differing from VOS [4] and NPOS [34], which synthesize
virtual outliers in low-likelihood regions of the feature space,
our method constructs outliers directly from the original
images, enhancing the flexibility and interpretability.

Although we can construct challenging OOD samples, it
is still challenging to effectively identify these OOD sam-
ples. As shown in the left part of Fig. 2, “wolf ” represents
a challenging OOD example of “dog” class. These images
are similar to ID prompts, resulting in high classification
probabilities and significant challenges in distinguishing be-
tween ID and OOD. We argue that relying solely on ID
prompts is insufficient to address this issue. Therefore, we
introduce additional prompts to enhance OOD identification.
As shown in the right part of Fig. 2, we develop an additional
prompt, termed “dog-like”, which is similar to the prompt
of “dog”. If we can increase the similarity between the “dog-
like” prompt and OOD samples that are highly correlated
with “dog”, the model would recognize dogs through the
“dog” prompt and identify challenging OOD samples (in-

cluding “wolf ”) through the “dog-like” prompt. Specifically,
we align the additional prompts with these constructed chal-
lenging OOD, creating OOD prompts similar to ID prompts
to effectively identify challenging OOD samples. Extensive
experiments demonstrate that our method achieves superior
few-shot OOD detection performance on a wide variety of
real-world tasks. Compared to methods [4, 34] that require
a large amount of data during training, our method signif-
icantly reduces the average FPR95 score from 38.24% to
24.08% and improves the average AUROC from 91.60%
to 94.70% even using only one image for each class. We
summarize our main contributions as follows:
• We propose a novel framework without additional training

to automatically explore ID-like OOD samples in the
vicinity space of ID samples by leveraging CLIP, which
assists the model in effectively identifying challenging
OOD samples correlated to the ID.

• By exploiting the capacity of a pre-trained visual-language
model, an ID-like prompt learning method is proposed
to identify the most challenging OOD samples, which
behave ID-like yet are distinct.

• We validated our method on several real-world large-scale
datasets, and the results show that our method achieved im-
pressive performance, with an average AUROC of 96.66%
in 4-shot OOD detection on ImageNet-1K. Additional ab-
lation experiments are also conducted to demonstrate the
effectiveness of the designed approach.

2. Related Work
OOD Detection with Pre-trained Vision-language Models.
Hendrycks and Gimpel [9] established a baseline for OOD
detection using the maximum softmax probability (MSP).
Subsequent works have explored OOD detection via ODIN
scores [12, 21] and Mahalanobis scores [18]. Fort et al. [6]
first extended the OOD detection task to pre-trained vision-
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language models. Esmaeilpour et al. [5] enhanced the OOD
detection performance of pre-trained vision-language models
by generating additional negative labels to construct negative
prompts. Recently, Ming et al. [28] extended MSP to pre-
trained vision-language models and explored the impact of
softmax and temperature scaling on OOD detection. CLIPN
[38] fine-tuned CLIP to enable it to output negative prompts
to assess the probability of a concept not being present in
the image.
Contrastive Vision-language Models. Compared to tra-
ditional multi-modal learning models, recent large-scale
pre-trained vision-language models [14, 15, 32, 40] have
achieved great progress in various downstream tasks. For in-
stance, CLIP [32] and ALIGN [14] leverages contrastive loss,
such as InfoNCE loss [35], to learn aligned representations
of images and text. The representation distance of matching
image-text pairs becomes closer while those of non-matching
pairs are farther apart. Specifically, these methods employ a
straightforward dual-stream architecture comprising an im-
age encoder and a text encoder, which maps image and text
features into a shared space for similarity computation. The
performance of CLIP [32] and ALIGN [14] both benefits
from a large number of text image-pairs data. The decision
risk of multi-modal is also the focus of current research
[7, 25, 41].
CLIP-based Prompt Learning. In Natural Language Pro-
cessing (NLP), Petroni et al. [31] conceptualized prompting
as akin to a fill-in-the-blanks task. The core idea is to induce a
pre-trained language model to generate answers given cloze-
style prompts. However, it relies heavily on a well-designed
prompt. To avoid manually designing a large number of
prompts, some studies [19, 20] introduce prompt tuning as a
solution. Prompt tuning learns the prompt from downstream
data in the continual input embedding space, which presents
a parameter-efficient way of fine-tuning foundation models.
Despite the widespread adoption of prompt learning within
NLP, its exploration within the visual domain remains lim-
ited. Recently, CoOp [44] and CoCoOp [43] apply prompt
tuning to CLIP [32], which tune prompts via minimizing the
classification loss on the target task and effectively improves
CLIP’s performance on the corresponding downstream tasks.
Plenty of studies [24, 26, 30, 33] leverage prompt learning
based on CLIP to enhance performance across various down-
stream tasks.

3. Method

3.1. Preliminaries

Zero-shot classification with CLIP. CLIP consists of a text
encoder T : t → Rd and an image encoder I : x → Rd,
which are used to obtain the feature vectors of text t and
image x, respectively. When performing a classification task,
assuming the known label set Y = {y1, y2, ..., yK}, we

can construct a collection of concept vectors T (tk), k ∈
{1, 2, ...,K}, where tk is the text prompt “a photo of a 〈yk〉”
for a label yk. We denote the features of text and images
as h = T (t) and z = I(x), respectively. We first obtain
the similarity of image features relative to all text features
sk(x) = sim(hk, z) = sim(T (tk), I(x)), where sim(·, ·)
denotes the cosine similarity. The predicted probability pk
corresponding to yk on x can be expressed as

pk(x;Y, T , I) = esk(x)/τ

ΣK
k=1e

sk(x)/τ
, (1)

where τ is the temperature of the softmax function.
Prompt Learning. To further improve the performance

of CLIP on few-shot classification, CoOp [44] constructs a
learnable tensor on the embedding layer of the text. Specif-
ically, CoOp initializes the learnable tensor of prompt as
t = [V ]1[V ]2...[V ]L[CLASS], where L is the token length,
[V ]l(l ∈ {1, 2, ..., L}) is a learnable vector with the same
dimension as the word embedding. Then a loss function
e.g., cross-entropy loss, can be constructed to optimize the
learnable prompt according to classification probability of
few-shot examples.

OOD Detection. The OOD detection usually constructs
an OOD detector denoted as F (x), i.e., a binary classifier

F (x) =

{
ID, S(x) ≥ γ

OOD, S(x) < γ,
(2)

where S(x) is a score function in OOD detection task, and γ
is a threshold to decide whether the samples belong to ID or
OOD. For example, Hendrycks and Gimpel [9] and Liu et al.
[22] use the maximum classification probability of softmax
and energy as the score function S(x), respectively.

3.2. ID-like Prompt Learning

In this paper, we introduce a novel model for few-shot OOD
detection, which employs cropping and the CLIP model to
create challenging outliers to improve the OOD detection
ability. Additionally, we employ prompt learning to acquire
ID-like OOD prompts. As shown in Fig. 3, our frame-
work consists of two main components: (1) Constructing
outliers from ID samples: The training set with N samples
is represented as D = {(x1, y1), (x2, y2), ..., (xN , yN )}. To
suffiiently explore vicinal space of training samples, we per-
form multiple random cropping on each ID sample xi to
obtain the set Xcrop

i = {xcrop
i,1 , xcrop

i,2 , ..., xcrop
i,M }, where M

is the number of random cropping iterations. Concurrently,
we create corresponding class description text tk using pre-
defined templates, such as “a photo of a 〈yk〉”, where yk ∈ Y
represents the corresponding class name. Subsequently, lever-
aging the pre-trained CLIP model, we calculate the cosine
similarity between the samples in set Xcrop

i and the descrip-
tions tk. Based on the strength of cosine similarity, we then
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Figure 3. Overview of our method. We conduct multiple random cropping on ID sample and filter them based on their cosine similarity with
established ID zero-shot prompts, thereby generating both ID and OOD data. Subsequently, prompt learning is employed to acquire prompts
corresponding to the ID and ID-like OOD samples. The obtained prompts can effectively identify OOD samples in the inference stage.

respectively extract ID and OOD samples from the highest
and lowest similarity segments, defining them as Xin

i =
{xin

i,1, x
in
i,2, ..., x

in
i,Q} and Xout

i = {xout
i,1 , x

out
i,2 , ..., x

out
i,Q},

where Q is a user-defined hyperparameter. In the end, we ob-
tain the Din = {(xin

1,1, y1), (x
in
1,2, y1), ..., (x

in
N,Q, yN )} and

Dout = {xout
1,1 , x

out
1,2 , ..., x

out
N,Q}, constructed from all the

ID samples. (2) Prompt learning: We initialize a learn-
able prompt for each class, forming the ID prompts set
T in = {tin1 , tin2 , ..., tinK }, and initialize an additional set of
OOD prompts, T out = {tout1 , tout2 , ..., toutC }, where C is the
number of OOD prompts. Given the limited scope covered
by individual descriptions, we introduce multiple OOD de-
scriptions to enhance the coverage. Similar to CoOp [44], we
initialize embeddings for these text descriptions randomly
and then optimize them using a loss function proposed in the
Sec. 3.3.

3.3. Loss Functions

During training, we can obtain ID and OOD data, denoted as
Din and Dout, based on the algorithm mentioned in the pre-
vious section. We optimize prompts through a loss function
that consists of three terms.

In-distribution loss. To ensure classification perfor-
mance on the in-distribution data, we utilize a standard
cross-entropy loss function, which measures the divergence
between the predicted label probabilities and ground truth
labels for ID samples. Formally, the ID cross-entropy loss
Lin is defined as:

Lin = E(x,y)∼Din [− log
es∗/τ

ΣK
k=1e

sink /τ +ΣC
c=1e

sout
c /τ

],

(3)

where s∗ = sim(T (t∗), I(x)), sink = sim(T (tink ), I(x)),
soutc = sim(T (toutc ), I(x)), t∗ represents the features of
textual description of ground-truth label y∗ corresponding to
x, tink ∈ T in and toutc ∈ T out.

Out-of-distribution loss. To align OOD prompts with
outliers, we introduce the OOD loss. It is important to note
that in an ideal scenario, each category would have an ID
prompt and an OOD prompt. However, to conserve compu-
tational resources and enhance training efficiency, we have
fixed the number of OOD prompts at 100. Consequently,
when there are insufficient OOD prompts to establish a one-
to-one correspondence with the ID categories, we maximize
the holistic similarity between the OOD prompts and outliers.
To accomplish this, we propose the following loss Lout:

Lout = Ex∼Dout [− log
ΣC

c=1e
sout
c /τ

ΣK
k=1e

sink /τ +ΣC
c=1e

sout
c /τ

]. (4)

Additionally, we observed that implementing Lout during
training in the following form is more conducive to optimiz-
ing prompts:

Lout = Ex∼Dout [log
ΣK

k=1e
sink /τ

ΣK
k=1e

sink /τ +ΣC
c=1e

sout
c /τ

]. (5)

Although their optimization goals are similar, the former
tends to maximize the similarity between OOD prompts and
outliers, while the latter tends to minimize the similarity be-
tween ID prompts and outliers, resulting in slight differences
during training.

Diversity regularization. Since all OOD prompts are
randomly initialized and optimized under the same objective
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shown in Eq. 4 , there arises a risk of excessive similarity
between OOD prompts. Similar OOD prompts may lead to a
reduction in the number of detectable OOD classes. To miti-
gate this issue and ensure the diversity of OOD prompts, we
introduce an additional loss Ldiv that explicitly maximizes
the dissimilarity between prompts:

Ldiv =
ΣC−1

c=1 ΣC
j=c+1sim(hout

c , hout
j )

C(C − 1)/2
, (6)

where hout
c = T (toutc ), hout

j = T (toutj ). toutc , toutj ∈ T out

denote the c-th and j-th prompt in the OOD prompts.
sim(·, ·) denotes the cosine similarity.

The overall loss function with balanced hyperparameter
λout and λdiv is:

L = Lin + λoutLout + λdivLdiv. (7)

Inference. When performing the classification task, we
utilize the same classification method as CLIP, relying solely
on the ID prompts for classification. For OOD detection, we
define the scoring function as:

S(x) =
ΣK

k=1e
sink /τ

ΣK
k=1e

sink /τ +ΣC
c=1e

sout
c /τ

. (8)

4. Experiments
4.1. Experimental Setup

Datasets. Different from previous OOD detection tasks, we
mainly aim to achieve OOD detection in the open-world
setting, so we do not choose some toy (e.g., low-resolution)
datasets, such as CIFAR [16] and MNIST [17]. In our work,
we follow the settings of MOS [13] and MCM [28], which
use ImageNet-1k [3] as ID data and a subset of iNaturalist
[11], PLACES [42] and TEXTURE [2] as OOD data. SUN
[39] is tested independently as a specific OOD dataset. Fol-
lowing MOS [13], these OOD data are randomly selected
from the categories that do not overlap with ImageNet-1k
[3]. Furthermore, some of the ablation experiments are con-
ducted using ImageNet-100 as the ID data. This dataset
follows the configuration of MCM [28] which selects 100
classes from ImageNet-1k as the ID data.

Pre-trained Model. In our experiments, we employ
CLIP-B/16 as the pre-trained model for OOD prompt learn-
ing. Concretely, we choose CLIP-B/16, which consists of
a ViT-B/16 Transformer as the image encoder and a self-
attention Transformer as the text encoder. CLIP is one of
the most popular pre-trained models, which learns from
large-scale image-text datasets to create a shared embedding
space where images and their associated text descriptions
are represented coherently. By using contrastive learning,
CLIP ensures similar image-text pairs closer together and
dissimilar pairs farther apart, allowing it to understand the

semantic relationships between visuals and language. In our
experiment, we keep all the network parameters of CLIP
fixed, including both the image encoder and the text encoder.
We only update the embedding layer on the text input side,
following the approach of prompts learning.

Implementation Details. For few-shot training, it is nec-
essary to randomly select a certain number of samples from
each class in the complete training data to form the training
set. For example, we randomly choose one (one-shot) or four
samples (four-shot) from each class in ImageNet-1k. When
constructing ID and OOD data, we conduct M (256 in our
experiment) random crops on each sample, and choose the
top Q (32 in our experiment) and bottom Q samples based
on the similarity to the manually prompts. For ID prompts,
there is only one learnable prompt per class, and class name
information is retained. For OOD prompts, we set their to-
tal number to C (100 in our experiment), and class name
information is not retained. We set λ1 to 0.3, λ2 to 0.2, and
use AdamW [23] as the optimizer. Other hyperparameters
settings are as follows: training epoch = 3, learning rate =
0.005, batch size = 1, and token length L = 16.

Competing Methods. We compare our method to several
OOD detection works, including fully supervised, zero-shot,
and few-shot approaches. For fully supervised methods, we
follow the same setting as NPOS [34], and compare with
MSP [9], Fort/MSP [6], Energy score [22], ODIN score
[21], VOS [4], NPOS [34], and CLIPN [38]. For zero-shot
methods, we select MCM [28] for comparison. For few-
shot methods, we compare with CoOp [44] and LoCoOp
[30]. For fairness, all methods are trained using the same
pre-trained model (CLIP/ViT-B/16), and we reproduce some
results from NPOS [34] and LoCoOp [30].

Evaluation Metrics. We adopt the following evaluation
metrics that are commonly used in OOD detection: (1) the
false positive rate of OOD examples when the true posi-
tive rate of in-distribution examples is at 95% (FPR95); (2)
the area under the receiver operating characteristic curve
(AUROC); (3) ID classification accuracy (ID ACC).

4.2. Results

Table 1 shows our main comparison results, which demon-
strate that using our method can achieve better OOD detec-
tion performance, outperforming most comparisons. More
importantly, our method still has good results in 1-shot set-
ting even compared to those methods that require full data.
Specifically, in the 4-shot setting, we obtain 26.08% in terms
of FPR95 and 94.36% in terms of AUROC on average, im-
plying a reduction of 12.16% and an improvement of 2.76%,
respectively compared to the best-performing method un-
der the same settings. Fig. 4 shows a comparison between
our method and MCM on the iNaturalist dataset. Our ap-
proach demonstrates superior performance with a signifi-
cantly larger discrepancy between ID and OOD. This sug-
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Table 1. OOD detection performance for ImageNet-1k [3] as ID. ViT-B/16 is an image encoder for CLIP-B/16, ViT-B+/16 uses the text
encoder of CLIP-B/16 for initialization, CLIP-B+/16 uses an additional text encoder for training.

OOD Dataset
Method Backbone iNaturalist Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Full/Sub Data Fine-tune

MSP [9] CLIP-B/16 40.89 88.63 67.90 80.14 64.96 78.16 57.92 82.31
Energy [22] CLIP-B/16 29.75 94.68 56.40 85.60 51.35 88.00 45.83 89.43
ODIN [21] CLIP-B/16 30.22 94.65 55.06 85.54 51.67 87.85 45.65 89.35
Fort/MSP [6] ViT-B/16 54.05 87.43 72.98 78.03 68.85 79.06 65.29 81.51
VOS [4] ViT-B/16 31.65 94.53 41.62 90.23 56.67 86.74 43.31 90.50
NPOS [34] ViT-B+/16 16.58 96.19 45.27 89.44 46.12 88.80 35.99 91.48
CLIPN [38] CLIP-B+/16 23.94 95.27 33.45 92.28 40.83 90.93 32.74 92.83

Zero-shot
MCM [28] CLIP-B/16 30.91 94.61 44.69 89.77 57.77 86.11 44.46 90.16

One-shot
CoOp [44] CLIP-B/16 43.38 91.26 46.68 89.09 50.64 87.83 46.90 89.39
LoCoOp [30] CLIP-B/16 38.49 92.49 39.23 91.07 49.25 89.13 42.32 90.90
Ours CLIP-B/16 14.57 97.35 41.74 91.15 26.77 94.38 27.69 94.29

Four-shot
CoOp [44] CLIP-B/16 35.36 92.60 45.38 89.15 43.74 89.68 41.49 90.48
LoCoOp [30] CLIP-B/16 29.45 93.93 41.13 90.32 44.15 90.54 38.24 91.60
Ours CLIP-B/16 8.98 98.19 44.00 90.57 25.27 94.32 26.08 94.36

Table 2. ID accuracy on ImageNet-1k [3].
Method ID acc Full Data Zero-shot One-shot

VOS [4] 79.64 ✓
NPOS [34] 79.42 ✓
MCM [28] 67.01 ✓
CoOp [44] 66.23 ✓
LoCoOp [30] 66.88 ✓
Ours 68.28 ✓

Table 3. OOD detection performance for ImageNet-1k as ID, SUN
[39] as OOD.

SUN
Method One-shot Four-shot

FPR95↓ AUROC↑ FPR95↓ AUROC↑

CoOp [44] 38.53 91.95 37.06 92.27
LoCoOp [30] 33.27 93.67 33.06 93.24
Ours 44.02 91.08 42.03 91.64

gests that MCM is more sensitive to threshold when distin-
guishing between ID and OOD, whereas our method allows
a more intuitive distinction between ID and OOD. Further-
more, as shown in Table 2, our method outperforms other
few-shot methods, achieving superior classification results
on ID data at 68.28%.

Discussion on the SUN dataset. We also conduct an

(a)Ours

ID

OOD

ID

OOD

(b) MCM

Figure 4. Density of the obtained ID and OOD score with the
proposed method (left) and MCM [28] (right).

evaluation on the SUN dataset [39] as OOD data, and the
results are shown in Table 3. The results indicate that our
method performs not well on the SUN dataset. To investigate
the reasons, we conduct a detailed examination of the SUN
dataset. Afterward, we find that some samples belong actu-
ally ID classes (as shown in Fig. 7), but they are labeled as
OOD. To investigate whether the observed case is a prevalent
phenomenon in the SUN dataset, we conduct a more detailed
analysis. We randomly select 400 samples from the SUN
dataset and observe whether they belong to the ID category.
We find that among these samples, 145 belong to the ID cate-
gory. This investigation implies the following fact: the SUN
dataset may require more detailed annotation and filtering
to be suitable as OOD data for testing the OOD detection
performance (Places [42] might also have similar issues, but
due to the space limitation, we leave this in future).

Discussion of performance differences. We briefly ana-
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Table 4. Ablation study by constructing different outlier training data. The experimental results show that the proposed method of constructing
outlier has achieved significant improvements.

OOD Dataset
Outlier (train) iNaturalist Places Texture SUN Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Related outlier
iNaturalist [11] 1.57 99.62 41.57 90.11 81.29 69.62 40.05 89.26 41.12 87.15
Places [42] 30.68 95.17 10.64 97.91 75.57 77.19 22.62 95.14 34.88 91.35
Texture [2] 15.24 97.27 22.07 95.60 33.51 93.03 41.45 90.40 28.07 94.07
SUN [39] 31.14 94.72 24.04 94.70 88.21 71.02 11.06 97.65 38.61 89.52

Unrelated outlier
CUB [37] 60.88 89.63 59.40 87.34 48.63 89.00 78.39 78.62 61.83 86.15
Gaussian Noise 52.18 91.11 80.53 75.13 33.95 91.40 61.94 85.09 57.15 85.68

Our outlier
One-shot 10.82 97.84 26.60 95.07 20.41 96.16 41.94 91.43 24.94 95.12
Four-shot 1.62 99.60 20.81 96.05 13.55 97.30 29.53 93.70 16.38 96.66

lyze the performance differences of our method across dif-
ferent OOD datasets. For example, our method exhibits sig-
nificant performance improvement on iNaturalist [11] and
Texture [2] datasets. The possible reason is that the cropped
samples are more likely to contain image textures, plants,
and animals in the background, making them correlated with
ID classes. iNaturalist consists of various types of plants
and animals, and Texture consists of natural textures. There-
fore, our approach exhibits a greater improvement on these
two datasets. In contrast, SUN [39] and Places [42] primar-
ily consist of scene-based data, typically lacking specific
objects (e.g., containing multiple objects). Therefore, our
approach shows limited performance improvement on these
two datasets.

4.3. Ablation Study

The effectiveness of our outliers. To show the effectiveness
of the outliers constructed, we conduct the following experi-
ments. Specifically, we using different additional outliers in
training to investigate the improvement of our constructed
outliers. Furthermore, we categorize the auxiliary outliers
into “Related outlier”, “Unrelated outlier” and “Our out-
lier”. Concretely, “Related outlier” are selected from the
challenging OOD samples (those with high MSP scores [9]).
”Unrelated outlier” are selected from OOD datasets that are
unrelated to the ID data. The results are shown in Table 4.
Partial experimental results are in gray because it is unfair
to compare them, since the outliers used during training and
the OOD in testing come from the same distribution. Firstly,
it is observed that models trained with our generated outliers
outperform those trained with other outliers. This indicates
the effectiveness of the outliers generated by our method.
Secondly, we observe that the performance of models trained
with “Related outlier” is generally better than those trained
with “Unrelated outlier”. This supports that outliers related

to the ID can indeed help the model in learning a better deci-
sion boundary between the ID and OOD. The overall result
strongly validates our ID-like outliers are quite effective
and reasonable.

Furthermore, we utilize t-SNE [36] for visualization to
illustrate the correlation between the outliers generated by
our method and the ID samples. We employ a number of
ID samples along with the outliers constructed based on the
few-shot setting for visualization. For example, under the
1-shot setting, we use only one sample form each ID class
to construct outliers, while the ID samples consist of a large
number of samples form different ID classes. As shown in
Fig. 5, the results show that even the generated outliers are
from a quite small number of ID samples, they can also be
correlated with the majority of ID samples. Moreover, with
the increase of ID samples used in constructing outliers, both
the number and the diversity of the ID-like outliers also
increase.

The effectiveness of prompt learning. To show the ad-
vantages of prompt learning under few-shot setting, we train
various models with our generated outliers (ImageNet-100 as
ID), including fine-tuning the full model [9, 22], fine-tuning
the last layer [6], training free [18], and prompt learning
(ours). As shown in Fig. 6 (a), the results show that fine-
tuning the full model performs worse in both 1-shot and
4-shot settings. The main reason is that these methods typi-
cally require abundant data for fine-tuning the model. More-
over, the better performance of all methods under 4-shot over
1-shot settings also validates this. Fort/MSP [6], which fine-
tunes only the last layer of the model, performs better than
fine-tuning the full model. This is because it preserves the
majority of the model’s prior knowledge, thereby reducing
the dependence on the quantity of training data. However, it
only utilizes the image encoder and does not leverage the pre-
trained model’s prior knowledge in text, thereby limiting the
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(a)1-shot (b) 4-shot

Figure 5. The obtained representations visualization of ID-like
OOD samples and ID samples under 1-shot and 4-shot settings.
The representation of the obtained ID-like OOD sample is close
to the ID sample.

(a) AUROC of different methods
under the few-shot setting

(b)AUROC of different number of 
OOD prompts

Figure 6. Left: Performance in terms of AUROC of different meth-
ods trained on our constructed ID-like OOD dataset. Right:
Performance in terms of AUROC at different number of OOD
prompts during training.

performance of CLIP. Lee et al. [18] does not fine-tune the
model, but it only utilizes the image encoder without fully
leveraging CLIP’s prior knowledge, limiting its performance.
In contrast, prompt learning often utilizes both the image en-
coder and text encoder, leveraging the full prior knowledge
of the pre-trained model. Therefore, for the limited amount
of ID data, the performance is significant superior compared
to existing methods.

The effectiveness of different quantities of ID-like
prompts (OOD prompts). We test the impact of different
quantities of OOD prompts for OOD detection performance.
We set different values for C (10, 50, 100, 150, 200, 250,
300) and train the model using ImageNet-100 as ID data. The
results are shown in Fig. 6 (b). The results demonstrate that
as the number of OOD prompts increases, the OOD detection
performance is also improved and tends to be stable. The
underlying reason is that the expressive capacity is highly
related to the number of prompts. Therefore, when ID data
is complex, more prompts are required to characterize OOD
samples related to the ID samples.

5. Conclusion
In this work, we propose a novel few-shot prompt learning
method for out-of-distribution detection using pre-trained
visual-language models. Our method introduces ID-like
prompts and constructs outliers highly correlated with ID

Samples from SUN

tractor

OOD

hay

ocean liner

OOD

OOD

···
···
···
···

···
···
···
···

···

···
···
···

Classes in ImageNet-1k

Figure 7. Left: Samples from the SUN [39] dataset that may be
semantically identical to classes in ImageNet-1K [3], yet these
samples are still considered as OOD during evaluation, which may
result in a performance reduction. Right: Ours prediction results,
including OOD scores.

data from the training samples. By aligning ID-like prompts
with the constructed outliers, we explore ID-like regions
within the text feature space that are highly correlated with
ID but do not belong to the ID. Our method elegantly ad-
dresses the key limitations in previous OOD detection meth-
ods, i.e., the challenge of constructing challenging outliers
without auxiliary outliers and with a limited number of ID
samples. Additionally, the introduction of the ID-like prompt
provides a more effective way for the model to identify chal-
lenging OOD data. In challenging real-world OOD detec-
tion tasks, our method outperforms existing approaches. We
conducted various ablation experiments to demonstrate the
effectiveness of our approach. We hope that our work could
inspire more future research on few-shot OOD detection
based on prompts learning. We also hope to discover more
interpretable ways to construct hard OOD in the future work.
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