
VideoCon: Robust Video-Language Alignment via Contrast Captions

Hritik Bansal1 Yonatan Bitton2 Idan Szpektor2* Kai-Wei Chang1* Aditya Grover1*

1UCLA 2Google Research
{hbansal, kwchang, adityag}@cs.ucla.edu

{yonatanbitton,szpektor}@google.com

Abstract

Despite being (pre)trained on a massive amount of data,
state-of-the-art video-language alignment models are not
robust to semantically-plausible contrastive changes in the
video captions. Our work addresses this by identifying
a broad spectrum of contrast misalignments, such as re-
placing entities, actions, and flipping event order, which
alignment models should be robust against. To this end,
we introduce the VideoCon, a video-language alignment
dataset constructed by a large language model that gen-
erates plausible contrast video captions and explanations
for differences between original and contrast video cap-
tions. Then, a generative video-language model is fine-
tuned with VideoCon to assess video-language entailment
and generate explanations. Our VideoCon-based alignment
model significantly outperforms current models. It exhibits
a 12-point increase in AUC for the video-language align-
ment task on human-generated contrast captions. Finally,
our model sets new state of the art zero-shot performance
in temporally-extensive video-language tasks such as text-
to-video retrieval (SSv2-Temporal) and video question an-
swering (ATP-Hard). Moreover, our model shows superior
performance on novel videos and human-crafted captions
and explanations.

1. Introduction

Semantically aligning data points from diverse modalities
is a long-standing goal of AI. We focus on video-language
alignment, which is challenging due to the complexities in-
volved in understanding of entities, their relationships, and
temporal order of the depicted events [17]. Recent mod-
els such as VideoCLIP [55], ImageBind [14] learn a shared
embedding space. Similarly, generative models such as
Flamingo [1], mPLUG-Owl-Video [61] can provide a clas-
sification label (e.g., yes/no) when queried about video-
language alignment.

*Equal Advising.

Despite large-scale pretraining, prior work [5, 37, 38, 51]
highlights that video-language alignment models are not ro-
bust to semantically plausible manipulations to an original
aligned caption in the form of contrast captions, such as
from ‘dog runs away before it eats food’ to ‘dog runs away
after it eats food’. Such pitfalls in robustness questions the
trustworthiness of alignment models for large-scale deploy-
ment. To mitigate these shortcomings, one possible solution
is to scale video-language pairs more for increased diver-
sity during pretraining. However, this is challenging due to
the difficulties in sourcing new, high-quality and permissi-
ble content, as well as the requirement for substantial stor-
age capacity. Several works [11, 13, 16] have shown that
naively training models on web-scale data has diminishing
returns on downstream tasks, and emphasize the importance
of data quality. Furthermore, the recent studies [28, 62]
demonstrate that applying a contrastive objective to the pre-
training datasets does not encourage the model to grasp the
fine-grained details within image/region-caption data.

To this end, we take a scalable, active strategy to gather
high-quality data that is deliberately enriched with the at-
tributes that we want to instill in alignment models. We
create a novel dataset, VideoCon, to improve the robust-
ness of models. Specifically, the dataset consists of a vari-
ety of semantically plausible video-language misalignments
in contrast captions. These misalignments include alter-
ing objects (entities), actions, attributes, relations, counts,
event orders, and introducing hallucinations (Figure 2).
To construct VideoCon, a large language model (PaLM-
2 API) takes video-caption pairs as input and generates
high-quality contrast captions for a given misalignment
type. To make our dataset temporally-challenging, we
skipped “easy” video-caption pairs whose alignment could
be inferred based on a single frame (image) understanding
[9, 26] (§3.1). In addition, the LLM generates natural lan-
guage explanations (NLEs) [42] to the differences between
original and altered captions, which are used for further ro-
bust training. We performed human verification on a sam-
ple of VideoCon and found that it is of high-quality. Finally,
to evaluate the model’s generalization capabilities, we col-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

13927
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Figure 1. Overview of our VideoCon approach. First, aligned video-language pairs are filtered to retain temporally-challenging
instances. Then contrast captions and natural language explanations (NLE) are generated by an LLM to create the VideoCon dataset.
Second, a video-language alignment model is finetuned with VideoCon on the alignment and NLE tasks. Finally, the finetuned model is
evaluated against the baseline model. Our results show that it outperforms the baseline, achieving state-of-the-art results on downstream
tasks.

lect human-generated contrast captions and NLEs for the
videos sourced from external datasets that did not contribute
to VideoCon’s development.

We finetuned a generative video-language model
(mPLUG-Owl-Video) on the VideoCon dataset. The trained
model surpasses existing video-language alignment models
by a large margin on the LLM-generated test set for both
video-language alignment and NLE generation tasks. Inter-
estingly, we observed that our finetuned model generalizes
to unseen videos and human-generated contrast captions
and NLEs, and outperforms the baseline models. For in-
stance, our model’s ROC-AUC exceeds the baseline model
by 12 points on the human-generated contrast captions.
This indicates that our model has developed a better un-
derstanding of the entities, their interactions, action under-
standing, as well as the temporal order of the events for ro-
bust video-language alignment.

We further assessed the effectiveness of robust train-
ing via contrast captions on zero-shot downstream video-
language tasks such text-to-video retrieval and video ques-
tion answering on the temporally-challenging and action-
intensive SSv2-Temporal [45] and SSv2-Events [5]. Our
model achieves state-of-the-art (SOTA) performance, im-
proving on SSv2-Temporal by 4.3 mAP, SSv2-Events by
3.6 mAP points. In addition, our model also achieves SOTA
on temporal and causal video question answering in the
ATP-Hard dataset, increasing 4% accuracy. This suggests
that equipping a model with the knowledge of contrast cap-
tions is highly data-efficient and effective in improving its
robustness in comparison to scaling the pretraining data.
The complete pipeline is illustrated in Figure 1. The dataset
and the model will be released upon acceptance.

2. Video Language Alignment
We are interested in assessing the semantic alignment be-
tween the video1 and text data since it powers many prac-

1Like prior works [33, 55], we use only the video frames (the visual
channel) without the soundtrack (the audio channel).

tical applications such as video-text retrieval [57], video
generation [7, 47] and video captioning [59]. To this end,
[14, 39, 49, 55] designed (image)video-text alignment mod-
els that are utilized for evaluating the semantic similar-
ity between the two modalities. However, previous works
[5, 37, 38, 51] have questioned their robustness to seman-
tically plausible changes to the video descriptions, termed
here contrast captions. Our aim is to improve the robust-
ness of video-text alignment models by training on contrast
captions with a wide range of misalignments.

Consider a dataset D = {(Vi, Ti, Ci, Ei)} where Vi is
a video, Ti is an aligned caption, Ci is a contrast caption
which is a perturbation of Ti but misaligns with Vi, and
Ei is a natural language explanation for the misalignment
between Vi and Ci. We consider two video-language align-
ment tasks: (a) video-language entailment, (b) natural lan-
guage explanation.

Video-Language Entailment (VLE) casts video-text
alignment as a Visual Entailment (VE) task. VE was orig-
inally defined for images as premises and texts as hypoth-
esis [53, 54]. We extend VE definition also for videos as
premises, under which a classification model Avle(V, T )
predicts whether a video V entails a text T .

Natural Language Explanation (NLE) requires a
model, Anle(V,C), to generate an open-ended explanation
for the discrepancy between a video V and a non-entailing
caption C.

In this paper, we address both VLE and NLE tasks under
a multitask setting in which a single video-language genera-
tive model generates the binary label for entailment and the
open-ended explanation.

3. VideoCon: Contrast Captions Generation
for Robust Video-Language Alignment

Our research goal is to measure the impact of a comprehen-
sive dataset on increasing the robustness of video-text align-
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For the given misalignment and video caption, create a semantically plausible contrast caption. Also
generate a natural language explanation for the difference between the video caption and contrast caption.

Video
Caption
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Caption
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VideoCon LLM-Assisted Contrast Caption Generation

Figure 2. Overview of the VideoCon data generation process from top to bottom. Specifically, we prompt a large language model
(PaLM-2) with the original caption that is grounded in the video, and the intended type of misalignment within the contrast caption. We
consider seven kinds of misalignments including object, action, attribute, counting, spatial relation, hallucination, and event order flip. We
provide a generated contrast caption and the corresponding natural language explanation for each misalignment type.

ment models. To this end, we first collect video-caption
pairs where the caption cannot be derived from a single
frame of video. We then categorize a wide range of se-
mantically plausible manipulations of video captions. Us-
ing an LLM for large-scale computation, contrast captions
and related explanations are generated for the defined cat-
egories, constructing the VideoCon dataset. Finally, we
extend VideoCon to include human-created contrast cap-
tions as held-out evaluation on unseen videos. We detail
the dataset construction steps below.

3.1. Temporally-Challenging Instance Selection

To construct VideoCon, we start with existing datasets that
include natural (real) videos and associated high-quality
human-written captions: MSR-VTT [57], VaTeX [48], and
TEMPO [17]. MSR-VTT and VaTeX consist of 20 captions
and 10 captions per video, respectively, while TEMPO con-
sists of a single caption per video. More dataset details are
in Appendix §B.

TEMPO is designed to create temporally-challenging in-
stances, while MSR-VTT and VaTeX contain more general
video-caption pairs. For MSR-VTT and VaTeX, we filter
out instances, where the caption is highly associated with a
single frame in the video based on an image-text alignment
model. In such cases, a video-text alignment can leverage
shortcuts and align the video to its caption without under-
standing the temporal or causal relations depicted in the
video. We want to filter such instances.

To this end, we employ the End-to-End VNLI model [60]
to calculate an alignment score Avle(V, T ) between a video
V = {I1, I2, . . . , IN} and a text T where Ii is a frame from

the video sampled at a rate of 1 frame per second. Formally,

Avle(V, T ) = maxi(V NLI(Ii, T )) (1)

where V NLI(Ii, T ) is the task of visual natural lan-
guage inference that assesses the extent to which the text T
entails the image Ii. There are 20 and 10 captions per video
in the MSR-VTT and VaTeX datasets, respectively. We re-
tain 5 captions per video from these datasets with the low-
est Avle(V, T ), and the remaining captions are filtered out.
Post-filtering, the percentage of temporally-challenging in-
stances increased from 36.5% to 81.5% in MSR-VTT, and
from 42.6% to 71% in VaTeX.

3.2. Categories of Contrast Captions

We aim for VideoCon to include a wide range of misalign-
ments in its contrast captions. Overall, VideoCon covers
seven misalignment types, exemplified in Figure 2. We in-
clude replacement of objects (entities) and actions follow-
ing the analysis in [37, 38], and replacement of attributes,
counts, relations, as well as adding unrelated but plau-
sible information to captions as hallucinations following
[29, 32, 35]’s study of image/text alignment model brittle-
ness. Since most video-text models rely on pretrained im-
age backbones, they are likely to suffer from similar prob-
lems. Finally, following [5]’s analysis that video-text mod-
els do not understand temporal order of the events, we in-
clude event order flipping as misalignment type.

3.3. Data Generation using an LLM

To generate contrast captions and corresponding NLE we
first assign one of the seven misalignment types (§3.2) to
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Figure 3. Distribution of the types of misalignments within the
contrast captions of the VideoCon dataset. We observe that the
dataset has good representation for all the kinds of misalignments
ranging from 8.8% to 24.2%.

each caption in the input video-text datasets (§3.1) (details
in Appendix §C). Then, given a video V and a misalign-
ment type m, we prompt PaLM-2 API2 [2] to generate a
contrast caption and accompanied explanation (our type-
specific prompts are detailed in Appendix §D).

Analyzing the LLM generations, we found that some-
times the output caption C do not contradict the original
caption T . For example, a generated contrast caption “a
person riding a car” does not contradict the original caption
“a person riding a mustang”. To filter such cases, we em-
ploy a Natural Language Inference (NLI) model [19] and
remove cases in which the contrast caption is assessed as
entailed by the original caption NLI(T,C) > 0.5. Post-
filtering, each tuple (V, T,C,m) is converted to the two in-
stances of video/language entailment task: Aen(V, T ) = 1
and Aen(V,C) = 0. We present the dataset statistics for the
entailment task in Table 1, including train/eval/test splits.
In addition, Fig. 3 shows the distribution of misalignment
types in the dataset. We observe that VideoCon maintains a
high density across the 7 misalignments ranging from 8.8%
to 24.2%.

We also found that some generated explanations do not
describe the differences between T and C well. For ex-
ample, the explanation “two friends are not traveling to-
gether” does not fully describe the discrepancy between
“three friends traveling together” and “two friends are trav-
eling together”. To filter these out, generated examples are
removed if NLI(F (T,C), E) < 0.6 where F (T,C) is
the premise comprising the original and contrast captions.
Specifically, premise will be ‘Expected Caption: T Actual
Caption: E’ and hypothesis will be ‘Difference between
Expected and Actual Caption: E’. This filter indicates that
the information in the explanation is not entailed by the dif-
ference between the two captions. The dataset statistics for
the NLE task is presented in Table 1. We refer to the final

2https : / / developers . generativeai . google /
products/palm

Video-Language Entailment Natural Language Explanation
Source Train Val Test Train Val Test

MSR-VTT 38366 478 16538 15888 206 6788
VaTeX 66480 736 8110 30180 345 3636
TEMPO 10712 7098 2708 4165 2739 1073
Total 115558 8312 27356 50233 3290 11497

Table 1. Statistics for the VLE and NLE tasks in VideoCon.

LLM-generated dataset as VideoCon (LLM).
To assess the quality of VideoCon (LLM), we perform

human evaluation on 500 contrast captions and NLEs (de-
tails in Appendix E). The human evaluator found 91% of
the contrast captions and 89% of the NLEs to be valid, in-
dicating the high-quality of VideoCon (LLM).

3.4. Data Generation using Humans

To study whether a model trained on VideoCon (LLM) gen-
eralizes to out-of-distribution videos and its performance on
human-generated contrast captions, we randomly selected a
set of videos from the validation set of ActivityNet [10].
This dataset consists of captions matched with segments in
the video, e.g., “a little boy is climbing on an outside gym”
matched to the first 10 seconds of its related video. We ex-
tracted video segments with an associated caption. Human
workers3 on Amazon MTurk were then shown the video
segments and associated captions and were asked to create a
semantically plausible contrast caption and a corresponding
NLE (more details in Appendix §F). We did not communi-
cate any type of target misalignments to encourage natural
diversity of human created contrast captions.

Overall, we collected 570 tuples
(V, T,Chuman, Ehuman) where V is the video, T is
the original caption, Chuman is the human-written contrast
caption, and Ehuman is the human-written explanations.
We denote this dataset by VideoCon (Human). We
sample 100 instances from this dataset, and found 93%
to be clean. In addition, we observe that many of the
human-generated contrast captions perturbing one or more
objects (35%) and actions (35%) depicted in the caption.
While 8% − 10% of the contrast captions flip the order
of the events and attribute of the objects. As this dataset
is largely unfiltered, it contains a mix of temporally-easy
and challenging instances. We also constructed a more
temporally-challenging subset of 290 instances, denoted
VideoCon (Human-Hard), by filtering out tuples in which
Avle(V, T ) < 0.5 (Eq. (1)), as in §3.1.

4. Experimental Setup

We next describe our evaluation setting for measuring the
impact of VideoCon on video-text alignment modeling.

3A shortlist that passed our qualification test.
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4.1. Finetuning with VideoCon

Our goal in constructing VideoCon (LLM) is to improve
robustness of video-text alignment models by fine-tuning
on this dataset. To this end, we start with the mPLUG-Owl-
Video model [61], denoted Owl-Base. Its building blocks
are CLIP [39] as visual encoder and LLaMA-7B [46] as text
encoder/decoder and it was pretrained on VideoChat [27].

Entailment Task:

Given: V (Video), T (Caption), C (Contrast Caption)

Instruction (I): [V] Does this video entail the description [T]?
Response (R): Yes

Instruction (I): [V] Does this video entail the description [C]?
Response (R): No

Figure 4. Entailment task prompt for finetuning.

Natural Language Explanation Generation Task:

Given: V (Video), C (Contrast Caption), E (NLE)

Instruction (I): [V] What is the misalignment between this
video and the description [C]?
Response (R): [E]

Figure 5. NLE generation task prompt for finetuning.

To fine-tune Owl-Base on VideoCon (LLM), its
{V, T,C,E}4 tuples were converted into two types of mul-
timodal instruction-response pairs, one for the VLE task
(Ivle, R) (Fig. 4) and one for the NLE task (Inle, R) (Fig.
5). We then train Owl-Base on all instruction pairs from
both the tasks with maximum likelihood loss, resulting in a
single model Owl-Con.

4.2. VideoCon Evaluation Metrics

To evaluate the performance of the Owl-Con on video-
text alignment we generate Owl-Con response to prompt
Ivle for video V and text Y ∈ {T,C}. We then calcu-
late the probability of generating responses sy =Owl-Con
(‘Yes’|Ivle(V, Y )) and sn =Owl-Con (‘No’|Ivle(V, Y )),
and based on these scores the probability for class ‘Yes’:
Pyes(V, Y ) =

sy
sy+sn

. Finally, we compute the ROC-AUC
score for Pyes(V, Y ) over the VideoCon (LLM) eval set,
with {V, T} as label 1 and {V,C} as label 0.

To evaluate Owl-Con on the NLE task, we prompt it
with instruction Inle instantiated on {V,C} pairs from the
VideoCon (LLM) eval set. We compare the generated ex-
planation Ê to the ground truth E by measuring entailment

4V: video, T: original caption, C: contrast caption, E: explanation.

probability NLI(E, Ê). In our experiments, we experi-
ment with two NLI automatic metrics: (a) Q2 score [19],
and (b) PaLM-2 API. We performed human evaluation to
measure the agreement between the automatic metrics and
the human-rating. We found that both metrics achieve high
agreement with human assessment (Appendix §H).

4.3. Video-Text Downstream Tasks

We complement the VideoCon intrinsic evaluation over the
testset with an extrinsic evaluation over two temporal and
action difficult downstream tasks.

We evaluate alignment model performance for
text2video retrieval over SSv2-Temporal [45] and SSv2-
Events [5] datasets. We consider the SSv2-Template
captions instead of the label captions since they remove
the object-centric bias in model evaluation [26]. We
compute input-text/candidate-video alignment score, rank
videos and report mean Average Precision (mAP). We
evaluate alignment model performance for video question
answering over the ATP-Hard [9] dataset. We cast each
question/candidate-answer pair as an imperative statement
using PaLM-2 API, measure alignment to the input video
and report Accuracy. More details on the downstream
datasets and the evaluation setup are in Appendix §I.

4.4. Baselines

For the video-text alignment text, we compare Owl-Con
with the following baselines: (a) End-to-End VNLI as zero-
shot atemporal model since it does not have access to the
temporal order of the video frames, (b) VideoCLIP [55], (c)
ImageBind [14], (d) Owl-Base, and (e) Owl-Rand: Owl-
Base fine-tuned on VideoCon tuples {V, T, Ĉ, E} where
Ĉ is randomly selected from other captions in the dataset.
Owl-Rand would indicate if there is merit in the contrast,
hard-negative captions in VideoCon. We include additional
baselines TACT [5] and VFC [37] for evaluating on the
downstream tasks (§5.3).

5. Experiments
We present our intrinsic (VideoCon eval set) and extrinsic
(downstream tasks) evaluation results, showing the benefits
of VideoCon for robust video-language alignment.

5.1. Performance on VideoCon Entailment Task

We present the ROC-AUC scores of the tested models in
Table 2. From the table we see that the baseline models
find the VideoCon testset difficult, as reflected by low AUC
scores (e.g. Owl-Base- 57.2), close to random. Even train-
ing on VideoCon train instances, but with “easy” negatives
(Owl-Rand- 59.7), hardly improves the base models. A sig-
nificant improvement is achieved with the VNLI-specific
model (67), showing that the entailment task is not inher-
ently represented in generic video-language aligned training
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Models VideoCon (LLM) Test VideoCon (Human) VideoCon (Human-Hard)
Random 50.0 50.0 50.0
VideoCLIP [55] 53.2 47.3 47.5
ImageBind (Video-Text) [14] 57.1 65.2 63.0
Owl-Base [61] 57.2 66.8 64.1
Owl-Rand 59.7 68.9 65.5
End-to-End VNLI [60] 67.0 72.4 65.0
Owl-Con (Ours) 84.6 78.3 74.4

Table 2. ROC-AUC scores of the tested models for the entailment task on VideoCon test sets.

VideoCon (LLM) VideoCon (Human)
Models Q2 entailment PaLM-2 entailment acc. (%) Q2 entailment PaLM-2 entailment acc.(%)
Owl-Base 0.19 36.8 0.23 39.6
Owl-Con (Ours) 0.50 65.4 0.32 47.1

Table 3. Performance of the tested models on the NLE generation task, measured via entailment metrics.

sets and requires specific training. Yet, the best performance
is achieved by training on VideoCon, which addresses the
diversity in plausible misalignments and includes “difficult”
training examples, reaching 84.6 AUC. This demonstrates
the merit of VideoCon for improving video-language align-
ment robustness. We show qualitative examples for the
model predictions in §6.2.

When evaluating on out-of-domain (OOD) data around
video types and misalignment distribution, we again see
that training with VideoCon offers significant improvement
to alignment detection, outperforming all baselines, albeit
with smaller relative gains: 17% and 16% improvement
compared to Owl-Base on (Human) and (Human-Hard) re-
spectively compared to 48% on (LLM) test. In future work,
we plan to further diversify the misalignments VideoCon
covers to further improve its benefits on OOD cases.

We notice that the performance of the VNLI atempo-
ral model is better than existing video-language alignment
models. It might be attributed to its training with contrast
captions in [60]. It further highlights that the existing video-
language models are not robust in comparison to a atempo-
ral probe on video-language alignment evaluation, corrobo-
rating the findings from [9, 26].

5.2. Performance on NLE Generation Task

Table 3 presents the performance of the tested models
against the ground-truth on the NLE task, depicting aver-
age Q2 score and PaLM-2 entailment accuracy. The results
show that on in-domain VideoCon, Owl-Con outperforms
Owl-Base by an impressive 263% and 178% relative in-
crease on Q2 score and PaLM-2 accuracy respectively. This
indicates the finetuned model can accurately generate NLE
that match well with the ground-truth NLE. This indicates
that our model can generate accurate NLE for a wide range
of misalignments in the video captions, which makes it use-

ful for dense video-language alignment evaluation.
On out-of-domain VideoCon, the improvement is more

moderate but still high: 40% and 20% relative increase on
Q2 and PaLM-2 respectively. This is probably due to the
more diverse ways humans express explanations compared
to LLM prompting. In future work we plan to further ad-
dress linguistic diversity in explanations for more robust
generation and evaluation.

5.3. Performance on Video-Text Downstream Tasks

Models SSv2-Temporal
mAP

SSv2-Events
mAP

Random 7.3 3.3
VideoCLIP 9.8 6.4
ImageBind (video-language) 10.5 5.5
Owl-Base 10.9 6.8
TACT [5] - 7.8
Owl-Rand 12.1 9.9
End-to-End VNLI [60] 14.6 10.4
Owl-Con (Ours) 15.2 11.4

Table 4. Mean Average Precision (mAP) scores for the tested mod-
els in the zero-shot text-to-video retrieval tasks.

We next present our results on the two downstream
tasks, Text2Video Retrieval and Video Question Answer-
ing. Starting with the retrieval task, we report mean Av-
erage Precision (mAP) of the tested models on the SSv2-
Temporal and SSv2-Events datasets in Table 4. The bene-
fits of training with additional examples tailored for tempo-
ral video-language alignment is already evident in the per-
formance of Owl-Rand, which improves over the previous
SSv2-Events SOTA - TACT with a relative increase of 27%.

However, when training on harder negative contrastive
instances, Owl-Con achieves a significant improvement,
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Figure 6. Qualitative examples for the success (green) and failure (red) modes of our model. In every example, we present a few video
frames in an temporal order from top to bottom, its associated caption, contrast caption, ground-truth NLE from the datasets. Additionally,
we present the predicted NLE from our model. The small boxes at the end of caption cells indicate whether our model consider that caption
to be grounded in the video. E and C indicates that the model predicts the caption to entail and contradict to the video, respectively. E-GT
and C-GT indicates the predicted NLE entails and contradicts the ground-truth (GT) NLE, respectively.

outperforming all baselines, with a relative increase over the
best baseline End-to-End VNLI model by 7.5% on SSv2-
Temporal and 9.6% on SSv2-Events (46% over TACT), set-
ting new SOTA results. This points at the benefits of ex-
posing the model to temporal examples, such as action and
event-order.

Models Accuracy (%)
CLIP 23.8
VideoCLIP 23.4
ImageBind (video-language) 25.4
TACT [5] 27.6
VFC [37] 31.4
Owl-Base 37.1
Owl-Rand 37.2
End-to-End VNLI [60] 39.0
Owl-Con (Ours) 41.1

Table 5. Accuracy scores for the tested models on the zero-shot
video question-answering task on ATP-Hard dataset.

For the Video Question Answering task, we compare
the performance of the various models in Table 5. Here
too Owl-Con achieves SOTA results and outperforms the
strongest baseline End-to-End VNLI model with a rela-
tive increase of 5.1%. This corroborates the observations
in our other experiments, which demonstrate the advantage
of the VideoCon datasets, covering various misalignments,
especially those pertaining to temporal and causal reason-
ing over dynamic events. The results also confirm the need
for carefully chosen contrastive negative examples, showing
that picking negatives at random may mask out the potential
benefit of an alignment training set. Finally, the competitive
performance of atemporal End-to-End VNLI model on the
downstream tasks is surprising and underscores the need for
stronger video-language datasets for robust benchmarking.

Obje
ct

Ac
tio

n

Att
rib

ute

Re
lat

ion
Cou

nt

Hallu
cin

ati
on

Ev
en

t O
rde

r F
lip

Misalignments

0

20

40

60

80

RO
C-

AU
C

Comparison of models on misalignments in VideoCon (LLM)
End-to-End VNLI
Owl-Base
Owl-Con (Ours)

Figure 7. ROC-AUC of End-to-End VNLI, Owl-Base, and Owl-
Con across all types of misalignment in VideoCon (LLM) test set.

6. Analysis
We analyze Owl-Con ’s performance improvements across
the kinds of misalignments in VideoCon. Additionally, we
present a few qualitative examples to highlight the success
and failure modes of our model.

6.1. Per-misalignment Entailment Results

We compared the ROC-AUC scores of the atemporal End-
to-End VNLI, Owl-Base, and Owl-Con on specific mis-
alignments in the contrast captions from VideoCon (LLM)
testset in Figure 7. We observed that Owl-Con outperforms
the baseline models across all misalignment types. This
suggests that our model can reason well about the entities,
their relations, and the temporal order of events in the video.

The largest improvement of Owl-Con compared to the
two baselines is on event order flip, indicating that the base-
lines lack temporal understanding and the VideoCon is ef-
ficient in adding this capability to an alignment model. In
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addition, on hallucination both Owl-Con and End-to-End
VNLI significantly outperform Owl-Base, since both mod-
els were explicitly exposed to entailment/non-entailment
training data. It is surprising to see that while End-to-End
VNLI was trained on significantly more entailment data,
much of it human-curated, Owl-Con outperforms it with
only automatically generated data. This could be due to
the better encoding of video in Owl-Con compared to the
atemporal nature of End-to-End VNLI. Finally, the analy-
sis shows other types of atemporal misalignments that are
difficult for End-to-End VNLI to sort out, e.g. counting’
and relation, where the training data in VideoCon is use-
ful to improve these capabilities as well. This shows that
our approach of detailed analysis of misalignment types of
generation of examples for them is effective.

6.2. Qualitative Examples

We highlight a few classification examples of Owl-Con in
Figure 6. The rows refer to the test source of the instances
and the columns refer to the success and failure modes, re-
spectively. In Row1/Column1, we observe that our model
provides correct predictions for the entailment between the
video and original caption while predicting contradiction
for the contrast caption that flips the order of the events i.e.,
grabbing attention and tapping shoulders. Interestingly, our
model can also provide the accurate NLE when prompted
with the video and the contrast caption. This suggests
that our model is useful for providing fine-grained details
about the video-language alignment. In Row2/Column2,
the model confuses ‘buns’ with ‘braids’ in hair and gives
a wrong NLE that contradicts the ground-truth. This error,
due to its inability to distinguish between objects, might be
improved with diverse videos and captions.

7. Related Work
Foundation Models for Video-Language Understand-
ing. Foundation models have emerged for video-language
understanding [1, 4, 49, 55, 56] by pre-training on large
amount of video-text pairs scraped from the web [6, 36, 58].
Additionally, prior works have either leveraged the pre-
trained CLIP model for video-language tasks [12, 33, 34]
or adopted a socratic approach [50, 63] to employ LLMs
(GPT-3) in reasoning over video captions. We highlight that
despite the large-scale training of the video-language foun-
dation models [14, 55, 56], they lack robustness to seman-
tic changes to the captions which severely limits their real-
world use for alignment applications. We provide a fix by
training models on a novel video-centric VideoCon dataset.

Improving Video-Language Robustness. Prior work
[37, 38, 51] highlights that the video-text models cannot
comprehend the semantics of the text with focus on manip-
ulating the verb, actions, and entities grounded in the video

description. To improve the temporal understanding, [5]
finetunes a pretrained model with temporal order loss. De-
spite this, their models do not achieve good zero-shot per-
formance on downstream tasks consistently. In our work,
we categorize a wide range of plausible misalignments in
the contrast captions, and create a temporally-challenging
VideoCon dataset.

Video-Language Alignment Evaluation. Many applica-
tions such as text-to-video retrieval [15, 48, 57] and text-to-
video generation [7, 47] require evaluation of the semantic
alignment between the natural language text and raw video.
In this work, we indicate that the existing video-text models
such as VideoCLIP and ImageBind are not robust to seman-
tic changes in the video captions, which becomes critical for
faithful video-text alignment evaluation. In our work, we
propose VideoCon and finetune a video-language genera-
tive model to perform robust entailment task and provide
fine-grained NLE for the observed misalignments between
the video and text. In the future, our model can be utilized to
enhance alignment through sparse (entailment scores) and
dense (fine-grained NLE) feedback [43].

8. Conclusion
We introduced a comprehensive dataset, VideoCon, de-
signed for robust video-text alignment. It features vari-
ous semantic misalignments and explanations for text-video
discrepancies. Through finetuning video-language models
on this dataset, we enhanced their performance on complex
tasks like text-to-video retrieval and video question answer-
ing, achieving state-of-the-art results.

One current limitation and an important future direction
is to increase the complexity of the generated contrast cap-
tions. Specifically, the model may encounter several mis-
alignments within a single contrast caption. Addressing this
issue, the model should be equipped to accurately assign
low entailment scores to these contrast captions and conse-
quently generate precise NLEs. An important future direc-
tion is to scale VideoCon to larger datasets. Here, we create
contrast captions for high-quality captions written by hu-
mans for every video, however, the web-scale datasets have
low-quality captions that are not well grounded in the video.
In this regard, using synthetic data followed by VideoCon-
like contrast caption generation can be a plausible approach.
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