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Abstract

This paper presents DriveTrack, a new benchmark and

data generation framework for long-range keypoint tracking in

real-world videos. DriveTrack is motivated by the observation

that the accuracy of state-of-the-art trackers depends strongly

on visual attributes around the selected keypoints, such as

texture and lighting. The problem is that these artifacts are

especially pronounced in real-world videos, but these trackers

are unable to train on such scenes due to a dearth of annotations.

DriveTrack bridges this gap by building a framework to auto-

matically annotate point tracks on autonomous driving datasets.

We release a dataset consisting of 1 billion point tracks across

24 hours of video, which is seven orders of magnitude greater

than prior real-world benchmarks and on par with the scale

of synthetic benchmarks. DriveTrack unlocks new use cases

for point tracking in real-world videos. First, we show that fine-

tuning keypoint trackers on DriveTrack improves accuracy on

real-world scenes by up to 7%. Second, we analyze the sensitiv-

ity of trackers to visual artifacts in real scenes and motivate the

idea of running assistive keypoint selectors alongside trackers.

1. Introduction

Long-range keypoint tracking in videos underpins many com-
puter vision applications, including autonomous driving [14],
robotics [24], pose estimation [8], 3D reconstruction [16], and
medical imaging [26]. Each of these applications involves mov-
ing objects and moving cameras. Keypoint tracking—whose
goal is to track unique points in the presence of mobility and
occlusions—is an active area of research [4, 5, 10, 29].

Most proposals follow the Track Any Point (TAP) [4]
formulation: given a video and a set of query points, the
algorithm must estimate the locations of those points in all
other frames where they are visible. The underlying tracking
algorithms vary significantly. TAPIR [4, 5] is an end-to-end
method that predicts correspondences using feature maps and
cost volumes. By contrast, PIPs++ [10, 29] stitches optical flow
vectors together to construct long-range trajectories. These are
two recent methods that improve the state-of-the-art, adding
to a number of techniques proposed over the last two decades.

This paper observes that the accuracy of state-of-the-art

Figure 1. DriveTrack automatically generates dense, accurate, and
long-range point track annotations for autonomous driving videos.

trackers suffers on real videos. In particular, noisy visual
characteristics—such as texture, lighting variations, occlusions,
and motion-induced image distortions—can hinder tracking
performance (§3). The key problem is that modern trackers train
on vast synthetic datasets [9, 13, 29] whose scenes do not exhibit
these imperfections. We are aware of only two benchmarks for
the TAP task on real-world videos [12, 19], with each offering
(only) tens of human-labeled annotations per scene.

To overcome this shortcoming, we propose DriveTrack,
a large-scale benchmark for long-range point tracking tasks.
DriveTrack brings to real-world videos the density and fidelity
of annotations available only for synthetic benchmarks today.
By using camera feeds from cars driven in urban areas,
DriveTrack captures realistic motion, noisy visual attributes, and
occlusions, which synthetic [9, 13] or rendered [29] datasets
do not model. Fig. 1 shows the annotations computed by
DriveTrack for a driving scene. Although DriveTrack is built
on autonomous driving videos, it captures the wide variety of
visual artifacts typical in real-world scenes.

To generate point tracks, we adapt methods used by synthetic
benchmarks [9, 29] that use rendering software to precisely
annotate the motion of simulated trajectories. However,
real-world videos do not have the luxury of a simulator.
To overcome this challenge, DriveTrack uses timestamped
LiDAR point clouds, object bounding box annotations, and
camera poses and orientations [2, 7, 21, 25]. Since LiDAR
point sweeps do not have 1:1 correspondence over time [21],
DriveTrack cannot compute correspondences between adjacent
point clouds, as synthetic benchmarks are able to. DriveTrack
instead transforms each timestamped point cloud according
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FlyingThings++ [10] Kubric [9] Kinetics [12] DAVIS [19] PointOdyssey [29] DriveTrack

Resolution 540⇥960 256⇥256 �720⇥1080 1080⇥1920 540⇥960 1280⇥1920
Frame rate (Hz) 8 8 25 25 30 10

Avg. trajectory count 1024 Arbitrary 26.3 21.7 18,700 100,800
Avg. frames per video 8 24 250 67 2,035 84

# of training frames 21,818 Arbitrary – – 166,000 672,000
# of validation frames 4,248 Arbitrary – – 24,000 84,000

# of test frames 2,247 Arbitrary 297,000 1,999 26,000 84,000
# of point annotations 300M Arbitrary 80M 400K 49B 84B

# of point tracks 16K Arbitrary 32K 650 11K 1B
Real-world scenes 7 7 3 3 7 3

Depth maps 3 3 7 7 3 3
Object masks 3 3 3 3 3 3

Multiple views 7 3 7 7 3 3

Table 1. DriveTrack is the first benchmark on real-world videos to offer annotations that match the scale and fidelity of synthetic datasets.

to the camera pose and bounding box annotations to generate
hundreds of thousands of highly accurate point annotations per
object. We also implement several refinements to ensure that our
annotations are robust to noise in hand-labeled bounding boxes.

DriveTrack can annotate point tracks for rigid bodies in
any dataset of real-world videos that includes point clouds,
3D object segmentations, and camera poses. With this paper,
we release point tracking annotations for the Waymo Open
Dataset [21]. Our dataset contains 1 billion point tracks for
over 10,000 distinct objects across 24 hours of video. Table 1
compares DriveTrack to other point tracking benchmarks.

DriveTrack makes long-range tracking practical for real-
world scenes. This paper presents results for two use cases:
• Fine-tuning keypoint trackers. We fine-tune TAP-Net [4],

TAPIR [5], PIPs [10], and PIPs++ [29] on DriveTrack,
showing an improvement of 4-7% on DriveTrack’s test set
and 1-2% on DAVIS [19] (§6).

• Keypoint sensitivity. Visual imperfections make keypoint
tracking in real videos more challenging. We use the scale
of annotations made available by DriveTrack to quantify
the sensitivity of tracking accuracy to visual imperfections.
From this analysis, we motivate how DriveTrack can be used
to build keypoint selectors, which can recommend robust
keypoints to use with trackers (§7).

DriveTrack’s data generation code and annotations are available
at drivetrack.csail.mit.edu.

2. Related Work

Real-world datasets. The TAP-Vid benchmark [4] released
annotations for DAVIS [19] and Kinetics [12], two real-world
video datasets. TAP-Vid introduces a workflow that helps a
human annotate keypoint tracks in a sequence of video frames.
State-of-the-art keypoint trackers [4, 5, 10] evaluate on the
DAVIS and Kinetics benchmarks to quantify performance on
real-world scenes. However, since the scale of annotations is
on the order of tens of trajectories per scene, these benchmarks
are viable only for evaluation, and not for fine-tuning models
to be robust to visual artifacts seen in real-world scenes.

The KITTI dataset’s Segmenting and Tracking Every Pixel

(STEP) benchmark [7] tags every pixel (or 3D point) with a
semantic label (e.g. car, truck, pedestrian, etc.) and a unique
track ID. It constructs tracks by propagating segmentation
masks using RAFT [22]. However, STEP does not annotate
point correspondences over a long-range, e.g. the exact
trajectory of a unique pixel over a video sequence. Even
earlier, the Middlebury dataset [1] was the de-facto benchmark
for optical flow and motion estimation tasks. This dataset
consists of a mix of real-world and synthetic scenes. While the
annotation quality is high, the sheer number of annotations, as
with DAVIS and Kinetics, is small.
Synthetic benchmarks. Most of the data used to train and
evaluate long-range motion estimation has been synthetic.
Popular benchmarks include FlyingChairs [6], FlyingTh-
ings3D [17], and AutoFlow [20] providing short-range (i.e.
2 frames) annotations, and Kubric [9], PointOdyssey [29],
and FlyingThings++ [10] providing long-range labels. These
datasets contain different variants of generated objects moving
in random directions on random backgrounds. Of these
benchmarks, PointOdyssey has annotations with the greatest
volume and fidelity, and uses rendering tools and real motion
traces to synthesize photo-realistic scenes. However, it fails to
capture visual artifacts characteristic of real scenes that hamper
the performance of keypoint trackers (§3).
Keypoint tracking. Datasets with dense and accurate point
tracks are critical to developing and evaluating keypoint
tracking methods that follow the TAP formulation. TAPIR [5],
TAP-Net [4], PIPs [10], and PIPs++ [29] are four methods that
have pushed the state-of-the-art over the last two years. Other
approaches to keypoint tracking rely on optical flow [22] or on
structure-from-motion [28]. The focus of this paper is on Driv-
eTrack and the new use cases it enables: fine-tuning trackers
on real-world scenes and an analysis of keypoint sensitivity.

3. Motivation

Keypoint tracking on videos is a decades-old problem in
computer vision, but it is also evolving rapidly. Over the last
two years, four keypoint trackers [4, 5, 10, 29] have pushed
state-of-the-art results. All recent methods train on large-scale
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Figure 2. State-of-the-art keypoint trackers struggle on real-world
scenes with complex lighting and texture attributes. Shown here are
point tracks predicted by TAPIR [5] relative to their ground-truth
locations for 4 scenes from the DAVIS dataset [19].

synthetic benchmarks [6, 9, 17, 29]. In this section, we make
the case for a similar point tracking benchmark for real-world
scenes by highlighting current limitations in the performance
of state-of-the-art keypoint trackers.

Keypoint trackers suffer on real videos. Fig. 2 shows the
tracking error achieved by TAPIR [5] on four scenes from
the DAVIS dataset [19]. The markers indicate the locations
predicted by TAPIR, and the line segments lead to their
respective ground-truth locations.

Notice that the tracking quality varies significantly. For
instance, TAPIR tracks the car turning the roundabout (top left)
accurately around well-defined edges and corners, like the door
handles and wheel spokes. However, the predicted tracks drift
from ground truth on reflective surfaces, like the windows. In
the paragliding video (bottom left), TAPIR struggles on patches
of the parachute with lighting variations, and on the suspension
ropes, which blend with the saturated background.

Limitations of synthetic datasets. While the synthetic
benchmarks on which these models are trained offer annotations
at a large scale and fidelity, they do not exhibit visual artifacts
that are all too common in real-world scenes. Synthetic
benchmarks, such as Kubric [9], FlyingThings++ [17],
and PointOdyssey [29], only capture rudimentary lighting
conditions like shadows and selects from a corpus of simplistic
rendered objects. Textures are simple and lighting patterns are
monotonic. Given these limitations, it is unrealistic to expect
these keypoint trackers to excel on real-world scenes.

Annotating real-world datasets. The problem is that there do
not exist any benchmarks on real-world scenes that offer the
fidelity and scale of annotations available for synthetic bench-
marks. Existing benchmarks on real-world scenes, like DAVIS
and Kinetics, curate only a handful of human-labeled keypoint
tracks per scene. Moreover, the annotated keypoints are biased
toward locations that are naturally easier for a human to track.

3D bboxes

bbox tracks

point clouds

filter

Compute Bt

+

point tracks

depth maps

+

occlusion 
maps

Figure 3. DriveTrack transforms each timestamped point cloud accord-
ing to the vehicle’s camera poses and a target object’s bounding boxes
to automatically and accurately annotate point tracks for that object.

Notation Meaning

N number of points tracked
F duration of RGB video
R camera extrinsic matrix
K camera intrinsic matrix
Wt transforms point from vehicle frame to world frame at

time t
Bt transforms bounding box from origin to location in world

frame at time t
Xt target object’s LiDAR point cloud at time t
X̂

(t)
⌧ projection of Xt at time ⌧

TV set of 3D point tracks in vehicle frame
T̂I set of 2D point tracks in image space
D̂ depth map
Ô occlusion map

Table 2. Notation for DriveTrack’s point tracking workflow.

4. DriveTrack Overview

DriveTrack leverages autonomous driving datasets [2, 7, 21]
to generate dense point tracks on real-world videos. Fig. 3
illustrates DriveTrack’s data generation workflow, which com-
bines LiDAR sweeps, 3D bounding box annotations, sensor
calibrations, and camera poses/orientations to derive keypoint
annotations with high fidelity.

DriveTrack computes point tracks by shifting recorded point
clouds by the poses of the driving (ego) vehicle. To create the
benchmark, we aggregate and filter the timestamped data (§4.1),
transform and track the point clouds (§4.2), and estimate oc-
clusions (§4.3) by computing depth maps (§4.4). We release
annotations on the Waymo Open Dataset [21], but our data gen-
eration workflow is compatible with other autonomous driving
datasets (§4.5). Table 2 introduces notation that we use in the
rest of this section to formalize the point tracking procedure.
DriveTrack computes a set of 2D point tracks T̂I2RN⇥F⇥2, as
well as an occlusion map Ô2RN⇥F that indicates when points
are not visible from the perspective of the camera.

4.1. Dataset preparation and requirements

Autonomous driving datasets split data by different modalities.
DriveTrack pre-processes this data by joining tables by
timestamp, and bundles the following for each unique object k:
• We extract a length-F sequence of RGB frames containing

the object, along with camera calibration matrices R and K.
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We consider each of the cameras on the ego vehicle separately.
• We convert the bounding box annotations for each unique

object k into a sequence of timestamped transformations
Bk,t that describe how to transform the object from the world
origin to its position in the global frame.

• We extract the LiDAR point clouds Xk,t by filtering the
scene’s point cloud at time t by object k’s bounding box.

• We export transformations Wt that map points in the ego
vehicle’s reference frame to the world frame.

For simplicity, we omit the object index k in the rest of this paper.

4.2. Point tracking

DriveTrack computes correspondences in 3D and then projects
those points to the image space. We compute point tracks
separately for each target object that is annotated in the dataset.
Tracking with point clouds. Unlike synthetic benchmarks,
DriveTrack cannot render the scene in a simulator and generate
points to track. It instead is confined to a finite set of points sam-
pled by the ego vehicle’s LiDAR sensor. However, since LiDAR
samples different points in each sweep, the point clouds in adja-
cent timesteps Xt and Xt+1 will not have a 1:1 correspondence.

DriveTrack instead takes each point cloud Xt and “shifts” it
across time according to the bounding annotations, constructing
a sequence of point clouds {X̂(t)

⌧ 8⌧ 2 [1,F ]}. To project Xt,
we need to account for the motion of the target object and the
motion of the ego vehicle. The transformation Bt captures the
location of the object at each time t in the global frame, and
Wt specifies how to transform a point from the ego vehicle’s
reference frame to the global reference frame at each time t.
Thus, to project the point cloud, we (i) project to the global
frame, (ii) transform to bounding box coordinate system, (iii)
apply the bounding box transformation in the next timestep, and
(iv) project back to the vehicle’s reference frame. Formally, the
projected point cloud at ⌧ is:

X̂
(t)
⌧

=W
�1
⌧

B⌧B
�1
t

WtXt (1)

This yields N length-F tracks, where N is the number points
in Xt.1 We can repeat this procedure for each t2 [1,F ]. In total,
this gives N⇥F point tracks of length F for this target object.
Point tracks. We can define the matrix T̂V 2 RN⇥F⇥3 to
hold the point tracks projected using the procedure described
above. Formally, if T̂ (i)

V
=

h
X̂

(i)
1 ...X̂

(i)
t
...X̂

(i)
F

i
, then T̂V =

h
T̂

(1)|
V

...T̂
(i)|
V

...T̂
(F)|
V

i
. We can then project these points to im-

age space using the camera matrices as follows: T̂I=KR
�1

T̂V .

4.3. Occlusion estimation

DriveTrack flags a point as occluded if its 3D position is further
from the camera than the nearest physical point in the same
direction [9, 29]. If x̂t2R3 is the 3D projection of a point p2R2

relative to the ego vehicle’s reference frame, then d̂t = kx̂tk
1This assumes (for simplicity) that each point cloud Xt has N points.

Figure 4. Depth maps computed by Nearest Neighbor and Comple-
tionFormer [27] for a scene in the Waymo dataset [21].

gives the distance of that point from the camera. To find the
nearest physical points from the camera, we compute depth
maps D̂t 2RW⇥H .2 Then, a point p=(px,py) is occluded if
d̂t>D̂t[px,py]. We repeat this for all p2T̂I to compute Ô.

4.4. Depth completion

Synthetic benchmarks export dense depth maps. However, the
autonomous driving datasets that DriveTrack uses for its point
tracking annotations only export sparse LiDAR point clouds,
i.e. a collection of 3D points that the sensor samples through
several sweeps. To create dense depth maps, DriveTrack first
projects the 3D point cloud to 2D, creating a sparse depth
map. Then, it leverages depth completion methods that learn
a function f to interpolate a set of 2D points to a dense 3D
map. We denote XI,t as the 2D projection of the ground-truth
point cloud Xt at time t. f maps XI,t to a dense depth map
D̂t, which we then use to estimate occlusions.

We consider two depth completion models. The first inter-
polates nearest neighbors in the image plane, by assigning each
pixel in the image the same depth value as the closest ground-
truth sparse depth point in XI,t by 2D Euclidean distance. The
second method is CompletionFormer [27], a deep depth comple-
tion model that achieves state-of-the-art performance on the Kitti
Depth Completion (DC) benchmark [23]. CompletionFormer
uses both the sparse depth map and the RGB source image
to produce a dense depth map. It uses non-local spatial prop-
agation networks [18] to share affinity information from depth
areas in the image about which the model has high confidence
to areas with lower confidence. For both models, we interpolate
depths at floating point pixel values [9, 29], by computing a
max pooling over the neighborhood of the four corner pixels
around which we interpolate. Max pooling overestimates depth

2§4.4 describes how we compute depth maps from the point clouds.
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values compared to an alternative like bilinear interpolation, but
we find that it yields more accurate occlusion maps.

Fig. 4 visualizes depth maps computed by Nearest Neighbor
(middle) and CompletionFormer (bottom) for a scene. Empir-
ically, we find that Nearest Neighbor produces accurate depth
and occlusion maps on our benchmark. However, it produces
jagged artifacts around the edges of objects, particularly in the
foreground of the scene. Consequently, occlusion estimates tend
to be inaccurate on the boundaries of vehicles or on other sharp
gradients in depth. By contrast, CompletionFormer handles
object edges more gracefully by leveraging non-local spatial
propagation. However, it suffers on thin background objects
like tree leaves or signposts. §6 reports results from fine-tuning
state-of-the-art trackers on versions of DriveTrack built using
both Nearest Neighbor and CompletionFormer [27].

4.5. Robustness

Filters. We find that noise from the hand-labeled bounding
box annotations and interpolation errors from depth completion
methods can degrade track quality. We implement several filters
to ensure that the computed point tracks are accurate:
• Object must lie in the camera’s field-of-view (either visible or

occluded) for at least 24 frames. The exact duration does not
matter; we choose 24 frames because it is the video length
used to train TAPIR [5] and TAP-Net [4]. This ensures that
videos are not too short for model training and are sufficient
length to learn robust point tracks.

• Object must be within 20m of the camera at some point in the
video sequence. We find that the quality of depth completion
is inferior and highly variable for more distant objects, impact-
ing DriveTrack’s ability to determine occlusions accurately.

• Object must lie in the field-of-view continuously for at least 24
frames. The object also cannot fully leave the frame and return
for simplicity, although we could allow this in the future.

Additionally, we only use the front, front-left, and front-right
cameras. The side cameras often have short object tracks.
Other autonomous driving datasets. We implement the work-
flow described above for the Waymo Open Dataset [21]. How-
ever, DriveTrack’s data generation workflow is compatible with
the heavily-curated domain of autonomous driving videos [2, 7,
25]. Porting DriveTrack to other datasets might require more
careful attention to interpolation, which we leave to future work.
For instance, the nuScenes dataset [2] has annotations at 2 Hz,
and requires interpolating bounding boxes to match the 10 fps
video frame rate. Moreover, nuScenes’s dataset has sparser point
clouds, which would yield fewer total point tracks and poorer
depth maps. We leave additional refinements to future work.
Implementation. App. A discusses optimizations that we
added to DriveTrack to improve annotation speed.

5. DriveTrack Analysis

Point track quality. Synthetic benchmarks [9, 29] generate
exact point tracks by using rendering tools to simulate motion.

Depth Completion Speed Error (m/s)
p25 p50 p75 p95 p99

Nearest Neighbor 0.0651 0.1260 0.2471 0.5497 0.8687
CompletionFormer [27] 0.0702 0.1273 0.2663 0.4874 0.6615

Table 3. The speed of DriveTrack’s point tracks is consistent (i.e. low
error) with the speed of Waymo’s ground-truth bounding boxes [21].

However, as we note in §4.5, DriveTrack is susceptible to
annotation error. Fig. 5 shows, for a representative scene in
the Waymo dataset [21], point correspondences computed by
DriveTrack. We denote visible points with • and occluded
points with ⇥. Note that the point tracks are extremely accurate.
Our website3 includes several videos that illustrate the quality
of DriveTrack’s annotations. App. B includes more annotated
examples, including an edge case where DriveTrack fails.
Point track consistency. Since we do not have reference ground
truth tracks, we instead compare the velocity of the computed
point tracks against the labeled velocities for object annotations,
as a proxy for annotation error. Since DriveTrack tracks rigid
bodies, we expect the velocity for each point track for an object
to match the annotated velocity for that object. To quantify con-
sistency, we compute the average velocity of a point track and
compare the distribution (i.e. 25-99pct) of those point velocities
to the average annotated velocity for that object. Table 3 shows
the median value of different percentiles across all objects in the
dataset. We report results for both depth completion methods
(§4.4). The median error in speed is 0.13 m/s, indicating that
DriveTrack is faithful to Waymo’s ground-truth annotations.
Statistics. The DriveTrack benchmark on the Waymo
dataset [21] includes 1000 scenes across 3 different cameras,
totaling about 10,000 1280⇥1920 videos at 10 fps. Each video
is for a single object with 100,000 trajectories on average per
video. We further split our dataset into 800 scenes for training,
100 scenes for validation, and 100 scenes for test, which
translates to about 8,000, 1,000, and 1,000 videos respectively,
with an average video length of 84 frames. Table 1 compares
DriveTrack with other standard datasets for point tracking.

6. Fine-tuning keypoint trackers

DriveTrack is large enough that, for the first time, we can train
keypoint trackers on real-world scenes. In this section, we
show results from fine-tuning three state-of-the-art keypoint
trackers [4, 5, 29] on DriveTrack.

6.1. Setup and metrics

Dataset. We work with a subset of annotations from DriveTrack,
comprising of 300 target objects split across 100 different
scenes. We split each annotation into 24-frame subsets,
resulting in 900 distinct training examples, 22,000 training
frames, and 168 million point trajectories. We use the Nearest
Neighbor depth completion model for most experiments.
Experimental setup. We use the official code for PIPs++ [29],

3drivetrack.csail.mit.edu
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Figure 5. Visible point correspondences (•) and occlusions (⇥) computed by DriveTrack over eight samples from a 30-frame sequence.

Tracker Training Kubric [9] DAVIS [19] DriveTrack
AJ <�

x
avg OA AJ <�

x
avg OA AJ <�

x
avg OA

TAP-Net [4] Kubric [9] 65.4 77.7 93.0 38.4 53.1 82.3 63.6 73.8 92.4
+ DriveTrack 37.0 54.0 83.5 39.2 54.7 78.6 70.3 80.4 93.2

TAPIR [5] Panning Kubric 84.7 92.1 95.8 62.8 74.7 89.5 78.8 87.1 94.4
+ DriveTrack 80.8 89.6 93.8 64.0 76.1 88.0 84.1 90.9 95.1

PIPs++ [29] PointOdyssey [29] – 25.8 – – 70.4 – – 81.5 –
+ DriveTrack – 25.6 – – 71.2 – – 85.3 –

Table 4. Tracking performance of different models on different datasets before/after fine-tuning on DriveTrack. �xavg measures positional tracking ac-
curacy, OA measures binary occlusion accuracy, and AJ considers both position and occlusions. We report all metrics as percentages. Higher is better.

Depth Completion Average Jaccard (AJ)
DAVIS [19] DriveTrack

Nearest Neighbor 39.29 70.3

CompletionFormer [27] 38.60 69.5

Table 5. Comparing the Nearest Neighbor and CompletionFormer
depth completion strategies for DriveTrack on fine-tuning TAP-Net.

TAP-Net [4], and TAPIR [5], and the pre-trained weights
released with each paper. For TAPIR, we use the panning
Kubric model checkpoint as described in their paper, as opposed
to the one trained on the original MOVi-E dataset. We train all
models for 5000 steps on 8 V100 GPUs with 500 warmup steps.
For TAP-Net and TAPIR, we use a learning rate of 1⇥10�5 and
an AdamW optimizer with �1=0.9 and �2=0.95 and weight
decay 1⇥10�2. For PIPs++, we use a learning rate of 1⇥10�5

and a AdamW optimizer with the default � parameters and a
weight decay of 1⇥10�6. For all models, we halt fine-tuning
when performance on a given task has reached a peak.
Metrics. We evaluate these models on three standard TAP-Vid
metrics [4]. <�

x evaluates the positional accuracy for visible
points, by measuring the fraction of points that are within a
threshold of their ground-truth locations. We report < �

x

avg
,

which averages across 5 thresholds: 1, 2, 4, 8, and 16 pixels. Oc-
clusion Accuracy (OA) reports the classification accuracy for the
occlusion status predicted for each point. Average Jaccard (AJ)
measures both position and occlusion accuracy. Jaccard is the
fraction of “true positives” (i.e. points within the threshold of vis-

ible ground-truth points) divided by “true positives” plus “false
positives” (i.e. points predicted visible, when the ground-truth
reports occluded or farther than threshold) plus “false negatives”
(i.e. ground-truth visible points that are predicted as occluded or
farther than the threshold). AJ averages Jaccard across the same
thresholds as <�

x

avg
. Note that we do not report AJ and OA for

PIPs++ since it does not export occlusions [29].

6.2. Quantitative results

Table 4 summarizes our results from fine-tuning. For each
tracker, we report results on its reference models trained on a
synthetic dataset and on our model fine-tuned with DriveTrack.
We evaluate each model on Kubric, DAVIS, and DriveTrack.
Improvements on DriveTrack. Fine-tuning improves AJ for
TAP-Net by 7%, for TAPIR by 5%, and for PIPs++ by 4%. The
AJ of 84.1% for a TAPIR model fine-tuned on DriveTrack is
on par (in terms of accuracy) with the equivalent for a synthetic
benchmark, e.g. TAPIR fine-trained on Kubric yields an AJ
of 84.7%. The largest improvement is in positional accuracy.
As we noted in §3, synthetic benchmarks do not model high
frequency image imperfections, and fine-tuning on DriveTrack’s
annotations exposes the models to these artifacts. The improve-
ment in OA is smaller, but fine-tuning helps nevertheless.
Transferability. Fine-tuning on DriveTrack also transfers to
DAVIS, which consists of real-world scenes drawn from a
different distribution than the Waymo dataset [21] on which
DriveTrack is built. In particular, for TAP-Net, TAPIR, and
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Query Points
Before Fine-tuning After Fine-tuning

Positional Error

Pos. Err. (px)

Occlusion Error Positional Error Occlusion Error

Pos. Err. (px)
Pos. Err. (px)

Figure 6. Positional tracking error (in pixels) and occlusion estimation error (binary) for TAPIR [5] before and after fine-tuning on DriveTrack.
Brighter colors indicate lower tracking error, and green dots on the occlusion map signify points that TAPIR predicted correctly. Fine-tuning improves
tracking accuracy especially around parts of the cars that blend with the background. Occlusion estimation also improves, albeit to a smaller degree.

Before fine-tuning on DriveTrack After fine-tuning on DriveTrack

Figure 7. TAPIR [5] fine-tuned on DriveTrack transfers well to scenes
in DAVIS [19]. Tracking improves, especially on the window.

PIPs++, AJ improves by 1-2%. This shows that, even though
DriveTrack is confined to datasets like autonomous driving
videos due to its constraints on bounding box annotations
and LiDAR point clouds, trackers are capable of generalizing
to real-world scenes more broadly. As expected, fine-tuning
TAPIR and TAP-Net on DriveTrack degrade performance on
the original training dataset, Kubric, which is synthetic.
Depth completion. Table 5 compares AJ after fine-tuning TAP-
Net using the Nearest Neighbor and CompletionFormer [27]
depth completion methods that we explored in §4.4. While
both models yield similar performance, we find that Nearest
Neighbor outperforms CompletionFormer [27] slightly on both
DAVIS and DriveTrack. Although it can produce artifacts on
the depth map, the max pooling that we apply on top of the
Nearest Neighbor interpolation smooths out these artifacts.
CompletionFormer ends up with more prediction errors that
the max pooling feature cannot correct.

6.3. Qualitative results

DriveTrack. Fig. 6 compares TAPIR’s predictions before and
after fine-tuning. We show points sampled on a query frame, as
well as the positional error (in pixels) and occlusion estimation
error (as a binary map) for each model. We show three represen-

tative scenes from DriveTrack. In all examples, the positional
error generally decreases (i.e. brighter colors) after fine-tuning,
with the greatest improvement on points in the centers of the
vehicles. Notice, for example, with the middle scene, that
fine-tuning enables TAPIR to track accurately despite lighting
variations caused by rain. App. C includes more annotated
examples that illustrate improvements due to fine-tuning.
DAVIS. Fig. 7 shows TAPIR before and after fine-tuning, on a
scene from DAVIS [19]. Tracking on the window still exhibits
significant error, but notice that fine-tuning yields a tangible im-
provement in positional accuracy. See App. C for more results.

7. Sensitivity of trackers to keypoints

Despite the improvements from fine-tuning that we demonstrate
in §6, there is still an appreciable gap between the performance
of these trackers on real-world scenes and the performance on
synthetic datasets. §3 illustrates how trackers struggle partic-
ularly in scenes with complex lighting conditions and textures.
While fine-tuning on DriveTrack can help make models more
robust to these imperfections, we believe that precise tracking is
fundamentally difficult in these settings. In this section, we use
the scale of annotations in DriveTrack to quantify the sensitivity
of keypoint trackers to particular keypoints.

7.1. Quantifying sensitivity with DriveTrack

How is tracking error distributed over the DriveTrack bench-
mark? For each scene in the Waymo dataset [21], we randomly
sample 50 keypoints from a query frame and use TAPIR [5]
to track them over the entire video. We compute average
positional tracking error for each keypoint against DriveTrack’s
ground-truth annotations, and consider the distribution of errors
across all keypoints across all scenes. Fig. 8 shows these
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long tail long tail

improvement

Figure 8. The distribution of tracking error across DriveTrack
benchmark is heavy-tailed, even after fine-tuning. Certain kinds of
keypoints are more susceptible to greater error.

Harris SuperPoint Pos. Error (px)

Figure 9. Existing keypoint selectors either offer a sparse set of options
(Harris) or fail to avoid regions with visual imperfections (SuperPoint).

histograms of TAPIR’s error before and after fine-tuning.
First, notice that fine-tuning reduces positional error

noticeably on average: the fraction of points with tracking error
less than 10 pixels is higher after fine-tuning. However, both
distributions have long tails: the worst-case performance of
DriveTrack improves marginally after fine-tuning. The 90th
percentile error in both cases is over 60 pixels. This indicates
that no amount of additional data will alleviate tail performance.

One might wonder why the tail performance of keypoint
trackers matter: if we track tens of thousands of keypoints
won’t the effects at the tail be negligible? Invoking trackers
like TAPIR and PIPs++ is computationally-expensive, and
is not practical for tracking thousands of pixels. Moreover,
these trackers cater to the TAP formulation, where users want
accurate tracks for very specific points. Those desired points
might correspond to ones that yield error at the tail, and users
currently have no way of knowing that.

7.2. Characterizing keypoint sensitivity

The annotations in Fig. 6 and Fig. 7 indicate that points
with high tracking error continue to correlate with visual
imperfections, despite improvements from fine-tuning. For
instance, notice from Fig. 6 that tracking performance is poorest
on edges of the vehicle that are reflective (e.g. top row, Prius
windshield) and when the shadows partially cover the vehicle
(e.g. bottom row, minivan). In both examples, the lighting
conditions vary between the query frame and the evaluation
frame, and tracking error is exacerbated on reflective surfaces.
Similarly, on the DAVIS dataset (Fig. 7), we find that TAPIR
continues to struggle on the car’s windows. By contrast, TAPIR
tracks the door handle and wheel spokes perfectly.

7.3. Towards track-aware keypoint selectors

Given that positional tracking error correlates with visual
imperfections and given the heavy-tailed error distributions, we
argue that keypoint selection is as vital as keypoint tracking. We

believe that users of any TAP-type tracker should also use a
keypoint selector to strategically choose query points that will
yield superior tracking accuracy with a high probability.

Keypoint selection from images has been an area of research
in computer vision. The Harris Corner detector [11] was one
of the earliest methods to select trackable keypoints by looking
at changes in image intensity to detect corners. SIFT [15] is
a featurization scheme that is popular for object recognition
tasks. SuperPoint [3] is a more recent method that predicts
interest points by self-supervising on sets of images and
various homographic transformations. While these techniques
capture some elements of tracking tasks, none are well-suited
for long-range tracking through occlusions and in cluttered
scenes, which has become a popular domain for keypoint
trackers [4, 5, 10, 29] over the last few years.

Fig. 9 compares the positional accuracy achieved by TAPIR
for keypoints selected by Harris and by SuperPoint for an exam-
ple in DriveTrack. Harris anchors to corners and selects points
that TAPIR tracks accurately; however, it finds only 4 points to
track in this scene. SuperPoint, by contrast, anchors to points
on the window, which TAPIR tracks poorly. Neither method is
suitable for finding a large and robust set of trackable keypoints.

Effective keypoint selection will make trackers robust to
visual imperfections. We need a keypoint selector that is aware
that the downstream task is tracking. DriveTrack offers a
rich dataset to train a feature representation to select robust
keypoints in real-world scenes.

8. Conclusion

We developed DriveTrack, the first benchmark to automatically
annotate long-range point tracks in real-world videos. We
release the largest point tracking dataset on real-world scenes to
date, consisting of 1 billion point tracks and 84 billion annotated
points in total. DriveTrack’s annotation workflow works
with autonomous driving datasets consisting of point clouds,
bounding box annotations, and camera poses. We develop a
new way to robustly track a sequence of sparse point clouds
that do not have 1:1 correspondence, and implement several
refinements to be robust to labeling noise. Finally, we show
that fine-tuning keypoint trackers with DriveTrack improves
accuracy on real-world scenes, and we conduct a sensitivity
analysis to motivate using keypoint selectors alongside trackers.

We believe that DriveTrack and the data generation workflow
that we developed has several use cases outside of keypoint
tracking, such as optical flow and structure-from-motion.
Moreover, the ideas behind DriveTrack could be applied to
other domains in the real-world with semi-annotated videos.
For instance, we could consider building a similar workflow
for annotate scenes imaged by iPhones and comparable
smartphones, which can sense depth through LiDAR and can
record camera pose and orientation.
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Alexander Sorkine-Hornung, and Luc Van Gool. The 2017 davis
challenge on video object segmentation. arXiv:1704.00675,
2017. 1, 2, 3, 6, 7

[20] Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun Jampani,
Michael Krainin, Huiwen Chang, Ramin Zabih, William T.
Freeman, and Ce Liu. Autoflow: Learning a better training set
for optical flow. CoRR, abs/2104.14544, 2021. 2

[21] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,
Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger,
Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon
Shlens, Zhifeng Chen, and Dragomir Anguelov. Scalability in
perception for autonomous driving: Waymo open dataset. In
Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2020. 1, 2, 3, 4, 5, 6, 7, 11
[22] Zachary Teed and Jia Deng. RAFT: recurrent all-pairs field

transforms for optical flow. CoRR, abs/2003.12039, 2020. 2
[23] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,

Thomas Brox, and Andreas Geiger. Sparsity invariant cnns. In
International Conference on 3D Vision (3DV), 2017. 4

[24] Mel Vecerik, Carl Doersch, Yi Yang, Todor Davchev, Yusuf
Aytar, Guangyao Zhou, Raia Hadsell, Lourdes Agapito, and Jon
Scholz. Robotap: Tracking arbitrary points for few-shot visual
imitation. arXiv preprint arXiv:2308.15975, 2023. 1

[25] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike
Liao, Vashisht Madhavan, and Trevor Darrell. BDD100K: A
diverse driving video database with scalable annotation tooling.
CoRR, abs/1805.04687, 2018. 1, 5

22496



[26] Hanchao Yu, Xiao Chen, Humphrey Shi, Terrence Chen,
Thomas S Huang, and Shanhui Sun. Motion pyramid networks
for accurate and efficient cardiac motion estimation. In Medical

Image Computing and Computer Assisted Intervention–MICCAI

2020: 23rd International Conference, Lima, Peru, October 4–8,

2020, Proceedings, Part VI 23, pages 436–446. Springer, 2020. 1
[27] Youmin Zhang, Xianda Guo, Matteo Poggi, Zheng Zhu, Guan

Huang, and Stefano Mattoccia. Completionformer: Depth
completion with convolutions and vision transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 18527–18536, 2023. 4, 5, 6, 7, 11
[28] Wang Zhao, Shaohui Liu, Hengkai Guo, Wenping Wang, and

Yong-Jin Liu. Particlesfm: Exploiting dense point trajectories
for localizing moving cameras in the wild, 2022. 2

[29] Yang Zheng, Adam W. Harley, Bokui Shen, Gordon Wetzstein,
and Leonidas J. Guibas. Pointodyssey: A large-scale synthetic
dataset for long-term point tracking. In ICCV, 2023. 1, 2, 3, 4,
5, 6, 8

22497


