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Figure 1. The proposed method takes raw text as input and generates a realistic and coherent motion of its corresponding sign language
translation. From top to bottom: the input text, the ground truth sign language video (shown just for reference), and the generated motion.

Abstract

Sign Languages (SL) serve as the primary mode of com-
munication for the Deaf and Hard of Hearing communities.
Deep learning methods for SL recognition and translation
have achieved promising results. However, Sign Language
Production (SLP) poses a challenge as the generated mo-
tions must be realistic and have precise semantic meaning.
Most SLP methods rely on 2D data, which hinders their re-
alism. In this work, a diffusion-based SLP model is trained
on a curated large-scale dataset of 4D signing avatars and
their corresponding text transcripts. The proposed method
can generate dynamic sequences of 3D avatars from an un-
constrained domain of discourse using a diffusion process
formed on a novel and anatomically informed graph neu-
ral network defined on the SMPL-X body skeleton. Through
quantitative and qualitative experiments, we show that the
proposed method considerably outperforms previous meth-
ods of SLP. This work makes an important step towards re-
alistic neural sign avatars, bridging the communication gap
between Deaf and hearing communities.1

1Project page: https://baltatzisv.github.io/neural-sign-actors/

1. Introduction

Sign language (SL) is a form of language in which visual-
manual modalities are used instead of spoken words to con-
vey meaning. It is the predominant form of communication
for more than 70 million Deaf and Hard of Hearing peo-
ple around the world. Akin to verbal languages, SLs have
extremely rich vocabulary and grammar, yet the complexi-
ties differ drastically [55]. To enable effective visual com-
munication, they consist of both manual and non-manual
components [35]. The manual modality encompasses hand
articulation, orientation, position, and motion, while non-
manual elements include arm movements and facial expres-
sions [6]. Whilst it is possible to convey some meaning us-
ing just hand articulations, expressiveness is limited since
non-manual elements often convey emotions [3, 55].

Recently, several methods have been proposed to bridge
the domain gap between sign and spoken languages. Most
methods focus on Sign Language Recognition (SLR) which
includes the translation of a specific sign to its correspond-
ing meaning, as well as Sign Language Translation (SLT)
that extends SLR to the translation of a sign sequence to
its spoken word equivalent. This is usually tackled using
glosses [10, 14, 15, 28], which are simplified mid-level
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representations that relate each sign with a corresponding
meaning. However, even though glosses have provided a
substantial enhancement to SLT methods, they have a pre-
defined informative bottleneck, which limits the translation
accuracy, and they usually fail to provide long-range depen-
dencies and contextual information [10, 32, 64].

Despite the significant number of individuals with hear-
ing difficulties, only ∼5% of television programs are inter-
preted into sign language, which shows the vital need for
3D signing avatars. Compared to SLR and SLT, only a
small number of methods have attempted to tackle the task
of Sign Language Production (SLP), either by using directly
stand-alone glosses [53, 62] or by training a network to map
text to glosses [50]. In the SLP setting, a network is given
a text sentence and attempts to generate a motion that re-
flects the corresponding sign language translation. Usually,
this is done using 2D and 3D joints to represent the human
body [32, 49, 53]. However, joints provide an unrealistic
representation of the animation, limiting their practical use
in real-world avatar actor applications. Recently, Stoll et
al. [54] proposed to extend SLP to 3D meshes using an op-
timization step that fits a SMPL-X [41] model to the pre-
dicted 2D joints. In contrast, the proposed method directly
regresses the poses of SMPL-X [41] model to generate an
animatable 3D signing avatar.

Aside from its challenging nature, SLP remains rela-
tively unexplored due to the absence of large-scale avail-
able datasets with a sufficient vocabulary size. In particu-
lar, the majority of current SLP methods rely on German
sign language datasets composed of only a few thousand
words [9, 24] and use 2D landmarks detected from off-the-
shelf pose estimation methods [11]. In contrast, we employ
a hybrid regression-optimization method to accurately an-
notate, with SMPL-X pose and shape parameters [41], a
large-scale video dataset [19] composed of over 16k word
tokens. Using the acquired 3D pose annotations, we train a
dynamic diffusion model to learn SLP from English texts.
Our method directly translates text to signs without using
any intermediate representation [49], which increases the
generative capacity of the network. Given that sign lan-
guage cannot be translated word-for-word [35], we utilize
an off-the-shelf sentence encoder [43] which also enables
out-of-distribution generalization. To sum up, the contribu-
tions of this study can be summarized as:
• We introduce the task of direct 3D signing avatar genera-

tion from text, without relying on 2D fitting optimizations
or any intermediate gloss representations. In this paper,
we aim to make a step towards neural sign avatars to aid
the Deaf and Hard of Hearing community [40].

• We derive the first large-scale 3D dataset of American
Sign Language by designing a state-of-the-art pipeline to
annotate the How2Sign dataset [19].

• We propose a text-conditioned dynamic diffusion model

founded on a novel, anatomically inspired graph neu-
ral network that facilitates SLP. The proposed model
achieves remarkable results that outperform the current
state-of-the-art models, by a large margin.

2. Related Work
2.1. Sign Language Production

Despite nearly two decades of research [16, 39], the devel-
opment of highly effective sign language production meth-
ods remains challenging. Stoll et al. [53] proposed the first
neural SLP method forming a seq2seq architecture to map
text to glosses. To decode poses to 2D joint locations they
proposed an empirical lookup table paradigm. To avoid the
two-stage generation, Zelinka et al. [62] utilized OpenPose
[11] to extract joint locations from Czech weather forecast-
ing videos and train a network to directly regress the 2D
joint poses. Recently, several methods [30, 49] proposed
transformer-based architectures to tackle German sign lan-
guage production [10]. However, their generations suf-
fer from under-articulation and limited expressiveness in
hand and body motion. Follow-up works attempted to im-
prove the generation quality using adversarial training [48],
mixture density networks [50] and dictionary representa-
tions [51]. However, most of the aforementioned methods,
apart from being contingent to intermediate glosses repre-
sentation, rely on the regression of 2D/3D joint positions,
a process that inherently encounters difficulties in realis-
tically conveying meanings. In an attempt to tackle such
limitations, Stoll et al. [54] proposed the application of a
post-regression SMPL-X [41] fitting to lift 2D joints to 3D
meshes. On the contrary, we make a step towards realistic
signing avatars and propose a diffusion pipeline that directly
regresses SMPL-X poses from an unconstrained domain of
discourse, without relying on any intermediate representa-
tions such as glosses.

2.2. Sign Language Datasets

A major contributing factor to the slow-paced advance-
ments in sign language research is the absence of large-
scale datasets [8]. Earlier datasets were designed with a
focus on sign language recognition using isolated signs [4,
31, 33, 59, 60], containing a limited vocabulary. To address
the challenges of sign language recognition and translation
within the context of complete sentences, several contin-
uous sign language datasets have been introduced. More
specifically, RWTH-BOSTON-50 [61], Dreuw et al. [18],
SIGNUM [1], and BSL [52] along with DictaSign Cor-
pus, which was developed in several languages [7, 20, 21],
were among the first datasets with sentence level annota-
tions. While additional datasets featuring an expanded set
of signs have been introduced [12, 31, 33], it is crucial
to emphasize the importance of continuous sign language
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Figure 2. Overview of the fitting pipeline. A set of input frames F are first processed by OSX [36] to obtain an initial set of pose
parameters pinit

1:F . Then, using the Mediapipe algorithm [37], we fine-tune the predicted hand poses to match the detected joints J while
constraining the hand poses θh to lie in the space of plausible poses. Finally, using a temporal coherence loss, we acquire smooth and
high-fidelity annotations of 3D signing avatars.

for the purposes of translation and production. S-pot [58]
was among the first large-scale continuous sign language
datasets with a vocabulary of over 1K signs of Finnish sign
language collected in a constrained environment. To en-
force the robustness of sign language translation methods,
RWTH-Phoenix [9] contained a collection of TV clips with
German sign language, remaining amongst one of the most
popular datasets used for sign language translation [10] and
production [49]. Similarly, BSL-1K, as presented in [2], cu-
rated a dataset featuring British sign language (BSL) used
in casual conversations, encompassing a total vocabulary of
1K signs. Recently, Duarte et al. [19] collected How2Sign,
a large-scale dataset of American Sign Language (ASL),
that is aligned with speech signals from the How2 dataset
[46]. How2Sign is equipped with a vocabulary of over 16K
signs, captured in a total of seventy-nine hours of continu-
ous sign language. A major limitation of the above datasets,
is the lack of available 3D annotations, that not only aid the
translation tasks, but are also essential for training realis-
tic 3D signing avatars. In this work, we have extended the
How2Sign dataset by incorporating high-quality SMPL-X
[41] annotations, thereby establishing it as the first publicly
available 3D sign language dataset.

3. Dataset
To train a high-fidelity SLP method, capable of generating
realistic sign actors, we curate a large-scale dataset of 3D
dynamic ASL sign sequences paired with their correspond-
ing text transcripts. To do so, we devise a robust 4D recon-
struction pipeline, crafted specifically for hand gestures, to
estimate dynamic hand and body poses of signing avatars
in the SMPL-X format [41]. How2Sign dataset [19] pro-
vides the optimum candidate since it is composed of 35K
high-resolution clips of co-articulated ASL with a substan-
tial vocabulary size featuring over 16K word tokens.

To acquire high-fidelity 4D reconstructions of How2Sign
clips, we build our pipeline upon the powerful OSX [36].
Specifically, we initialize our fitting optimization using the
SMPL-X pose and shape parameters acquired from OSX

for each one of the F frames of the clip as:

pinit
1:F = [θb||θh||ψ||β], (1)

where θb, θh, ψ, β denote the body pose, hand pose, ex-
pression, and shape parameters respectively, and || the con-
catenation symbol.

Recognizing that hand poses constitute the pivotal com-
ponent in conveying SL, we adopt an optimization proce-
dure to enhance the precision of hand poses and rectify
any potential misalignments by leveraging body and hand
joints detected from the Mediapipe framework [37]. More
specifically, we optimize the initial pose parameters pinit

1:F to
minimize the re-projection loss Lrec between the regressed
joints Ĵ1:F and the joints predicted from Mediapipe J1:F :

Lrec = ||J1:F −ΠK(Ĵ1:F )||1, (2)

where ΠK is the intrinsic camera projection matrix. Follow-
ing extensive experimentation, we observed that optimiza-
tion is only necessary for the arm and hand joints, as the
OSX-regressed body joints are sufficiently accurate. Fitting
hand poses using 2D keypoints is an exceptionally chal-
lenging task, primarily due to the numerous articulations
and the inherent ambiguities within the solutions. While
several methods have been proposed to constrain SMPL to
feasible body poses [17, 41, 57], pose prior models for the
hand models [42, 44] remain unexplored. To constrain the
optimization to plausible human and hand poses, we pro-
pose a simple but intuitive approach using Principal Com-
ponent Analysis (PCA) to model the subspace of anatom-
ically feasible poses. Specifically, we trained a PCA pose
prior model on two large datasets of human body [38] and
hand [22] poses, to model the distribution of feasible arm
and hand poses. To formulate the prior loss we measure
the reconstruction error of a mesh X projected and recon-
structed from the PCA space U as:

Lprior = ||X− [(X− µ)UT ]U+ µ||2, (3)

where U ∈ RN ·3×d is the eigenvector basis of d compo-
nents and µ is the mean mesh. Intuitively, realistic poses
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will result in smaller reconstruction errors compared to in-
feasible articulations.

Finally, a common issue with blurry videos is that the
OSX reconstruction and the Mediapipe detections may in-
clude jittering and spatio-temporal noise. To tackle this, we
enforce temporal coherence using a loss function on both
vertex and joint space that enforces smooth transitions be-
tween adjacent frames f , f − 1:

Ltemp = ||Xf −Xf−1||2 + ||Jf − Jf−1||2. (4)

The overall loss function can be defined as:

L = Lrec + λpriorLprior + λtempLtemp, (5)

where λprior, λtemp are hyperparameters. An overview of
the proposed fitting pipeline is depicted in Fig. 2.

4. Method
We propose Neural Sign Actors, a diffusion-based gener-
ative model that generates motion sequences conditioned
on text transcripts. Similar to traditional diffusion archi-
tectures, our method is composed of the deterministic for-
ward diffusion process that gradually adds noise to the input
distributions and the reverse denoising model ϵθ(·) that pre-
dicts the noise introduced by the forward process at each
time-step. To reduce the computational requirements and
facilitate the generation quality, we train a diffusion model
on the low-dimensional pose space defined by SMPL-X
[41] model instead of the vertex space. Given that sign lan-
guage is solely related to hand motion and facial expres-
sions, we focus on modeling the pose and the expression
parameters on the canonical shape. An overview of the pro-
posed approach can be found in Fig. 3.

4.1. Forward Diffusion Process

During the forward diffusion process, noise sampled from
a Gaussian distribution N (µ, σI) is gradually added to the
sequence of SMPL-X parameters p1:F , which consist of the
concatenated poses θ1:F , and expressions ψ1:F . This pro-
cess iterates a total of T times as a Markov chain, ultimately
transforming the poses into a Gaussian distribution N (0, I).
In line with the approach delineated in [29], we establish the
forward diffusion process as follows:

q(pt
1:F |pt−1

1:F ) = N (pt
1:F |

√
αtp

t−1
1:F , (1− αt)I) (6)

where αt is the variance schedule parameter that controls
the noise scheduling of the process.

4.2. Reverse Diffusion Process

Following the forward process, the goal of the denoising
module ϵΘ is to learn the reverse process, i.e. learn a map-
ping from the noised distribution to the real pose space

pθ(p
t−1
1:F |pt

1:F ). Following the reparameterization trick of
[29], we train a denoising model ϵθ that predicts the time
conditioned noise ϵt as:

Lt = ||ϵt − ϵΘ(p
t
1:F , t,w1:F )||2, (7)

where ϵt is the noise added at time-step t of the forward dif-
fusion process and w1:F denotes the target text transcript.
To further enforce the generation of accurate hand artic-
ulations, we modify Lt to double the weighting factor of
the hand poses. The proposed denoising module can be
divided into three main components: the anatomically in-
formed pose and expression encoders, the text encoder, and
the auto-regressive decoder.
Anatomically Informed Encoder. Previous methods for
human motion generation attempted to model poses and
joint rotations independently, using permutation equivari-
ant layers such as MLPs [13, 27]. We observed that such
equivariance limits the generative ability of the network
and results in mild motion intensities. To tackle this lim-
itation, we propose to break the permutation equivariance
using a novel, anatomically inspired, graph neural network
(GNN) combined with a pose embedding layer. In partic-
ular, for a joint i, we build a message passing layer that
updates the joint i features fi based on the relative features
of the SMPL-X kinematic tree K. Additionally, to break
the permutation equivariance of the proposed message pass-
ing layer, we introduce a pose embedding that encodes joint
index i into a unique token feature Pi. With this formula-
tion, the network learns to disentangle the joint distributions
since each joint is uniquely defined by its token feature P .
The update function of the proposed message passing layer
can be defined as:

f ′i = γ

∑
j∈Ki

gij(fj − fi) + Pi

 , (8)

where fj denotes the features of joint j which is anatomi-
cally connected to joint i, in the kinematic tree K, gij is an
anisotropic function between the joints i, j, Pi refers to the
positional encoding of joint i, and γ is a non-linearity. We
establish the anisotropy of kernel gij by assigning a differ-
ent set of learnable weights to each set of neighbors.

Similarly, to break the permutation equivariance of the
expression encoder layers, we append each of the expres-
sion parameters with a learnable expression token E . Given
that expression blendshapes cannot be represented in graph
form, we utilize an MLP to encode their latent features as:

g′
i = γ (MLP (gi + Ei)) , (9)

where gi denotes the latent features of expression parameter
i and Ei refers to its corresponding expression embedding.
Text Encoding. Sign language is not merely a direct word-
for-word translation of spoken language, rather it possesses
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Figure 3. Overview of the proposed method. We employ a diffusion model to learn a mapping between text scripts and 3D sign language.
The proposed framework consists of an auto-regressive denoising module ϵΘ that is founded on the novel anatomically informed pose
encoder to model the sign motions.

Table 1. Mean per vertex error (mm) of the proposed and the base-
line methods on the SGNify mocap dataset [25].

Method Body Left Hand Right Hand

FrankMoCap[45] 78.07 20.47 19.62
PIXIE[23] 60.11 25.02 22.42
PyMAF-X [63] 68.61 21.46 19.19
SMPLify-X [41] 56.07 22.23 18.83
SGNify [25] 55.63 19.22 17.50
OSX [36] 47.32 18.34 18.12
Proposed 46.42 16.17 15.23

its own unique grammar, semantic structure, and distinct
language logic [34]. Contingent upon this, we avoid us-
ing a sequence of word embeddings to condition the motion
generation and propose to utilize CLIP [43] as a powerful
sentence encoder that is able to generalize to arbitrary text
prompts. We condition pose and expression encoders on the
text embedding using a gating approach described in [26].
Auto-regressive Decoder. Considering that motion can be
conceptualized as a sequence of poses where each pose is
contingent upon its predecessor, we constructed our motion
generative network utilizing an auto-regressive model. As
we experimentally illustrate in Sec. 5.4, we utilize a Long-
Short-Term-Memory (LSTM) model as our pose decoder
since it has less memory requirement than transformer ar-
chitectures and provides better auto-regressive capabilities.
Finally, we map the output of the autoregressive model back
to the pose space using an MLP layer.

5. Experiments
5.1. Dataset Evaluation

Given that accurate 3D annotations are a requisite for the
training of a potent SLP model, we quantitatively and qual-
itatively evaluated the performance of the pipeline intro-
duced in Sec. 3 on the task of sign language reconstruc-
tion from videos. To assess the fitting quality, we apply the

proposed pipeline to the SGNify mocap dataset [25] that
contains ground truth annotations. In Tab. 1, we report the
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Figure 4. Qualitative comparison between the proposed and the
baseline fitting frameworks on SGNify [25] and How2Sign [19].

reconstruction error of the proposed pipeline and compare
it with OSX [36] and the SGNify method, which is the cur-
rent state-of-the-art method for 3D fitting from SL videos.
It must be noted that unlike the SGNify method, the pro-
posed fitting pipeline achieves a smaller reconstruction er-
ror despite not including any SL-driven losses. The power-
ful prior model that guides the fitting optimization leads our
method to valid poses and articulation Fig. 4.

5.2. Sign Language Production

Baselines. To evaluate the performance of our method we
selected the current state-of-the-art methods for text-driven
sign language generation, i.e. Saunders et al. [49], Saunders
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Table 2. Quantitative evaluation of the proposed and the baseline methods on the How2Sign test dataset.

Body Left Hand Right Hand Back-Translation

Method MPVPE ↓ MPJPE ↓ FID ↓ DTW ↓ MPVPE MPJPE FID DTW MPVPE MPJPE FID DTW BLEU-4 ↑ BLEU-3 ↑ BLEU-2 ↑ BLEU-1 ↑ ROUGE ↑
Saunders et al. [49] 67.21 70.06 4.71 14.15 73.49 74.13 0.68 11.21 75.57 77.47 0.75 11.93 2.75 5.87 8.21 13.82 29.87
Saunders et al. [48] 63.19 65.25 3.98 13.78 71.43 72.39 0.59 11.02 68.54 70.14 0.51 11.32 6.21 8.98 12.01 18.22 32.33
Hwang et al. [30] 62.74 63.25 4.45 13.94 78.95 70.34 0.63 11.33 68.65 69.59 0.60 12.26 5.75 8.21 11.62 17.55 31.98
Stoll et al. [54] 55.02 60.32 4.96 13.99 68.48 69.45 0.56 11.59 60.18 62.73 0.64 12.29 7.51 10.72 13.92 19.56 33.17
Proposed 31.47 35.87 1.56 7.83 36.24 38.82 0.24 6.74 39.68 40.56 0.36 7.91 13.12 18.25 25.44 41.31 47.55

Another technique is you can braid the hair on first and then start wrapping cause some people have 

really short hair and we can create the look with adding the hair end.
I really like that. 
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Figure 5. Qualitative comparison of generated signs conditioned on the text transcript between the proposed and Stoll et al. [54] methods.
The ground truth video is given for reference.

et al. [48], Hwang et al. [30] and Stoll et al. [54]. Given
that all methods have been trained on the German Sign Lan-
guage RWTH-Phoenix dataset [9], we retrained the models
using the same training set-up as the proposed method.

Implementation Details. To train the diffusion model we
followed the implementation details of [29]. We imple-
mented pose and expression embedding layers using a sim-
ple linear projection. Pose and expression encoders are
composed of 4 stacked GNN and MLP layers, respectively,
with an increasing number of channels. We employed the
CLIP-ViT-L-14 model as our text encoder. The RNN de-
coder consists of 4 LSTM layers. We trained our model
for 2K epochs using the Adam optimizer with a linearly de-

creasing learning rate from 10−3 to 10−6.

Evaluation Metrics. We quantitatively evaluate the gen-
eration quality of the proposed and the baseline methods
under a set of metrics. The first two were Mean Per Vertex
Position Error (MPVPE) and Mean Per Joint Position Error
(MPJPE). Given that the motions generated from the pro-
posed and baseline methods may not be correctly aligned
with the ground truth annotations, we used Dynamic Time
Warping (DTW) [5] to measure the similarity between the
generated and the original sign sequences. To evaluate the
quality of the generated poses we measured the Fréchet in-
ception distance (FID) score between the generated and the
ground truth poses. Finally, following [49], we trained a
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Transformer-based back-translation network to map pose
sequences back to text. For additional details, we refer the
reader to the supplementary material.
Evaluation of Generated Signs. In the first three columns
of Tab. 2 we quantitatively compare the proposed and the
baseline methods on the test set of the curated dataset. The
proposed method manages to outperform the baselines un-
der all metrics, even by a large margin. Specifically, the
generated signs not only demonstrate low reconstruction er-
ror across the entire upper body but also exhibit significant
improvements on the hands region. Additionally, the pro-
posed method is able to generate articulations that match the
ground truth signs, which is translated to low FID scores.
This can be also validated in Fig. 5, where the proposed
method is able to generate signs with high-frequency artic-
ulations that match the ground truth videos. In contrast,
current state-of-the-art SLP methods fail to model high-
frequency articulations and can only generate small devi-
ations around the canonical pose. This is quantified in
Fig. 6, where we report the average per-frame pose devi-
ations. The proposed method not only produces a larger
variety of poses, compared to the small deviations of Stoll
et al. [54], but also follows the ground truth pose distribu-
tion. To enhance readability, we focus on Stoll et al. for
qualitative comparisons, as the best performing prior work.
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Figure 6. Mean and Standard Deviation of the absolute pose value
across the sequence.

3D Pose Back-Translation. We additionally evaluated the
overall quality of the generated pose sequences using back-
translation, which measures how much information of the
input sentences has been maintained in the model’s output.
In particular, we trained a Transformer-based architecture
on our curated How2Sign dataset to learn a mapping from
pose sequences back to the original text transcripts. We then
translated the generated 3D pose sequences of How2Sign
back to spoken language using our back-translation net-
work. To comply with the evaluations in [49, 54] we re-
port BLEU n-grams from 1 to 4 and ROUGE scores. We
repeated the above process for sequences generated by our
model, as well as the baseline models [30, 48, 49, 54] and
summarize the results in the last column of Tab. 2. Our
model produces the highest back translation scores across
all metrics, with BLEU-4 being at the level of BLEU-2 of
the second best performing method (Stoll et al. [54]).

5.3. User-Study

Although evaluation metrics can provide insights into a net-
work’s performance, the most critical benchmark lies in
the perceptual evaluation from Hard of Hearing individu-
als. Notably, we further assess the realism of the generated
signs by designing a user study where 15 ASL fluent sub-
jects, with ages ranging from 29 to 62, evaluated the gener-
ated signs. We divided the perceptual study into two parts,
to assess: (a) how aligned the generated signs are with re-
spect to the text transcripts and (b) the fidelity and readabil-
ity of the proposed generations. For the first part of the user
study, we presented 15 different generated signs from both
the proposed and baseline methods, alongside the ground
truth video and its corresponding fitting. Participants were
asked to assign a value between 1-10 rating the alignment
of each method with the corresponding text transcript.

To avoid potential biases between the methods, all videos
were shown in a random order. In Fig. 7, we report the re-
sults of the first part of the user-study. As expected, the
ground truth videos achieve the best average score of 8.7
while the fittings achieve slightly less with 8.1, which quan-
tifies the high quality of the generated annotations. The pro-
posed method achieves an average score of 5.8 whereas the
method of Stoll et al. [54] fails to achieve reasonable results.

0 1 2 3 4 5 6 7 8 9 10
Alignment Score

Video

3D Fitting

Proposed

Stoll et al.

Figure 7. Human Evaluation of the alignment between the gener-
ated signs and the text transcript.

The second part of the perceptual study aimed to as-
sess the fidelity of the generated signs. Each participant
was shown 15 rendered videos with signs generated by
the proposed method and was asked to rank five candidate
text translations, from most likely to least likely transla-
tion. Apart from the ground truth, the candidate translations
included both similar to the ground truth sentences with
slightly modified meanings, i.e. by masking words, crop-
ping sentences, or changing the word order, and also unre-
lated sentences from different topics and domains. Measur-
ing the cumulative accuracy, the generated signs attained a
top-1 accuracy of 40% and a top-2 accuracy of 80%, affirm-
ing the realism and fidelity of the generated signs.

5.4. Ablation

The proposed method consists of four main components:
the anatomically inspired pose encoder, the pose and ex-
pression embeddings, the autoregressive decoder, and the
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Table 3. Evaluation of individual components in the proposed
method. Every row refers to a different ablated module. We in-
clude the performance of our method for reference.

Method MPVPE MPJPE FID DTW

w/o GNN 37.51 38.23 2.85 9.19
w/o Pose and Expression Embedding 66.56 68.34 6.65 11.98
w/o LSTM 36.17 39.46 2.12 10.82
w. Transformer 32.73 35.41 1.58 8.17
w/o CLIP 69.12 71.42 5.36 12.84
w. BERT 45.32 47.11 2.23 9.21
Tevet et al. [56] 36.11 38.23 2.45 8.92
Chen et al. [13] 35.23 37.12 2.15 8.26
Proposed 31.47 35.87 1.56 7.83

text encoding. In this section, we evaluate the contribution
of each component to the final generations of the model.
Effect of Pose Encoder and Embedding Layers. Initially,
we ablate the novel pose encoder and we substitute it with
an MLP layer (w/o GNN), similar to the expression encoder.
Under this setting, the generated motions are smoother and
mainly deviate around the mean pose. Aligned with our hy-
pothesis, updating poses in an anatomically inspired man-
ner enables the network to learn higher frequencies, such as
rare articulations, without an increase in the network’s ca-
pacity. Additionally, as mentioned in Sec. 4.2, in the tradi-
tional setting of motion diffusion models, during the denois-
ing step, poses and expressions are sampled from a Gaus-
sian distribution and are then decoded back to their original
space using a permutation equivariant network, such as an
MLP. Such permutation equivariance, treats poses under a
uniform setting that limits the generative power of the net-
work. As shown in Tab. 3, without pose and expression em-
bedding layer (w/o Pose and Expression Embedding), the
model fails to produce any reasonable sign, resulting in a
performance drop under all metrics.
Effect of LSTM Encoder. A core part of the proposed
method is the autoregressive LSTM decoder. We initially
evaluate its contribution compared to a simple frame po-
sitional encoding to transform the network to a frame-
conditioned generative model, without having any temporal
module (w/o LSTM). As expected, this results in poor DTW
performance and generations that present increased jittering
and lack of temporal coherence. Furthermore, we substi-
tute the LSTM layer with a Transformer encoder layer (w.
Transformer). Interestingly, the LSTM layer achieves simi-
lar performance to the Transformer layer while having 75%
fewer parameters (1M vs. 4.5M).
Effect of Text Encoding. The text encoding module has
a pivotal effect on motion generation. Firstly, we substi-
tute the CLIP encoder with a word-level embedding layer
that is trained with the rest of the method in an end-to-
end fashion. We set the embedded size to 256 although
we did not observe significant differences in performance.
Following this, we utilized the pretrained DistilBERT [47],

whose parameters remain frozen throughout training. As
depicted in Tab. 3, training word embeddings from scratch
strongly affects the generalization of the network, leading to
large MPVPE and MPJPE metrics. In contrast, DistilBERT
achieves better performance than learnable word embed-
dings, although it does not outperform CLIP embeddings.
This is aligned with our assumption that sentence embed-
dings could provide better insights regarding the meaning of
a sentence compared to word-level embeddings. Especially
in the task of SLP, where there is not an explicit one-to-one
mapping between words and poses, sentence level embed-
dings provide a more powerful text encoding solution.

Comparison with Human Motion Diffusion Models. Fi-
nally, we compare our model with state-of-the-art methods
on human motion modeling [13, 56], which can be con-
sidered as deviations from the proposed framework. Un-
like our anatomically inspired approach, both models rely
on linear layers to handle pose motions, constraining their
capacity to encode intricate hand movements with high-
frequency details. In particular, although both methods can
achieve smooth body motions, they fail to produce accu-
rate hand articulations that match the ground truth distribu-
tion, which can be validated from the reconstruction errors
(MPVPE, MPVJE), along with the FID measure.

6. Conclusion

Neural 3D sign language production is an important chal-
lenge that aims to aid the Deaf and Hard of Hearing com-
munity and can effectively increase their inclusion in any
social environment. In this work, we made a step towards
high fidelity 3D SLP, by deriving a large-scale 3D dataset
to train a text conditioned diffusion-based model. The re-
lease of additional relevant databases will enable the train-
ing of even more robust architectures. We initially introduce
a precise 3D sign language reconstruction pipeline that out-
performs previous SL reconstruction methods. Then, we
train a motion generative model using an autoregressive
diffusion model. The core of our method is founded on
a novel, anatomically inspired, graph neural network that
learns the pose distribution and enables highly detailed ar-
ticulations. Importantly, leveraging the powerful CLIP text
embeddings, the proposed model can generalize to out-of-
distribution samples. Extensive experiments on sign lan-
guage generation tasks, including a perceptual study with
ASL fluent subjects, demonstrate the superiority of the pro-
posed method compared to the previous approaches.
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