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Abstract

In this paper, we explore the unique modality of sketch
for explainability, emphasising the profound impact of hu-
man strokes compared to conventional pixel-oriented stud-
ies. Beyond explanations of network behavior, we discern
the genuine implications of explainability across diverse
downstream sketch-related tasks. We propose a lightweight
and portable explainability solution – a seamless plugin
that integrates effortlessly with any pre-trained model, elim-
inating the need for re-training. Demonstrating its adapt-
ability, we present four applications: highly studied re-
trieval and generation, and completely novel assisted draw-
ing and sketch adversarial attacks. The centrepiece to our
solution is a stroke-level attribution map that takes different
forms when linked with downstream tasks. By addressing
the inherent non-differentiability of rasterisation, we enable
explanations at both coarse stroke level (SLA) and partial
stroke level (P-SLA), each with its advantages for specific
downstream tasks.

1. Introduction
Sketches, rooted in human expression [43], offer a distinc-
tive modality for exploring explainability [61, 70]. In con-
trast to photos, where each pixel is independent and lacks
inherent meaning, sketches are organised into strokes, with
each stroke carrying subjective meaning assigned by the
sketcher [44]. This paper explores sketch explainability, but
with a unique perspective – aiming to provide explanations
and unravel the true implications of explainability on vari-
ous downstream sketch-related tasks.

With this perspective in mind, our approach champions
an explainability solution that is (i) lightweight and portable
– a plugin seamlessly integrating with multiple pre-trained
models without necessitating re-training [98], and (ii) easily
adaptable to a diverse array of downstream sketch-specific
tasks, benefiting the broader community.

Our solution is exclusively centred on human strokes,
aiming to attribute explanation on different stroke granu-
larity: individual strokes (coarse) and their parts (fine). The
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Figure 1. We attribute explanations for individual strokes (stroke-
level attribution) and their vector coordinate points (point-level
attribution). Stroke-level attribution rasterises individual strokes
(non-differentiably) to produce n-stroke images. Next, we sum
the stroke images to get the complete sketch image used for down-
stream tasks. Point-level Attribution computes distance transform
from stroke coordinates and thresholds to get the sketch image.
Our explainability solution works without re-training for existing
tasks like SBIR and sketch-to-photo generation and novel tasks
like filtering noisy strokes for assisted drawing and adversarial at-
tack by removing a small stroke.

output of our model markedly differs from typical saliency
maps [1] found in photo-based explainability models, where
the emphasis is mostly on visualisation [90]. Ours is a task-
driven attribution map that assigns stroke-level attributes
capturing how altering stroke characteristics can impact
model prediction. Depending on the downstream tasks, at-
tributions can be grounded to, for example (i) importance of
entire strokes, which is more suitable to filter noisy strokes
[15] in assisted drawing, and remove small strokes for ad-
versarial attacks on existing sketch encoders, and (ii) stroke
shape and length, where a partial-stroke level attribution is
beneficial for tasks like sketch-based image retrieval [77]
and sketch-to-photo generation [55].

To showcase the adaptability of our model, we carefully
devise four applications: two well-studied tasks from exist-
ing literature (retrieval [12, 26] and generation [55, 102]),
and two entirely novel tasks (assisted drawing and sketch
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adversarial attack). In retrieval, we evaluate reliability of
model predictions by comparing predicted stroke order with
the order in which a human draws them. For generation, we
pinpoint strokes with the least influence, offering explicit
feedback to end-users regarding which strokes the model
prioritised and which it overlooked. In assisted drawing
[4], we assist novice artists in faithfully sketching a par-
ticular photo by identifying strokes that do not match the
target photo. Lastly, in adversarial attacks, we unveil the
vulnerability of state-of-the-art sketch encoders by remov-
ing a small imperceptible stroke in any sketch, resulting in
significant changes to the model’s prediction.

The focal point connecting all downstream tasks is our
proposed stroke-level attribution. The key question, there-
fore, is how to backpropagate information to strokes while
addressing the inherent non-differentiability of rasterisation
– strokes are most often represented as discrete coordi-
nates and rasterised before feeding into downstream appli-
cations. We provide two solutions for non-differentiability:
(i) coarse stroke level: we first rasterise individual strokes
to produce raster stroke images. Then, we combine these
stroke images to get the complete sketch image (see Fig. 1)
– since this addition of stroke images is a differentiable op-
eration, we can backpropagate information from the com-
plete sketch to individual raster stroke images. (ii) fine
partial-stroke level: we create a distance transform image
from stroke coordinates (“red dots” in Fig. 1 vector sketch)
by calculating the minimum distance of each pixel in the
image from the coordinates. Then, we threshold the dis-
tance value to get the sketch image (white pixels for a high
distance and black pixels for a low distance). Since the dis-
tance function and our threshold step are both differentiable,
we can backpropagate information from the sketch images
to stroke coordinates.

Our contributions can be summarised as follows: (i) We
explore sketch explainability, emphasising the importance
of strokes in human-drawn sketches. (ii) We highlight the
profound impact of explainability on various sketch-related
domains, presenting applications in retrieval, generation,
assisted Drawing, and adversarial attacks. (iii) We solve for
the non-differentiability problem of rasterisation, and pro-
vide both stroke-level and partial-stroke level attribution.

2. Related Works
Sketch for Visual Understanding: Having a high visual
proximity [43] to real images and carrying human subjectiv-
ity [9, 76], amateur sketches or abstract line drawings [59]
has been a popular modality for customised expression, thus
driving extensive applications as a query for retrieval [26,
32, 76, 85] of object [29] or scene [24] images, 3D shapes
[104], and even concepts like in ‘pictionary-like’ games
[11]. As a canvas for creativity, sketch helps image-editing
[62, 110, 114], or generation of objects [20, 21, 38, 99],

scenes [109], and 3D shapes [10, 39, 105, 119]. Being eas-
ily editable, sketch enables interactive access to AI systems
like image-segmentation [45, 122], object localisation [96],
image-inpainting [110, 114], and incremental learning [14].
Being application-specific however, such works largely ig-
nored explaining the ‘how’ of sketch-correspondence. The
few who did, customised training pipelines [61, 70] for
niche tasks. In this work, we thus make the first at-
tempt at visualising salient sketch-regions (strokes), as an
explainability-tool (like GradCAM [81] in photos) for ex-
isting pre-trained sketch-based downstream networks.

Explaining CNN Predictions: CNN explanations visu-
ally highlight regions of input having the maximum in-
fluence on a model’s predictions [87]. This visualisation
of ‘salient’ regions is either through an analysis [37] of
a regular pre-trained network after it has completed train-
ing (post-hoc), or by designing and training explicitly in-
terpretable (i.e. explain-and-predict) models [17, 19, 64].
Given a pre-trained CNN, a post-hoc algorithm either visu-
alises (i) model attributes like feature and activation-maps
[34, 65, 66, 82, 113, 120] that imply saliency of specific in-
put (pixel) regions, or (ii) input attributes directly as pixels
[91] or pixel-regions [51] coloured according to their rel-
ative importance. Visualisation of input attributes is facili-
tated through perturbation based algorithms [18, 36, 37] and
gradient-based analysis [87, 89, 91]. Perturbation-based al-
gorithms [27, 68, 113] detect saliency of pixel-regions by
measuring impact of their absence on the prediction score.
Whereas, gradient-based algorithms [8, 30, 86, 92, 117]
measure the gradient of the prediction with respect to indi-
vidual input-pixels (input-gradients [83]), attributing them
based on this value. Unlike images however, sketch is a
sparse-information modality [23] for pixels. As such, we
explore explainability in sketches by computing stroke and
point attribution for fine-grained sketch explanations.

Evaluation of CNN Explanations: The evaluation of CNN
explanations has evolved over time – from naive qualita-
tive analysis of visualisations [82, 87, 91, 113] to standard-
ised theoretical [5, 92] and empirical [72, 107, 113] base-
lines. Analysing explanations theoretically helps evaluate
them in a model-agnostic environment, where their mathe-
matical form is checked against pre-defined properties (ax-
ioms)[5, 54, 92]. Empirical evaluations, on the other hand,
involve experiments measuring (i) variance in explanations
upon perturbations of inputs [107] and model weights [1, 2]
(sanity checks), and (ii) accuracy of explanations in locating
important features [37, 72, 82, 117]. These features, when
perturbed, influence the CNN maximally, as measured by
perturbation-based metrics [6, 51, 68, 78, 82, 83, 113]. Re-
cently, however, these evaluation protocols have met criti-
cism [35] due to their detachment from humans. Instead,
human studies [53, 58, 82, 88], and human-centered met-
rics [35] have been proposed for evaluating explanation in-
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terpretability. In this work, we attribute strokes by back-
propagation [86, 87, 91, 92], evaluating attributions through
sanity checks [1], empirical metrics [51] and human studies
[53] on downstream sketch-based applications [112].

3. Background
Here, we provide a brief overview of some standard con-
cepts, ubiquitous in explainability literature [1] to help for-
malise the question: “what entails a good explanation?”
Attribution Algorithms: It highlights relevant regions
(e.g., pixels in an image, see Fig. 1) that are responsible for
the model’s prediction. Despite its importance for safety-
critical applications [49, 75, 101], making an attribution al-
gorithm interpretable to humans remains an open problem.
Surprisingly, a more faithful attribution is usually less in-
terpretable and vice-versa [91, 113]. Prior works [16, 81]
study this trade-off between faithfulness vs. interpretability
as an answer to: “What makes a good visual explanation?”.

The attribution map A ∈ RH×W is typically calculated
using gradients for an input X ∈ RH×W×3 for a classifica-
tion model ŷ = Fθ(X) ∈ RC , pre-trained on C categories.
The gradients are a simple and good indicator of how much
the model prediction changes for input X as,

A = ∂Fθ(X)/∂X (1)
Interpretability: It is the ability of an attribution algorithm
to provide a qualitative “understanding” for a model [73].
This “understanding” depends on the target audience, e.g., a
human expert may interpret a small Bayesian network [56],
but a layman is more comfortable with a weighted atten-
tion (or feature) map that highlights salient regions [1]. To
evaluate the interpretability of attribution maps, prior works
either (i) perform downstream tasks [31, 81] that depend
on the interpretation (e.g., object localisation – predict the
bounding box and semantic segmentation for image region
with the highest attribution) or (ii) human studies [53], typ-
ically conducted in two setups – class discriminative (given
an attribution map, ask users to identify the category pre-
dicted by a model), and trustworthiness (compare attribu-
tion maps from a strong and a weak model, and ask users to
identify the stronger model).
Faithfulness: It is the ability of attribution algorithms to
accurately “explain” the computation learned by a model.
For example, in theory, a fully faithful attribution is the en-
tire model (e.g., ResNet-18 [41]) but is not interpretable by
a human. In practice, for an attribution to be meaningful,
it is often impossible to be completely faithful. To balance
this trade-off, prior works explore human-interpretable at-
tributions that are locally faithful for a given model pre-
diction. One approach is image occlusion [73], where the
difference in the model scores is measured when masking
different patches in an input image. Image patches that sig-
nificantly change the model score are deemed important by
the attribution algorithm.

4. Proposed Method
The attribution map A in Eq. (1) gives a faithful fine-grained
explanation for each pixel in X. However, such pixel attri-
bution does not provide meaningful explanations when in-
terpreting sparse human-drawn sketches (many empty white
pixels). Additionally, pixel attribution does not consider the
sketch construction process – humans sketch a sequence of
strokes, not pixels. Hence, it is most appropriate that sketch
predictions should be attributed to strokes and not pixels.
However, the key challenge to stroke attributions is that
most sketch applications [77, 118] use raster sketches – a
non-differentiable process to convert a sequence of strokes
into pixels. In the following sections, we propose two stroke
attribution algorithms that consider the sketch construction
process by designing a differentiable rasterisation pipeline
for a vector sequence of strokes.

Algorithm 1: Non-differentiable Rasterisation

Data: V← Vector Sketch of size RT×5

Result: X← Blank (Zero) Canvas of size Rh×w×3 ;
B(·, ·)← Bresenham Function ;
v0 = (x0, y0, q

1
0 , q

2
0 , q

3
0)← V[0] ;

vprev ← v0 ;
qprev ← q10 ;
for vt = (xt, yt, q

1
t , q

2
t , q

3
t )← V[1 . . . T ] do

if qprev = 1 and q1t = 1 then
for (pix, p

i
y)← B(vprev, vt) do

X (pix, p
i
y)← 255;

end
end
vprev ← vt;
qprev ← q1t ;
if q3t = 1 then

exit() ; /* End of Drawing */
end

end

4.1. Sketch Representations

While sketches are used in several formats (or representa-
tions) like Raster [111], Vector [40], or Bézier [28], digital
sketches are primarily captured in vector form, as a list of
points traced on a drawing pad. These points are usually a
five-element vector vt = (xt, yt, q

1
t , q

2
t , q

3
t ) where, (xt, yt)

are absolute coordinates in a (H ×W ) drawing canvas and
the last three elements are one-hot encoding of pen-states:
pen touching the paper (1, 0, 0), pen is lifted (0, 1, 0), and
end of drawing (0, 0, 1). Hence, a vector sketch with T
points is represented as V ∈ RT×5.

As most downstream sketch applications work on ras-
terised sketches X ∈ RH×W×3, prior works [111] trans-
late (non-differentiably) a vector sketch V to its equiva-
lent raster sketch X using Algorithm 1. For this, the Bre-
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Figure 2. Coarse Stroke-level Attribution. Backpropagate gradi-
ents from raster sketch X to raster strokes Si, with weight ωi.

senham function B(·) is used to connect two vector points
{vt−1, vt} ∈ V in the pixel space {(p1x, p1y), . . . , (pnx , pny )}
∈ B(vt−1, vt) via a continuous line. Next, we show how our
sketch attributions overcome this non-differentiable raster-
isation and backpropagate gradients (Eq. (1)) from pixels
X ∈ RH×W×3 to strokes and points in V ∈ RT×5.

4.2. Coarse Stroke-level Attribution (SLA)

In this section, we backpropagate gradients from pixel space
in X ∈ RH×W×3 to strokes, defined as a continuous set of
points {vt, vt+1, . . . vt+n} from the first pen-down (1, 0, 0)
till the pen-up (0, 1, 0) state. Algorithm 1 converts the vec-
tor stroke points into a raster stroke Si ∈ RH×W×3. The
final raster sketch is then a differentiable composition1 of
m raster strokes X =

∑m
k=1 Sk. We compute SLA as,

AR
i =

∂Fθ(X)

∂Si
=

∂Fθ(X)

∂X
·
∂
∑m

k=1 Sk
∂Si

(2)

This, however, gives a degenerate solution where all strokes
will have the same attribution ∂

∑m
k=1 Sk/∂(Si) = 1. To

avoid this, we compute a weight factor ωi ∈ RH×W×3 for
each stroke Si such that,

ωi(px, py) =

{
1 if (px, py) ∈ B(vt−1, vt)

0 otherwise
(3)

In other words, given consecutive vector sequence of points
(vt−1, vt) in stroke Si, we find all points (px, py) using Bre-
senham function B(·) that lie “on the stroke” and assign
ωi(px, py) = 1. Hence, longer strokes will have more 1’s
compared to shorter strokes. Finally, Eq. (2) is adapted as

AR
i =

∂Fθ(X)

∂X
·
∂
∑m

k=1 ωkSk
∂Si

(4)

SLA makes the non-differentiable rasterisation (V→X)
partially differentiable (stokes S to sketch X). In other
words, SLA answers “Which strokes in a sketch are impor-
tant”. Next, we make the rasterisation fully differentiable
and backpropagate gradients to vector points V to answer
“Which point in a sketch is important”.

1For overlapping strokes in Si and Sj , we clamp the maximum pixel
value using differentiable functions like torch.clamp

Minimum distance of pixels
from sketch points

Sketch Vector Sketch Image

distance
transform

sigmoid

Figure 3. Partial Stroke-level Attribution. Backpropagate gradi-
ents from raster sketch X to vector sequence of coordinates V.

4.3. Partial Stroke-level Attribution (P-SLA)

Unlike SLA, which partially captures the sketch construc-
tion process (stroke-level), partial stroke-level attribution
(P-SLA) can fully backpropagate gradients to the vector list
of coordinates V ∈ RT×5 traced on a drawing pad. Given
a blank canvas X ∈ RH×W×3, we (i) calculate the mini-
mum distance of every pixel (px, py) in X from a line seg-
ment (vt−1, vt) in V, and (ii) compute the pixel intensity of
X(px, py) as function of the minimum distance as

X(px, py) =σ
[
2− 5 min

t=2,...,T

(
dist((px, py), vt−1, vt) + (1− q1t−1)10

6
)] (5)

where σ(·) is the sigmoid function, and dist(·) is a dis-
tance function (see Supp.) from a point (px, py) to a line
segment (vt−1, vt). For pen-up states (q1t−1 = 0), we blow
up (×106) the distance values that make the pixel intensi-
ties X(px, py) → 0, i.e., not render strokes for (vt−1, vt).
Finally, we compute P-SLA

AV
t =

∂Fθ(X)

∂vt
=

∂Fθ(X)

∂X
·
∑

∀px,py

{∂X(px, py)

∂vt

}
(6)

5. Applications of Stroke Attributions
Despite its simplicity, designing stroke attribution algo-
rithms that capture the sketch construction process un-
locks insights into numerous existing downstream tasks
like classification [40], robust sketch-based image retrieval
(category-level [33] and fine-grained [79]) and enables
some novel sketch applications like assisted drawing [15],
interactive sketch to photo generation [55], adversarial at-
tacks on human-drawn sketches, and discovering the “arrow
of time” [100] in raster sketches.

5.1. Robust Sketch Based Image Retrieval

Given a query sketch X ∈ RH×W×3, category-level sketch-
based image retrieval (SBIR) aims to fetch category-specific
photos from a gallery of multi-category photos (e.g., given
sketch of a ‘shoe’ retrieve any photo ‘shoe’ from a gallery of
‘shoes+hats+cows’). Conversely, fine-grained SBIR aims
to retrieve one instance from a gallery of the same category
photos (e.g., given the sketch of a ‘shoe’ retrieve one photo
shoe from a gallery of all shoes). Deep learning frameworks
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Table 1. Stroke attribution (SLA, P-SLA) make SBIR systems re-
liable. Sketches with a high correlation (Corr) of stroke saliency
(predicted by SLA or P-SLA) with human-drawn temporal stroke
order tend to have higher retrieval accuracy.

Metrics Full Dataset Corr ≥ 0.5 Corr ≤ 0.1
SLA P-SLA SLA P-SLA

Category
Level

mAP 53.1 55.3 57.6 51.7 50.1
P@200 65.9 66.7 68.5 64.6 61.5

Fine
Grained

Acc.@1 15.3 16.4 17.6 13.8 12.7
Acc.@5 34.2 36.9 39.4 31.1 28.3

learn a joint sketch-photo manifold (for category and fine-
grained) via a feature extractor [26, 29, 103] trained using
triplet loss [112]. Recent adoption of foundation models
for SBIR [77] shifts focus to robust deployment using the
open-set generalisation of CLIP [71].

Towards this goal of robust deployment, our sketch attri-
bution algorithms (AR

i and AV
t ) can predict which strokes

the network focuses on when retrieving a photo (Fig. 4).
Apart from interpreting SBIR models, sketch attribution
can also help detect potential failures at runtime (infer-
ence). First, we use the attribution scores AR

i or AV
t to

rearrange the strokes from highest to lowest. The attri-
bution scores indicate the most salient to the least salient
strokes that affect model prediction. Second, we calculate
a correlation (Corr) of our predictor stroke order with the
ground-truth temporal stroke order drawn by a user (humans
draw the most salient regions first and least salient areas last
[33, 79]). A high correlation indicates that humans and our
model prioritise strokes similarly, whereas a low Corr de-
notes that the model and the user prioritise different strokes.
We evaluate SBIR on a pre-trained SOTA model [77] using
CLIP with prompt learning as a sketch and photo encoder.

Datasets: We use TU-Berlin [33] (for category-level SBIR)
and Sketchy [79] (for fine-grained SBIR). TU-Berlin con-
tains 250 categories, with 80 free-hand sketches in each, and
204, 489 images [116]. Sketchy [79] has 75, 471 sketches
over 125 categories having 100 images in each [108].

Evaluation Metrics: Following [77], we use mean average
precision (mAP) and precision for top 200 retrieved samples
(P@200) for category-level SBIR. For fine-grained SBIR
[23], we measure Acc.@q, i.e., the percentage of sketches
whose true matched photo is in the top-q list.

Results: We divide the evaluation set into two sets: (i) those
that have a high correlation Corr ≥ 0.5, and (ii) those with
a low correlation Corr ≤ 0.1 of ground-truth and predicted
stroke order. Tab. 1 shows sketches with a high Corr ≥ 0.5
are 1.7/3.9 more accurate in Acc.@1/Acc.@5 than those
with Corr ≤ 0.1 for fine-grained SBIR, and 3.3/1.7 better
in mAP/P@200 for category-level SBIR. Full Dataset indi-
cates the performance of the pre-trained model on the entire
evaluation set.

Retrieved Image

High vs. Low
Correlation

Human-Drawn Sketch

Stroke-Order
(human drawn)

Backpropagation

High Low

Coarse Stroke-level Partial Stroke-level

High Low

Stroke-Order
(sketch attribution)

Sketch
Encoder

Image
Encoder

Figure 4. Sketch attributions from stroke-level and point-level for
image retrieval. High correlation of human-drawn stroke order
with that from sketch-attributions (high→low) indicate our sketch
encoder gives more importance to salient strokes drawn early on.

5.2. Assisted Drawing via Noisy Stroke Removal
Although sketching has enabled many exciting applications
[25, 55, 63, 118], the fear to sketch (i.e., “I can’t sketch”)
has proven fatal for its widespread adoption. To solve this,
prior works [15] used complex (and hard to train [12]) re-
inforcement learning [80] to predict the importance of each
stroke in a sketch. Next, a stroke subset selector removes
noisy (less important) strokes, leaving only those positively
contributing to the downstream tasks.

In this section, we focus on assisted drawing – given a
photo, we use attribution scores (AR

i or AV
t ) to help humans

draw a faithful and clean sketch. Our method is significantly
simpler than reinforcement learning alternatives [15].

For SLA, an input sketch X =
∑m

k=1 ωkSk is composed
of m strokes. We calculate the cosine similarity (sim) of
input sketch X with its target photo P ∈ RH×W×3 to mea-
sure “how faithfully X describes P”. Next, we backpropa-
gate gradients from the cosine similarity to strokes Si and
calculate stroke-level attribution score AR

i as

AR
i =

∂sim(Fθ(X), Fθ(P))

∂X
·
∂
∑m

k=1 ωkSk
∂Si

(7)

The pre-trained sketch and photo encoder2 Fθ(·) must
be highly accurate to judge sketch–photo correspondence.
Hence, we use pre-trained CLIP+prompts encoder from
[77]. To remove noisy strokes, we only update the weights
ωi ∈ RH×W×3 using a normalised attribution score AR

i as

ω∗
i = ωi · Gumbel Softmax

( AR
i∑

∀i AR
i

+∆
)

(8)

Gumbel Softmax(·) makes the output one-hot (discrete
value) in the forward pass but differentiable with a probabil-
ity distribution that sum to 1 in the backward pass [47]. The

2The sketch and photo encoder Fθ(·) could be a siamese-style shared
network or two independent models with different network weights [77].
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Figure 5. Assisted drawing via sketch healing (or filtering noisy
strokes) using stroke attributions from SLA and P-SLA. This helps
users having fear-to-sketch (“I can’t sketch”).

modified sketch is constructed as X = ω∗
1S1+ · · ·+ω∗

mSm.
Intuitively, we keep strokes that contribute (AR

i ) to a high
cosine similarity matching human sketch X and target photo
P and remove Si with normalised AR

i lower than (0.5−∆).
Similar to SLA, we can also use P-SLA to compute

the attribution AV
t for each point vt in the vector sketch

V ∈ RH×W×3, by measuring the cosine similarity between
input X and target photo P as

AV
t =

∂sim(Fθ(X), Fθ(I))

∂X
·
∑

∀px,py

{∂X(px, py)

∂vt

}
(9)

We remove noisy points vt by updating the pen-states in
Eq. (5) from pen-down (1, 0, 0) to pen-up (0, 1, 0) depend-
ing on its attribution AV

t for point vt ∈ V.

q1∗t−1 = q1t−1 · Gumbel Softmax
( AV

t−1∑
∀t AV

t

)
(10)

Using updated values for q1∗t−1, we update q2∗t−1 = 1− q1∗t−1

and recalculate pixel intensities for raster sketch X(px, py).
The value of hyper-parameter ∆ significantly affects the
stroke removal process. We found the optimal ∆ for SLA
and P-SLA is 0.3 and 0.1, respectively. A higher ∆ for
P-SLA gives broken lines with a drop in the visual quality
of an input sketch. Next, we evaluate stroke filtering using
SLA and P-SLA on popular human-drawn sketch datasets.
Dataset: For a fair comparison with prior works [15],
we evaluate on fine-grained SBIR datasets QMUL-Shoe-
V2 and QMUL-Chair-V2 [12, 67, 112]. It consists of
6, 730/1, 800 sketches and 2, 000/400 photos from Shoe-
V2/Chair-V2. We evaluate on the standard test-split of
679/525 sketches and 200/100 photos.
Evaluation Metric: We measure the retrieval accuracy of
the clean sketch with the target photo by computing Acc.@1
and Acc.@5. A high accuracy need not correspond to high
visual quality to the human eye [84]. Hence, we conducted
a small human study with 5 participants and reported the
mean opinion score (MOS) [46]; each was asked to compare
two sets of 50 sketch pairs (GT sketch vs SLA filtered) and
(GT sketch vs P-SLA filtered).
Results: Removing noisy strokes from human-drawn
sketches is still a new topic; hence, to the best of our knowl-
edge, there is only one work by Bhunia et al. [15]. From

Table 2. Noisy stroke removal using SLA and P-SLA attribution.

Metrics GT
Sketch

SLA
filtered

P-SLA
filtered Bhunia et al. [15]

Shoe-V2
Acc.@1 33.4 36.1 36.5 43.7
Acc.@5 67.8 68.7 69.3 74.9

MOS 28.6 85.7 57.1 –

Chair-V2
Acc.@1 53.3 54.9 56.5 64.8
Acc.@5 74.3 76.6 77.1 79.1

MOS 35.8 71.4 57.1 –

Tab. 2, both Bhunia et al. [15], and ours improve fine-
grained SBIR performance by 10.3% and 3.1%, respec-
tively. However, [15] outperforms our SLA and P-SLA fil-
tered methods by 7.6% and 7.2%, respectively. This perfor-
mance gap is likely because [15] trains the baseline model
[12] using actor-critic version of PPO [80], whereas our
SLA and P-SLA work post-hoc [98] without training the
baseline model [12]. Additionally, Bhunia et al. [15] aims
to design a robust SBIR pipeline, whereas our SLA/P-SLA
filtering aims to assist humans in drawing sketches. For hu-
man study (MOS): (i) users prefer SLA-filtered 78.5% vs.
21.5% for GT sketch, (ii) however, P-SLA-filtered are pre-
ferred only 57.1% vs. 42.9% for GT sketch. This is ver-
ified by Fig. 5 where P-SLA-filtered sketches have broken
strokes that degrade their visual quality.

5.3. Interactive Sketch To Photo Generation

The upsurge of large-scale image generation models (e.g.,
Stable-Diffusion [74], GigaGAN [50]) helped develop
sketch-conditional image generation [63, 118]. However, a
key limitation of conditional image generation is that these
models do not always faithfully follow the input condition.
This was resolved in two stages for text-to-image gener-
ation: (i) find word tokens with low influence on gener-
ated image, and (ii) iteratively update its activation until it
reaches a minimum required value. In this section, we de-
sign a pipeline for faithful sketch-to-image generation.

Using sketch attributions from SLA and P-SLA, we de-
sign a post-hoc [98] method that gives feedback to the user
– which strokes the model focuses on and which strokes are
being ignored. Given this feedback, a user can interact with
the system to ensure the model attends all salient regions.

Our interactive pipeline is built on top of a pre-trained
sketch-to-photo generation model [55], comprising a mod-
ified ResNet-50 [41] as sketch encoder and StyleGAN [52]
as image decoder. Given a raster sketch X, the modified
sketch encoder computes a latent vector z+s2p = Fθ(X),
where z+s2p ∈ R14×512. Next, the StyleGAN [52] decoder
generates the underlying image from z+s2p. For a faithful
sketch-to-image generation, we measure the “influence” of
each stroke/vector point on the latent code z+s2p. Particu-
larly, prior works [106] suggest that z+s2p is disentangled
into 14-level semantic feature hierarchy, where z+1

s2p ∈ R512

has coarse-level features controlling major semantic struc-
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Figure 6. Interactive Sketch to Photo Generation: Our stroke
attribution algorithms make existing sketch-to-photo generation
pipelines [55] more faithful. We achieve this by computing the
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colour schemes, etc. Since sketches primarily convey se-
mantic structure, we use the sum of the first 7-layers to com-
pute stroke attribution AR
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} (11)

Next, we qualitatively evaluate our iterative sketch to photo
generation pipeline, as shown in Fig. 6.

5.4. Adversarial Attacks on Human Sketches

Szegedy et al. [94] discovered that predictions by deep net-
works can be manipulated with extremely low-magnitude
input perturbations. For images, these can be restricted to
be imperceptible to human vision, but their effect can com-
pletely change the output prediction by a deep network.
Such adversarial attacks are possible in image classifica-
tion [94], semantic segmentation [7, 42], object detection
[97, 115], object tracking [22, 48], etc. Studying these
quirks is crucial as it can pose a real threat to deep learning
as a pragmatic technology [3]. While major work has been
dedicated to attacks on images, the recent surge of deploy-
able sketch applications [77, 118] motivates us to present
the first study on adversarial attacks for human-sketches.

We show how our stroke attribution algorithms (SLA and
P-SLA) provide the necessary information for adversarial
attacks. For brevity, we focus on adversarial attacks on
sketch classification [40, 111]. Intuitively, we use sketch at-
tribution to remove the smallest stroke (in SLA Attack) and
minimum number of points (in P-SLA Attack), yet have the
maximum impact on changing prediction of a pre-trained
classifier Fθ(X) = ycls. Ours is (i) a white-box [69, 95]
setting – we have access to network weights and gradients
of our ResNet-18 [41] classifier, pre-trained on QuickDraw
[40] or TU-Berlin [33]; (ii) untargeted attack – while tar-

Table 3. Sketch Adversarial Attacks: Using stroke attributions, we
remove a small stroke (|Si| ≤ ϵ) that misclassifies an input sketch.

SLA Attack P-SLA AttackNo
Attack ϵ = 5 ϵ = 15 ϵ = 5 ϵ = 15

QuickDraw 67.2 65.7 64.5 65.1 63.7
TU-Berlin 74.9 71.5 68.5 70.2 68.1

geted attacks [60, 121] misclassify Fθ(·) from yGT
cls to a spe-

cific target class y∗cls, untargeted attacks [93] aim to misclas-
sify to any arbitrary class yGT

cls ̸= ycls. For a neater descrip-
tion of SLA and P-SLA attacks, we define the rasterisation
process using R(·) as X = ω1S1 + · · · + ωmSm = R(S)
for SLA and following Eq. (5) for P-SLA we define X =
R({v1, . . . vT }) = R(V). Next, we find a stroke Sadv with
stroke length |Si| less than some threshold ϵ as

Sadv = arg max
|Sj |≤ϵ

Lcls
(
Fθ(R(S − {Sj})), yGT

cls

)
(12)

Unlike typical adversarial attacks on images that add a
small noise (X + ∆x) with ||∆x||∞ ≤ ϵ, for sketch ad-
versarial attacks, we remove a small stroke (X−Sadv) such
that the stroke length is less than ϵ as |Sadv| ≤ ϵ. For P-
SLA attack, we find a subset of ϵ vector points Vadv =
{vadv1 , . . . vadvϵ } from input sketch V ∈ RT×5 which max-
imises the categorical cross-entropy loss Lcls as

vadvt = Lcls
(
Fθ(R(V − {vt})), yGT

cls

)
Vadv = top@k({vadv1 , vadv2 , . . . vadvT }, ϵ)

(13)

where, top@k(·, ϵ) picks the highest ϵ elements. Fig. 7
shows the adversarial strokes Sadv and points Vadv in red.
Dataset: We evaluate sketch adversarial attacks on Quick-
Draw [40] and TU-Berlin [33]. We use a subset [103] of
50M sketches in QuickDraw [40] as 3.8M samples across
345 categories split in 2.1M sketches for training, 0.3M for
validation and 0.4M for evaluation. See Sec. 5.1 for details
on TU-Berlin [33] dataset.
Evaluation: We measure the drop in classification accu-
racy when using SLA and P-SLA attacks in Tab. 3. Unlike
image-based adversarial attacks where ϵ is a pixel intensity
(non-integer, decimal value), our sketch attacks occur on
stroke/point length, making ϵ an integer. A higher ϵ ≥ 20
removes “visible” strokes in SLA and broken lines in P-
SLA (Fig. 7). Hence, we evaluate accuracy drop for ϵ = 5
and ϵ = 15 in Tab. 3. We observe for ϵ = 5 P-SLA offers a
better adversarial attack than SLA by a margin of 1.3%.

6. Human Study
Interpretability aims to help humans understand a model’s
reasoning process (transparency), verify that its predictions
are based on the right constraints (fairness), and evaluate its
confidence (trustworthiness) [73, 81]. In Sec. 5, we eval-
uated interpretability using several automatic metrics (e.g.,
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Figure 7. Adversarial attacks on human drawn sketches using SLA and P-SLA. The adversarial strokes are marked in RED.

classification or retrieval accuracy) on different evaluation
datasets [33, 40, 79]. However, highlighting salient regions
by backpropagating gradients for downstream applications
does not capture how helpful end-users find these attribu-
tions [53, 73]. In this section, we take a human-centred ap-
proach to interpretability – how well our stroke attribution
algorithms align with the reasoning process of humans and
the trade-off, interpretability vs. accuracy.
Setup: We recruited 7 participants from different geograph-
ical regions, in the age group 20−30 years. All participants
had some background in AI research, but only 3 reported
having prior experience in interpretability. Once recruited,
each user is assigned a unique ID for anonymity. For SLA
and P-SLA, we conduct 5 human studies, with each having
10 multiple choice questions (MCQs). Hence, each partici-
pant answers 50 MCQs for SLA and 50 for P-SLA.
Evaluating Transparency: For an attribution to be useful,
humans must understand a model’s behaviour for correct
and incorrect predictions. In this section, we evaluate if
our SLA and P-SLA can make existing sketch classifiers
(i.e., Sketch-A-Net [111]), pre-trained on TU-Berlin [33]
dataset transparent to humans. Accordingly, we choose a
random category and select 4 sketch instances – (i) 3 mis-
classified and 1 correctly classified, and (ii) 1 misclassified
and 3 correctly classified. Next, as shown in Fig. 8, we com-
pute stroke attribution (SLA and P-SLA) for the selected
sketches and ask users: “Only 1 of these 4 sketches are cor-
rectly (or incorrectly) recognised by our model. Please se-
lect that correct (or incorrect) sketch.”. We find users can
identify correct/incorrect model predictions 75.9%/63.4%
of times for SLA and 76.3%/65.2% for P-SLA.

Q. Only one sketch is incorrectly categorised. Which one?

(A) (B) (C) (D)

A
ns: (C)

(D)(C)(B)(A)

A
ns: (C)

Q. Only one sketch is correctly categorised. Which one?

Figure 8. Evaluating transparency: Can a human understand the
behaviour of an existing (pre-trained) classifier with SLA/P-SLA.

Evaluating Fairness: End users are much better positioned
to make a decision with help from a model if intelligible
explanations are provided. In this section, we evaluate if
SLA and P-SLA can help end users understand “What went
wrong?” (i) For a pre-trained sketch classifier [111], we
show users a misclassified sketch instance and ask users

to identify the (wrongly) predicted category. (ii) For fine-
grained SBIR [13], we show a sketch (whose GT photo is
not in top-10) and ask users to identify the top-1 (wrongly)
retrieved photo in Fig. 9. Humans can identify the misclas-
sified category 62.4%(66.3%) and the incorrectly retrieved
photo 39.1%(37.2%) for SLA (P-SLA).

Q. Prediction is incorrect,
identify predicted category

(A) Angel
(B) Butterfly
(C) Fan
(D) Dog

Q. Retrieval is incorrect, identify
the top-1 retrieved image

(C) (D)

A
ns: (B)

(A) (B)

A
ns

: (
B)

Figure 9. Evaluating Fairness: For an incorrect model prediction,
we evaluate if humans can “identify what went wrong”.

Evaluting Trustworthiness: Determining trust in individ-
ual predictions is important when used for decision-making
(e.g., medical diagnosis [57]). We train two copies of
the same sketch classifier [111], a strong classifier with
73.8% accuracy on TU-Berlin [33] and a weak one reaching
57.1%. We present the stroke attribution (SLA/P-SLA) for
both models and ask users to identify the strong/weak clas-
sifier, as shown in Fig. 10. Humans identify the stronger
classifier 71.4%(68.7%) of the time for SLA (P-SLA).

A
ns: (A

)

Q. Prediction is correct, identify the stronger classifier
(A) (B) A

ns: (B)

(A) (B)

Figure 10. Evaluating trustworthiness: We present the stroke at-
tributions (SLA/P-SLA) from two sketch classifiers (strong and
weak), and ask users to identify the strong/weak model.

7. Conclusion

This work emphasises the pivotal role of strokes in human-
drawn sketches, offering unique insights compared to pixel-
based images. Our lightweight explainability solution
seamlessly integrates with pre-trained models, addressing
rasterisation challenges and contributing to diverse sketch-
related tasks. Through applications in Retrieval, Gener-
ation, Assisted Drawing, and Sketch Adversarial Attack,
our model showcases adaptability and significance. The
proposed stroke-level attribution provides nuanced insights
into model behaviour, underscoring the importance of ex-
plainability in bridging human expression with model pre-
dictions in the evolving field of sketch interpretation.
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