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Abstract

Recent advances in large-scale pretraining have yielded
visual foundation models with strong capabilities. Not only
can recent models generalize to arbitrary images for their
training task, their intermediate representations are useful
for other visual tasks such as detection and segmentation.
Given that such models can classify, delineate, and local-
ize objects in 2D, we ask whether they also represent their
3D structure? In this work, we analyze the 3D awareness
of visual foundation models. We posit that 3D awareness
implies that representations (1) encode the 3D structure of
the scene and (2) consistently represent the surface across
views. We conduct a series of experiments using task-specific
probes and zero-shot inference procedures on frozen fea-
tures. Our experiments reveal several limitations of the
current models. Our code and analysis can be found at
https://github.com/mbanani/probe3d.

1. Introduction
Large-scale pretraining on image datasets has yielded visual
foundation models with impressive generalization capabili-
ties. Such models can classify [46, 65], segment [36], and
generate [10, 69, 70] arbitrary images. Furthermore, the
dense representations learned by such models extend beyond
their training tasks and exhibit strong zero-shot capabilities
in other tasks such as segmentation [56, 95] and part discov-
ery [1, 27]. This suggests that models are learning strong
image representations, but how well do they represent the
3D world that images depict?

Recent work suggests that visual foundation models are
useful for some 3D tasks despite being trained with 2D
data. For instance, models implicitly represent depth and
surface normals when generating images of scenes and
faces [6, 12]. Furthermore, the intermediate representations
of self-supervised and generative models can be used to esti-
mate semantic correspondence [1, 27, 30, 83, 99] and object
pose [25]. However, when reconstructing 3D objects, they
generate artifacts that suggest a lack of 3D consistency [50];

* Current affiliation is Stability AI.
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Figure 1. Are current visual foundation models 3D aware? We
probe the 3D awareness of the learned representations by evaluating
their ability to encode the 3D structure of the visible surface and
their consistency across views.

e.g., animals with multiple faces. Therefore, it remains un-
clear how those modes represent or understand the 3D world.

The goal of this paper is to study the 3D awareness of
visual foundation models. Previous benchmarks evaluate
visual models on semantic tasks [24, 26, 87], but their 3D
understanding remains understudied. Representations can
vary from having no 3D awareness (e.g., class label or bag
of words) to accurately representing the 3D geometry of
the scene (e.g., 3D surface map or mesh). We posit that
3D awareness can be evaluated through two distinct capa-
bilities: single-view surface reconstruction and multiview
consistency. If a model is 3D aware, we expect that its repre-
sentations would encode the geometry of the surfaces visible
in the image; i.e., how far is each point in the scene? what
is the orientation of the surface? Moreover, the representa-
tions should be consistent for different views of the scene;
allowing them to establish accurate correspondence.
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To this end, we conduct an empirical analysis of the 3D
awareness of visual foundation models. Our analysis con-
siders a range of large-scale pretrained models that have
exhibited strong generalization, regardless of their pretrain-
ing objective. We evaluate the models on their ability to
estimate 3D quantities that match the aforementioned ca-
pabilities: depth, surface normals, and 3D correspondence.
Furthermore, we evaluate those capabilities at both the scene
level [13, 78] and for individual objects [32, 57] to provide
further differentiation. We show the models and tasks con-
sidered in Fig. 1. Since we are interested in what the models
represent, we probe the frozen representations through task-
specific probes or zero-shot inference methods. This allows
us to evaluate the models’ representations, rather than the
transferability of their pretrained weights.

Our experiments reveal a large variation in the 3D aware-
ness of the models. We present the aggregated ratings (higher
is better) of different models in single-image and multiview
tasks in Fig. 1. We find that recent self-supervised models
such as DINOv2 [60] learn representations that encode depth
and surface normals, with StableDiffusion [69] being a close
second. Meanwhile, the training in vision language for mod-
els such as CLIP [65] exhibits very poor performance despite
its impressive semantic generalization capabilities. At their
best, some of the probes achieve a performance close to that
of state-of-the-art models despite being pretrained with a
very different objective. Meanwhile, we find that the models
struggle with multiview consistency. Although most models
can accurately match objects and scenes with small view-
point changes, they perform very poorly at large viewpoint
variations. Our analysis further suggests that consistency
across images is semantic in nature; i.e., models accurately
match semantic parts but struggle to incorporate the global
object pose. We hope that our findings will spark more in-
terest in better understanding the 3D awareness of vision
foundation models and contribute to more comprehensive
benchmarks of visual representation learning approaches.

2. 3D Aware Visual Representations
We first discuss what we mean by 3D aware visual repre-
sentations. When we view a scene, we seem to effortlessly
understand its 3D structure despite only seeing its 2D pro-
jection. Research in developmental psychology and psy-
chophysics suggests that our perception encodes surface
properties such as depth and orientation [39, 79]. Research
on mental imagery has suggested that our internal represen-
tations of objects encode their 3D shape and are subject to
3D constraints [76]. Inspired by this work, we posit that
3D aware representations encode basic 3D properties of the
surface as distances and orintations. Beyond a single image,
3D aware representations are consistent across views of the
same object or scene, as they are projections of the same
underlying 3D geometry.

Representations in computer vision have varied a lot in
how well they represented the 3D shapes of objects. Early
representations such as 2.5D sketches [55] and generalized
cylinders [7, 8] explicitly depicted the 3D geometry of the
obejcts and their spatial relationships. Recent advances have
deviated from explicit modeling and instead rely on the rep-
resentation of visual information as dense feature grids [28]
or sets of tokens [15]. While 3D awareness of early repre-
sentations was obvious, it remains unclear what the learned
representations encode or how 3D aware they are. Popular
interpretability mechanisms such as GradCAM [74] are not
helpful here, as they tell us which components of the im-
age led to a specific inference, not what information was
represented by the network.

We propose evaluating the 3D awareness of visual models
by probing them on two capabilities: single-view 3D and
multiview consistency. We take inspiration from the work on
human perception [38, 75, 79] and evaluate models on how
well they encode basic 3D properties and how 3D consistent
they are. For a single image, we expect a 3D aware model
to accurately represent the visible surface and encode prop-
erties such as depth and surface orientation. When given
multiple images of the same object or scene, we expect a 3D
aware representation to capture the relationships between
the images and provide accurate correspondence. Although
these two capabilities are not exhaustive, they capture two
fundamental aspects of 3D understanding. Furthermore, they
can be directly mapped to three well-studied problems in
computer vision, namely, estimating monocular depth, sur-
face normals, and correspondence.

3. Experimental Setup

The goal of our experiments is to evaluate the 3D awareness
of visual foundation models: i.e., large-scale pretrained mod-
els that are proposed as general backbones for a wide variety
of downstream tasks or applications. Specifically, we hope
to answer the following questions:
1. Do models learn to represent the visible surface?
2. Are the representations consistent across views?
3. How does the training objective impact 3D awareness?

Models. We primarily focus our experiments on vision trans-
formers that were proposed as general purpose backbones or
that exhibit strong generalization performance across tasks
or domains. Moreover, we are interested in evaluating mod-
els that were trained with different supervisory signals. First,
we consider three forms of supervision that commonly serve
as pretraining tasks: classification [86], language supervi-
sion [31, 65], and self-supervision [9, 29, 60, 102]. Recent
work has also shown that text-conditioned image genera-
tion [69] can learn strong representations and provide strong
backbones for other vision tasks [45, 95, 101]. We also
consider two forms of dense supervision that have recently
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Table 1. Evaluated Visual Models. We consider a range of visual
models spanning several forms of supervision. We evaluate publicly
available checkpoints and choose checkpoints of comparable model
and training size whenever possible.

Model Architecture Supervision Dataset
DeIT III [86] ViT-B/16 Classification ImageNet-22k
MAE [29] ViT-B/16 SSL ImageNet-1k
iBOT [102] ViT-B/16 SSL ImageNet-1k
DINO [9] ViT-B/16 SSL ImageNet-1k
DINO v2 [60] ViT-B/14 SSL LVD-142M
CLIP [65] ViT-B/16 VLM WIT-400M
SigLIP [97] ViT-B/16 VLM WebLI
StableDiffusion [69] UNet Generation LAION
SAM [36] ViT-B/16 Segmentation SA-1B
MiDaS [67] ViT-L/16 Depth MIX-6

been scaled up: depth estimation [67, 68] and class-agnostic
segmentation [36]. While there models have not been used
as general purpose backbones yet, they exhibit impressive
generalize to a wide range of domains and provide an inter-
esting point of comparison. We present an overview of the
models considered in Tab. 1, and more details can be found
in App. A.1.

One challenge is how to fairly compare models that have
different data and compute requirements. This challenge is
further amplified by considering the scale used to achieve the
strong performance displayed by such models. Furthermore,
the data used to train many of these models is private [60, 65]
and even replicating the data collection and curation process
requires extensive resources as shown by Xu et al. [94]. Be-
yond data scale and curation, models have different data
requirements that range from class labels [86], captions [65],
masks [36], or even simple curation [60]. As a result, it is
unclear which dataset would provide a fair comparison. We
make a pragmatic choice of relying on publicly available
checkpoints and selecting checkpoints of comparable archi-
tectures and training scale to provide some fair comparison.
We provide additional comparisons in App. B and discuss
the impact of this on our results in App. C.

Another important question is how to evaluate those prop-
erties. One common approach is transfer learning, where
the pretrained model is fine-tuned using task-specific super-
vision. This is often a good practical choice, as it results
in strong downstream performance. However, it is not suit-
able for our analysis, as good fine-tuning performance may
indicate two different things: the model has good 3D aware-
ness or the model weights are a good initialization for other
tasks [26]. Furthermore, fine-tuning specializes the mod-
els by sacrificing its generality [42]. Instead, we probe the
frozen features with trainable probes and zero-shot inference
methods that do not change model weights or significantly
alter model capacity. This allows us to evaluate pretrained
representations of models with the assumption that the same
model may be used for a wide range of tasks.

3.1. Single Image Surface Reconstruction

In this section, we analyze how well the models represent the
visible surface in the image. We consider two tasks for single-
view 3D understanding: depth estimation and surface normal
estimation. Those tasks are well established in computer
vision and are commonly studied in human perception and
development [79]. Although depth and surface normals
are closely related quantities, they are different prediction
tasks as they rely on different visual cues, as discussed by
Koenderink and Van Doorn [39] and Fouhey [22]. We briefly
outline our evaluation setup below, and refer the reader to
App. A and our code release for more specific details.

Monocular depth estimation is the task of predicting the
depth for each pixel in the image. Although early work
framed the task as regression [17], recent work has shown
that the use of binned prediction results in better perfor-
mance Bhat et al. [4]. We follow the AdaBins [4] formu-
lation and train dense probes using their proposed losses.
We report the root-mean-squared prediction error for depth
estimation as well as recall at different threshold rations,
similar to Eigen et al. [17].

We find that estimating the depth for object-centric
datasets is particularly challenged by scale ambiguity. While
scale ambiguity affects both objects and scene, we find that
models trained to estimate metric depth on objects end up fo-
cus on predicting the object’s mean depth without capturing
any details. As a result, we use a scale-invariant formulation
for objects by normalizing their depth between 0 and 1.

Surface normal estimation is the task of predicting the
orientation of the surface at every pixel. We adopt the setup
of Bae et al. [2], which utilizes an uncertainty-aware angular
loss. Similarly to Fouhey et al. [23], we report the root-mean
square angular prediction error as well as the precentage
recall at different angular thresholds.

Probe. We use a dense multiscale probe similar to the
DPT decoder [68]. This deviates from the common choice
of linear probing commonly used in self-supervised model
benchmarking [41]. Linear probing is useful for semantic
tasks since linear separability of classes is a desired and
expected property. However, it is unclear why we should
require the encoding of 3D properties to be linear. Further-
more, the model may represent such properties at different,
or multiple, locations within the network. Hence, instead of
training a linear probe on a specific linear, we use a multi-
scale dense probe to map the features from multiple layers
to either depth or surface normals.

Optimization. We train the probes for 10 epochs using the
AdamW [35, 52] optimizer with a linear warm and cosine
decay learning rate scheduler. While longer training fur-
ther improves performance, trends stabilize after 5 training
epochs due to the relatively small capacity of the probe.
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Figure 2. Depth Estimation Results. While pretrained representations exhibit large variation in their ability to represent depth, their
performance is consistent on objects and scenes. CLIP and MAE features do not encode depth and appear to instead capture rough priors
such as ”floor pixels are close”. Most models appear to capture the rough structure of the scene and vary in the degree to which they capture
details. DINOv2 performs best and accurately captures fine details; e.g., cow’s ear, desk chair, and coffee table.

Datasets. We evaluate the performance on both scenes
and objects. We use the NYUv2 dataset [78] to evaluate
scene-level performance as it is a common benchmark for
indoor scene understanding. We evaluate object-level per-
formance using the NAVI dataset [32] which includes a set
of object instances in a wide range of scenes and orienta-
tions. Both datasets provide aligned depth maps. For surface
normals, we use the annotations generated by Ladickỳ et al.
[43] and generate the surface normal annotations for NAVI.

Results. We evaluate all models and report the performance
in App. B due to space limitations. We focus here on qual-
itative results and performance trends, and analyze them
through a series of questions:

Do models learn to represent depth? We observe that
the ability of the models to encode depth is highly variable.
This can be clearly seen in Fig. 2 where DINOv2 and Sta-
bleDiffusion predict accurate and detailed depth maps that
capture the cow’s ear and chair legs, while CLIP and MAE
generate blurry and inaccurate estimates. It is worth noting
that the models compared are all highly performant models
that are often used within as backbones for downstreams
taks. The disparity seen highlights the importance of consid-
ering a wider range of tasks for benchmarking such models,
as well as the utility of 3D awareness as a domain for such
benchmarking.

Do models learn to represent surface normals? Surface
normal probe results reveal similar trends to depth estimation,
with some models achieving very high performance, while
others struggle to capture any information beyond the coarse
priors such as “floor pixels point up.” The reliance on priors

becomes more clear when comparing predictions for objects
and scenes since objects have fewer priors due to the large
pose variation. This is useful when analyzing the qualitative
results of CLIP, which may appear blurry but correct for
scenes, but are clearly inaccurate for objects. However, the
best-performing model, DINOv2, achieves an impressive
performance that is competitive with state-of-the-art models.

How is performance correlated across both tasks? We
observe that the performance of models is strongly corre-
lated across domains and tasks as shown in Fig. 4. This
supports our experimental design choices as it suggests that
we are measuring a single capability using different meth-
ods. Furthermore, the consistent performance across indoor
scenes and objects suggests that such models are learning to
represent some information about the visible surface without
any task-specific supervision. Although recent work has
focused on the ability of generative models to learn this in-
formation [6, 12], we find that it is not unique to such models
trained with classification or discriminative self-supervision
achieving comparable performance.

We note that, while depth and surface normal perfor-
mance are well correlated at the model level, the correlation
is far weaker when considering performance at the image or
pixel level. We find that model performance is not consistent
at the image or patch level; e.g., we find that the correlation
between errors made by DINOv2 on NYU is 0.37 when
aggregating at the image level, and 0.13 when considering
pixel-level errors. Hence, while the underlying ability to
represent the surface is shared, surface normals and depth
estimation rely on different visual cues[22, 40, 59] resulting
in model errors being weakly correlated.
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Figure 3. Surface Normal Qualitative Examples. With the exception of CLIP, models can capture the rough orientation of object and
scene surfaces; e.g., floors, walls, ceilings. The main distinction seems to be in how well they capture finer details. Similarly to depth results,
we find that DINOv2 and StableDiffusion perform best and can capture fine details such as the edges of the toy car and the white seat.
Surprisingly, we find that SAM’s predictions are not as detailed despite its ability to predict accurate segmentation boundaries.

Figure 4. Single view performance correlation. Depth and
surface normal performance is highly correlated across domains.

What is the impact of the training objective? We ob-
serve that discriminative self-supervised models perform
best across both tasks and domains. This is surprising
since it is unclear why the self-distillation and instance de-
scrimination losses used to train such models would encour-
age this behavior. Consistent with other work [6, 12], we
find that StableDiffusion also captures surface properties
well. Interestingly, models trained with dense supervision,
even depth supervision, perform worse than self-supervised
and text-conditioned generation, and perform on par with
classification-trained models. Finally, language-supervised
models appear to perform poorly despite their common util-
ity as backbones for a variety of tasks. This could be related
to previous findings that vision language models struggle
with spatial relations and compositionality [44, 48, 81].

Overall, our experiments suggest that most visual models
suggest that most visual foundation models end up learning
representations that encode properties of the visual surface
despite being trained with just image data.

3.2. Multiview Consistency

We previously evaluated the models’ ability to represent the
visible surfaces. Although this is important for 3D under-
standing, the evaluation is limited to a single image. As
discussed previously, 3D awareness also implies consistency
of representations across multiple views. We evaluate this
using correspondence estimation, where the goal is to iden-
tify image patches across views that depict the same 3D
point. This capability is important because it would allow
the model to correctly aggregate information across views,
which is central to reconstruction and localization pipelines.

Geometric correspondence estimation. Given two views
of the same object or scene, identify pixels across views
that depict the same point in 3D space. Rather than training
a probe, we directly compute correspondence between the
dense feature maps extracted from each image as this allows
us to directly evaluate the consistency of the representations.
This inference procedure is derived from keypoint-free cor-
respondence estimation pipelines [18, 19, 82] and is similar
to recent approaches to assess feature quality [1, 83, 99]

Datasets. We consider both scenes and objects. For scenes,
we evaluate our model on the Paired ScanNet [13] split
proposed by Sarlin et al. [72]. For objects, we sample view
pairs from the NAVI wild set which depict the same object in-
stances in different environments. We sample views that have
a maximum rotation of 120 degrees to ensure that there exists
a mutually visible surface. We also evaluate performance
on the SPair dataset [57] which provides keypoint-labeled
images allowing us to analyze the models’ performance on a
closely related task: semantic correspondence estimation.

5
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Figure 5. Correspondence Estimation Qualitative Results. We observe that models can estimate accurate correspondence for small
viewpoint changes, but struggle with large viewpoint changes. This is true even if the change is an in-plane rotation as shown with the eagle.
This pattern is consistent for both objects and scenes, although performance is not well correlated: SAM and StableDiffusion perform better
for scenes, while DeiT and DINOv2 are more consistent for objects. Correspondence color-coded for accuracy.

Evaluation. We report the correspondence recall; i.e., the
percentage of correspondence that falls within some defined
distance. Correspondence error is often computed in pixels
to account for the large variation in depth; e.g., a prediction
off by 1 pixel can be a few millimeters on a near-by surface or
several meters for outdoor scenes. This choice is less suitable
for objects, since they do not have the same large variation
depth. Object can also suffer from self-occlusion and re-
peated parts, which makes a pixel-wise threshold potentially
errenous. Therefore, we use a metric threshold for objects.
Since layer selection can greatly affect performance [87],
we evaluated model performance at four different intermedi-
ate points. Finally, we find that model performance varies
greatly depending on the viewpoint differnce between the
view pairs, as we discuss next. As a result, we bin the per-
formance depending on the magnitude of the transformation
between the view pairs. For more details on the evaluation
setup, we refer the reader to App. A.

We evaluate all models on the three datasets and report
the results in App. B. We present qualitative results and
performance trends in Fig. 5 and Fig. 6.

Are the representations 3D consistent? While models can
estimate accurate correspondence between objects for small
viewpoint changes, the performance quickly deteriorates for
larger viewpoint changes, as seen in Fig. 6. Although we
expect performance to be lower for larger viewpoint changes
as they are more difficult, the rate of deterioration is interest-
ing. Specifically, StableDiffusion and SAM experience very
sharp drops from being among the top performers for the

Figure 6. While all models experience performance drops with
larger viewpoint changes, some experience sharper drops suggest-
ing a lack of 3D awareness.

smallest viewpoint changes to being the worst models for the
larger viewpoint changes. This can be clearly seen in Fig. 5
where both models predict accurate dense correspondence
for the dinosaur in the top row, where the viewpoint variation
is minimal, but perform very poorly for the rotated eagle
views. This rapid deterioration is not universal, as shown by
the wide baseline performance of DINOv2 and DeiT.

We observe similar trends for indoor scenes where the
models predict accurate correspondence when viewing the
scene from a very similar vantage point, but struggle with
even small viewpoint changes as seen in the last two rows
of Fig. 5. Although DINOv2 performs better than the other
models, the absolute performances for all models are very
low for wide baseline correspondence estimation. In general,
our results suggest that current models are not 3D consistent
despite encoding surface properties as shown in Sec. 3.1.
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Figure 7. Semantic Correspondence. StableDiffusion represents
semantics well, but lack 3D consistency. This results in accurate
correspondence for objects viewed from similar angles and system-
atic errors when viewing objects from different viewpoints.

Semantic vs. Geometric Correspondence. Recent work
has shown that self-supervised and generative models excel
at estimating semantic correspondence [1, 83, 99]. Semantic
correspondence [3] generalizes the correspondence problem
from matching the same points across views of the same
object to matching similar semantic parts across different
instances of the same class; e.g., matching a dog’s left ear
in images of two different dogs. At first glance, this seems
to contradict our results, since semantic correspondence ap-
pears to capture both 3D structure and semantics.

Semantic correspondence is commonly evaluated using
keypoint recall. This evaluation makes the model’s perfor-
mance succeptible to semantic biases and priors in the data.
Keypoints are often selected to be unique and easily identi-
fiable; e.g., beaks and tails. Although some keypoints (e.g.,
eyes and knees) are repeated, they often appear in consistent
spatial arrangements due to photographer bias.

We illustrate the disparity between semantic and geomet-
ric correspondence by evaluating StableDiffusion on SPair-
71k chairs in Fig. 7. We evaluate performance using keypoint
confusion rather than recall. We do this by matching the clos-
est keypoint to the predicted correspondence location and
plotting the confusion matrix. This is only computed for key-
points with a true match. While StableDiffusion estimates
accurate correspondence for small viewpoint changes, it ex-
hibits interesting error patterns for large viewpoint changes.
Errors seem restricted to semantically related classes (e.g.,
seat corners, and chair legs). Furthermore, the qualitative re-
sults suggest that the representation captures a combination
of semantics and 2D location: i.e., the chair leg on the right.
We suspect that this observation is related to the Janus prob-
lem observed in diffusion-based 3D reconstruction, since the
same ear can be repurposed for two different faces.

Figure 8. Cross-task performance correlation. Performance
on single view tasks is strongly correlated with itself as well as
semantic correspondence, but we see a drop in correlation perfor-
mance of scene-level correspondence estimation and correspodence
estimation with large viewpoint variation.

3.3. Analysis

One important question is how correlated are different tasks;
i.e., if a model’s representations accurately represent depth,
how likely is it that they are also useful for correspondence?
To address this question, we compute the correlations be-
tween the models’ aggregated performance across multiple
tasks. We are particularly interested in understanding the
relationship between training objectives and 3D awareness.
We note that while we highlighted specific models in our
analysis, we evaluated a much larger set of model variants
and computed the cross-task performance correlations on the
full set. See App. B for the complete set of results.

We compute the Pearson correlation between all pairs
of tasks as shown in Fig. 8. For single-view 3D, we report
recall for depth and surface normal estimation on objects
and scene. We also report recall for correspondence estima-
tion and separate the performance based on the amount of
viewpoint variation by considering the smallest and largest
viewpoint bins for NAVI and ScanNet. Finally, we also
report the aggregated performance for semantic correspon-
dence estimation.

We find that performance on all single view tasks is
strongly correlated with correlation coefficients larger than
0.82. On the other hand, the correlation across multiview
tasks is much lower, as shown by the values on the bottom
right corner of the correlation matrix. Interestingly, seman-
tic correspondence performance is more strongly correlated
with single-view tasks than it is with multiview tasks despite
having a similar evaluation procedure to the latter. This fur-
ther supports our claim that semantic correspondence is not
a good measure of 3D consistency.

7



4. Related Work

Our work is broadly related to other efforts to understand the
representations learned by vision models and to use them for
3D vision tasks. Since the recent revival of deep learning,
there has been a lot of work on understanding how and what
these models learn with a focus on classification models.
Early work focused on analyzing what those models could
be used for [11, 26, 41] and providing some interpretability
into what they were learning [74]. Our work is inspired by
recent efforts to benchmark the semantic and localization
capabilities of visual backbones [24, 26, 44, 48, 85, 87]
which we try to extend towards 3D awareness.

Recent work has attempted to evaluate the 3D under-
standing of vision models. One line of work has explored
how well generative models capture single image geome-
try [6, 12, 16, 71]. Although this line of work shared our
goals, their probing techniques are often specific to gener-
ative models, making it difficult to extend to other visual
models. More closely related to our analysis is the recent
work of Zhan et al. [98], who proposed analyzing the 3D
understanding of StableDiffusion through a series of binary
classification tasks. Instead, we focus on dense probing tasks
and multiview consistency, as they are less susceptible to
semantic priors, which can confound 3D undersanding, as
shown by Tatarchenko et al. [84]. Furthermore, we explore
multiview consistency as another facet of 3D awareness.

Another line of work has focus on using large-scale mod-
els for 3D tasks. One line of work extracts features from
models for correspondence estimation [1, 30, 54, 60, 83, 99]
and pose estimation [25, 100]. Others have shown how
these models could be fine-tuned for accurate depth estima-
tion with [33, 101] achieving state-of-the-art performance
by fine-tuning StableDiffusion. Another line of work com-
bines image generation with 3D representations for text- or
image-conditioned 3D reconstruction [62, 88, 93]. While
those methods generate impressive 3D shapes, it has been
observed that their generations are not 3D consistent and can
generate animals with multiple heads (the Janus problem).
Recent efforts have shown that fine-tuning with 3D data can
improve generation quality [34, 50, 63, 66, 77]. We are in-
spired by this line of work, but note that it differs in objective
from our analysis, as we are interested in understanding 3D
awareness in models trained without 3D supervision.

5. Discussion

This paper presents an exploratory study of the 3D aware-
ness of visual models; i.e., how well do the representations
capture the 3D-ness of the scenes and objects? We posit that
3D awareness implies representations that (1) encode the
geometry of the visible surface and (2) are consistent across
views. We used trainable probes and zero-shot inference
methods to evaluate the frozen features of those models.

Our results show that visual foundation models learn rep-
resentations that encode the depth and orientation of the
visible surface, with vision-language models being the no-
table exception. We also find that while models can estimate
accurate semantic correspondence as well as correspondence
across images of a similar viewpoint, they struggle with large
viewpoint changes. This indicates a lack of multiview consis-
tency and suggests that models are learning representations
that are view-consistent, not 3D consistent. One possibility is
that the models are learning view-dependent representations.
This could be similar to the theories of shape perception pro-
posed by Koenderink and Van Doorn [37, 38], where shape
perception is achieved by a series of view-specific represen-
tations connected with an aspect graph. Another possibility
is that current models are simply good “image models” and
that good discriminative features are sufficient for strong
2.5D understanding. We hope that our findings can simulate
more interest in understanding the 3D awareness of visual
models and that future work can provide better answers.

Our analysis struggles with several limitations, which we
discuss in more detail in App. C. First, we used pretrained
checkpoints that were often trained on different datasets
and with different compute scales. While this allowed us
to explore a broader set of models and tasks, it would be
useful to make more targeted and fair comparisons to bet-
ter understand the impact of training signals. Second, we
focused on minimal probing approaches to analyze the pre-
trained representations. It would be useful to explore other
probing techniques, as it remains unclear what is the best
way to understand the distributed representations learned
by visual models. Finally, our analysis only explored two
basic aspects of 3D understanding. However, 3D awareness
and understanding are closely related to more complex and
higher-order tasks such as perceiving 3D shapes, reasoning
about spatial relationships, as well as making predictions
about deformation and dynamics.

This work is only a first step towards understanding the
3D awareness of visual models. This is becoming more
relevant, as recent image and video generation models have
achieved impressive feats of photorealism and temporal con-
sistency. This makes this a very exciting time to delve into
understanding what those models have learned and whether
or not they learned about the 3D structure of the world in the
process of learning to generate it. We hope that our findings
will stimulate more interest in understanding the 3D aware-
ness of visual models and that future work can provide more
insight into how models represent the world and the impact
of the learning objectives of such representations.
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