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Abstract

Annotating gaze is an expensive and time-consuming en-
deavor, requiring costly eye-trackers or complex geometric
calibration procedures. Although some eye-based unsuper-
vised gaze representation learning methods have been pro-
posed, the quality of gaze representation extracted by these
methods degrades severely when the head pose is large. In
this paper, we present the Multi-View Dual-Encoder (MV-
DE), a framework designed to learn gaze representations
from unlabeled multi-view face images. Through the pro-
posed Dual-Encoder architecture and the multi-view gaze
representation swapping strategy, the MV-DE successfully
disentangles gaze from general facial information and de-
rives gaze representations closely tied to the subject’s eye-
ball rotation without gaze label. Experimental results il-
lustrate that the gaze representations learned by the MV-
DE can be used in downstream tasks, including gaze es-
timation and redirection. Gaze estimation results indicates
that the proposed MV-DE displays notably higher robust-
ness to uncontrolled head movements when compared to
state-of-the-art (SOTA) unsupervised learning methods.

1. Introduction
Vision is one of the most important sense for humans. Hu-
man gaze reveals the direction of visual attention, which is
an important cue for understanding how humans perceive
the surrounding world. Thus, gaze estimation techniques
have become an vital tool in numerous applications, such
as Virtual Realty and Augmented Reality[2, 30, 34], auto-
motive safety [13, 26, 27] and healthcare [3, 20, 23]. In re-
cent years, appearance-based gaze estimation methods have
drawn a lot of attention, since these methods only require
simple web cameras, eliminating the need for expensive
eye trackers with dedicated devices such as infrared cam-
eras. Among these methods, Convolutional Neural Net-
works (CNN) based approaches exhibit exceptional perfor-
mance in unconstrained environments.
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Figure 1. We propose the Multi-View Dual-Encoder, a face-based
unsupervised gaze representation learning framework that is ro-
bust to large head poses.

CNN-based gaze estimation methods are usually trained
in an end-to-end manner with substantial amount of la-
beled data. The performance of CNN-based gaze estimation
methods highly relies on the quantity and diversity of the
training dataset. Unfortunately, annotating gaze directions
is difficult. Unlike common Computer Vision tasks like Ob-
ject Detection, gaze cannot be reliably annotated without
specialized hardware. Gaze direction is either measured by
costly eye trackers under controlled environment [29], or
obtained by the line connecting the 3D face center to the
3D position of the gaze target [39]. It takes great effort and
time to collect diverse labeled training data, since the par-
ticipants need to stare at large amount of gaze targets as
instructed.

To address the challenge of annotation, a number of un-
supervised representation learning approaches have been
proposed [4, 14, 19]. These approaches extract common
visual representations from the input image without anno-
tation. However, such methods do not perform well in gaze
estimation, as gaze estimation differs significantly from
common visual tasks. Common visual tasks like object
classification and detection require representations of over-
all appearance of the subject. On the other hand, gaze is
an direction vector that manifested as rotations of the sub-
tle eye structure in the image. Efforts have been made to
design unsupervised gaze representation learning methods
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[33, 35], which incorporate cropped eye images as input to
eliminate undesired visual contents. However, existing un-
supervised gaze representation learning methods could only
handle samples within limited head pose range, since the
eye appearance changes dramatically when the head rota-
tion approaches 90◦.

Recent supervised gaze estimation methods usually em-
ploy face images as their input [1, 6, 8, 21, 37] to han-
dle samples with large head poses. Unfortunately, the rich
information in the face images becomes a double-edged
sword in unsupervised settings. These pieces of informa-
tion become interference due to the absence of gaze label
as constraint. For example, head pose and gaze are strongly
coupled. They behave exactly the same in common data
augmentation methods such as image flipping and rotation,
makes it difficult to separate them even for latest contrastive
learning approaches. Thus, unsupervised gaze representa-
tion learning method with face images is a challenging task
that remain to be solved.

A potential solution to tackle this challenge is to har-
ness the extra constraint introduced by multi-view settings.
Multi-view gaze estimation is a recent hot research topic. A
number of supervised multi-view gaze estimation methods
[7, 24] have been proposed. Multi-view image pairs provide
a set of images with the same eyeball rotation, i.e. gaze di-
rection within the Head Coordinate System (HCS), as they
are captured simultaneously. Our aim is to design a face-
based multi-view unsupervised gaze representation learning
method that works well on samples with large head poses.

In this paper, we present the Multi-View Dual-
Encoder (MV-DE), an unsupervised gaze representation
learning framework that employs face images as input. The
proposed MV-DE framework extracts gaze representation
by separating eyeball rotation from general facial informa-
tion. The MV-DE framework consists of two encoders: the
Gaze Encoder and the Face Encoder. First, we train the Face
Encoder to extract face representations including head pose
and appearance, while excluding gaze information. Then,
we freeze the Face Encoder and introduce the gaze fea-
ture extracted by the Gaze Encoder to compensate for the
missing gaze information. Based on the consistent eyeball
rotation across different views within the same frame, we
integrate the face representations with gaze representations
from different views to reconstruct the original image. At
the inference time, the MV-DE extracts gaze representa-
tions from single-view face images.

Experimental results illustrate that the MV-DE frame-
work successfully derives gaze representations across a
wide range of head poses. The learned gaze representation
can be used for varies downstream tasks such as gaze esti-
mation and gaze redirection. The contribution of this paper
are summarized in three folds:

• We propose the Multi-View Dual-Encoder , a face-based

unsupervised gaze representation learning framework un-
der uncalibrated multi-view settings. The MV-DE is ro-
bust to free head movements.

• We uncouple gaze from other interference such as head
pose by the proposed Dual-Encoder architecture and the
multi-view gaze representation swapping strategy.

• Extensive experiments demonstrate the effectiveness of
the MV-DE framework in unconstrained environments.
Qualitative analyses prove that the extracted gaze repre-
sentation is disentangled from head pose and appearance.

2. Related Work
2.1. Supervised Gaze Estimation

Appearance-based gaze estimation approaches aim to esti-
mate gaze from eye or face appearance directly. Early meth-
ods estimate gaze directions from eye images [9, 28, 36].
Zhang et al. first propose to utilize full face images and out-
perform eye-image-based methods [37]. Since then, most
CNN-based gaze estimation methods employ face images
as input. Chen et al. propose to utilize dilated convolution
for gaze estimation [5]. Cheng et al. propose to employ
the Transformer architecture for gaze estimation [6]. Some
recent methods utilize both face and eye images as input
for better estimation performance [1, 8, 17, 22]. Above
methods are trained in an end-to-end manner with gaze an-
notations. A number of gaze estimation datasets are pub-
lished. These datasets are collected under different sce-
nario with varies devices, including web cameras [11, 37],
360◦ cameras [21], high-resolution cameras [39], eye track-
ers [29] and mobile devices [22]. With sufficient labeled
data, gaze feature disentanglement is achieved by using
GAN [10] and Nerf [32].

2.2. Multi-view Gaze Estimation

Before the development of Deep Learning methods, most
conventional model-based methods utilize multiple cam-
eras for gaze estimation [16]. Model-based methods re-
construct 3D eyeball models and obtain the gaze direction
based on the optical geometry of human eye structures [15].
Model-based methods achieve remarkable estimation accu-
racy. However, these methods have high requirements for
the shooting angle of cameras. Thus, these methods are usu-
ally employed in the Head Mounted Devices, such as Meta
Quest Pro and Microsoft Hololens, where the cameras are
approximately stationary relative to the eye of users.

Multi-view settings have also drawn a lot of attention
in CNN-based gaze estimation methods. A few multi-
view gaze estimation datasets have been proposed. Zhang
et al. propose the ETH-XGaze dataset, which employs 18
high-resolution cameras to capture face images with large
head pose range [39]. Park et al. propose the EVE dataset
[29]. They use 3 web cameras and a industrial camera to
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capture user face images. Qin et al. propose to utilize 3D
face alignment approaches to generate multiple rotated im-
ages from a given sample [31]. These rotated images can be
regarded as samples from different virtual cameras. Based
on these datasets, CNN-based multi-view gaze estimation
approaches have been proposed. These methods integrate
features from different views by concatenating [24] or self
attention [7] to improve estimation accuracy

2.3. Unsupervised Gaze Representation Learning

Unsupervised representation learning has always been a
hot topic in Computer Vision community. Recently, Con-
trastive Learning approaches have achieves satisfying per-
formance in common Computer Vision tasks. Contrastive
Learning methods generate multiple views of a given sam-
ple by different data augmentation methods and constrain
the model to extract similar representation from these views
[4, 14]. He et al. propose the Masked Autoencoders, a self-
supervised learner trained by simply reconstructing masked
images. However, these methods are designed to extract
common visual representations, which do not perform well
in the gaze estimation task.

To learn gaze representations in an unsupervised man-
ner, Yu et al. propose to utilize the gaze redirection task to
extract two-dimensional representations that relate to gaze
pitch and yaw angles [35]. Sun et al. propose the Cross-
Encoder, which learn gaze representations by a latent-code-
swapping mechanism on eye-consistent image pairs and
gaze-similar pairs [33]. Gideon et al. further propose to
adapt the Cross-Encoder architecture to the multi-view set-
ting [12]. Above methods all employ eye images as their
input, as there are less gaze-irrelevant visual contents. How-
ever, appearance of eyes changes dramatically as head pose
increases, makes it difficult for these methods to handle
samples with large head pose distribution. Our aim is to
introduce an unsupervised gaze representation learning ap-
proach that employs face images as input, which is robust
to unconstrained head movements.

3. Method
We propose the Multi-View Dual-Encoder, a face-based
multi-view unsupervised gaze representation learning
method. Our aim is to extract gaze representations from the
input face images without using the gaze label. The main
challenge of this task is to separate gaze from the other fa-
cial information, especially head pose. Since gaze and head
pose are both physical directions, common data augmenta-
tions like rotation and flipping are not able to separate them.

To achieve our goal, the proposed MV-DE framework
introduces two encoders: a Face Encoder and a Gaze En-
coder. We first train the Face Encoder to extract general
facial representation including head pose and appearance,
while excluding gaze information. Then, we freeze the Face

Face
Encoder

𝒆𝒆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

ReconstructedInput Faces 𝐿𝐿𝑟𝑟𝑓𝑓 (Eq.1)
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Step 1: Training of the Face Encoder (Sec. 3.1)

Figure 2. Training process of the Face Encoder. The proposed
Face Encoder extracts face representations that contain general fa-
cial information while excluding gaze information. It is trained by
two tasks: the head pose estimation task and the image reconstruc-
tion task.

Encoder and train the Gaze Encoder to extract gaze repre-
sentation which compensates for the missing gaze informa-
tion. We constrain the Gaze Encoder to derive similar rep-
resentation from different views within a given frame since
the eyeball rotation is the same. In this way, we isolate gaze
representation from other facial features without using the
gaze label. In the following sections, we introduce the train-
ing pipeline of two encoders in detail.

3.1. Training of the Face Encoder

The target of the Face Encoder is to extract representation
of general facial information except gaze. We design two
training strategies to achieve this goal: eye masking and
multi-task learning including head pose estimation and im-
age reconstruction, as shown in Fig. 2.

Given a training face image xi,j where i is the frame
index and j is the camera index, we mask the two eye areas
by the average pixel value. We further add three random
masks to prevent the Face Encoder from directly estimating
head pose based on the position of eye masks. Given that
input face images are normalized to 224 × 224 pixels, we
set the size of masks to 55 × 33 according to the average
size of eyes. Then, we input the masked face images to the
Face Encoder for the proposed multi-task learning.

First, the Face Encoder extracts the face representation
efi,j from the masked face image. Then, we add a regression
MLP and a decoder for the head pose estimation task and
the image reconstruction task, respectively. In the head pose
estimation task, the target of the Face Encoder is to estimate
the 3D Euler Angles of the subject’s head pose. We use L1

Loss function for the head pose estimation task: Lhp =
L1(ŷi,j ,yi,j), where ŷi,j is the estimated head pose and
yi,j is the ground truth head pose. The purpose of the head
pose estimation task is to ensure that the face representation
efi,j encodes head pose information.

In the image reconstruction task, the Face Encoder and
the decoder are trained in an adversarial way. The target
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Step 2: Training of the Gaze Encoder (Sec. 3.2)Eyeball Rotation: equivalent to the gaze direction within the Head Coordinate System (HCS).

Figure 3. Training process of the Gaze Encoder. The Gaze Encoder extracts gaze representations that represent the eyeball rotation,
i.e. gaze direction within HCS. The Gaze Encoder is trained by the proposed multi-view gaze representation swapping strategy.

of the Face Encoder is to reconstruct the image with eye-
masks. The target of the decoder is to reconstruct the orig-
inal image from the face representation efi,j , including the
eye area. Both the Face Encoder and the decoder are con-
strained by the Image Reconstruction Loss Lre:

Lre(x̂,x) = α1L2(x̂,x) + α2Lpcpt(x̂,x), (1)

where x̂ is the reconstructed image, x is the target image,
L2 is the Mean Squared Error (MSE) Loss function and
Lpcpt is the Perception Loss function. α1, α2 are the co-
efficients of loss functions. The purpose of the image re-
construction tasks is to encode general facial information in
the face representation while excluding gaze information.
Images constructed from the efi,j are basically the original
face images without iris and pupil.

Overall, we train the Face Encoder by minimizing
LFE = β1Lhp+Lre, where β1 is coefficient to balance two
tasks. Once the training of the Face Encoder is completed,
we freeze the parameters of the Face Encoder and proceed
to train the Gaze Encoder via the multi-view constraint.

3.2. Training of the Gaze Encoder

The target of the Gaze Encoder is to extract gaze represen-
tation egi,j that represents the direction of gaze in the HCS
without any gaze label. Since the face representation efi,j
encodes general face information except gaze, we combine
the gaze representation egi,j with efi,j to fully reconstruct
the original image, so that egi,j compensates for the missing
gaze information. The training strategy of the Gaze Encoder
is shown in Fig. 3.

Given a training sample xi,j , we extract the gaze rep-
resentation from the original image and the face representa-
tion from the eye-masked image. Then, we input both repre-
sentations to the decoder to reconstruct the original image.
To reconstruct the original image, the Gaze Encoder has to
capture gaze information which is missing in the face repre-

sentation. Considering that the region occupied by two eyes
represents only a small portion of the face image, we ad-
ditionally compute the Image Reconstruction Loss for both
eye regions:

x̂i,j =G(efi,j , e
g
i,j),

LGE =Lre(x̂i,j ,xi,j) + Lre(x̂
e
i,j ,x

e
i,j),

(2)

where G(·) is the decoder, x̂e
i,j and xe

i,j are the two eye
regions of the reconstructed image and the original image,
respectively.

However, the gaze representation can also encode other
facial information such as head pose during the training pro-
cess. In an extreme case, the decoder might theoretically
reconstruct the entire image solely based on the gaze repre-
sentation, since the Gaze Encoder utilizes the full face im-
age as input. We utilize the consistency of eyeball rotation
in the multi-view settings to exclude gaze-irrelevant infor-
mation. First, we randomly sample an image xi,j′ from an-
other view within the same frame where j′ ̸= j. Since the
eyeball rotations from both views are consistent, we swap
the gaze representations of two views and reconstruct the
eye regions of the original views. For a training image pair
{xi,j ,xi,j′}, the final loss function of the Gaze Encoder
LGE is:

LGE = β2Lface
re + β3Leyes

re + β4Lswap
re , (3)

where β2, β3, β4 are the coefficients, Lface
re is the Image

Reconstruction Loss of full face images from both view:

Lface
re = Lre(x̂i,j ,xi,j) + Lre(x̂i,j′ ,xi,j′). (4)

Leyes
re is the Image Reconstruction Loss of eye regions from

both view:

Leys
re = Lre(x̂

e
i,j ,x

e
i,j) + Lre(x̂

e
i,j′ ,x

e
i,j′). (5)
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Lswap
re is the Image Reconstruction Loss of the generated

eye regions after gaze representation swapping:

Lswap
re =Lre(G(efi,j , e

g
i,j′)

e,xe
i,j)+

Lre(G(efi,j′ , e
g
i,j)

e,xe
i,j′).

(6)

At test time, the Gaze Encoder extracts gaze represen-
tations from the given single-view face images, similar to
common supervised single-view gaze estimation methods.
We rotate the estimated HCS gaze to CCS by the head pose
label for evaluation.

3.3. Implementation Details

Training Details: The proposed method is implemented by
PyTorch using two RTX 3090 GPU. We employ the Adam
optimizer with a leaning rate of 10−3 for all the encoders
and decoders. The Face Encoder is trained for 13 epochs
with a batch size of 100. Learning rate is decayed by 0.2 ev-
ery 4 epochs. The Gaze Encoder is trained for 5 epochs with
a batch size of 50. Learning rate is decayed by 0.2 every 2
epochs. We use the data rectification method from [37] and
histogram equalization to normalize the input face images.
(α1, α2) are set to (10, 1) and (10, 0.5) during the training
of the Face Encoder and Gaze Encoder, respectively. β1

is set to 0.1 and (β2, β3, β4) is set to (0.3, 0.35, 0.35). We
use the first 6 convolutional layers of a ImageNet pretrained
VGG-16 to calculate the Perceptual Loss.

Network Architecture: Both the Face Encoder and the
Gaze Encoder use the ResNet-18 [18] as backbone. For the
Face Encoder, we take the (512 ∗ 7 ∗ 7) feature map after
the last residual block as the Face Representation. The out-
put channels of the last Linear Layer is set to 3 for head
pose estimation. For the Gaze Encoder, the Linear layers
is replaced by a 1 × 1 Convolutionallayer to compress the
(512 ∗ 7 ∗ 7) feature map to (1 ∗ 7 ∗ 7) gaze representa-
tion. In the decoder, the channel of the gaze representa-
tion is expanded to 10 by a 1 × 1 Convolutionallayer and
then concatenated with the face representation. The decoder
also has four residual blocks with target channel sizes of
[256, 128, 63, 32]. The feature maps are up-scaled to twice
their size before each residual block. We upscale the feature
map again and use two Convolutional layers to generate the
final (3×224×224) image. During the training of the Face
Encoder, we set the gaze representation to zeros. Note that
we train the decoder from scratch during the training of the
Gaze Encoder, as the decoder has learned to ignore the 0
replaced gaze representation during the training of the Face
Encoder.

4. Experiments
4.1. Data Preparation

We conduct experiments on four different gaze estimation
datasets: ETH-XGaze [39], MPII-NV [31], EVE [29] and

ETH-XGaze MPII-NV EVE EyeDiap
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Figure 4. Head pose (top row) and gaze direction distributions
(bottom row) of 4 different datasets. The EVE and the EyeDiap
datasets only provide very limited head pose and gaze range with
frontal faces.
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Figure 5. Image reconstruction results of combining face repre-
sentations with different gaze representations in the ETH-XGaze
dataset.

EyeDiap [11]. We visualize the head pose and gaze dis-
tribution of each dataset in Fig. 4. The distribution of
these datasets varies significantly. below we introduce each
dataset in detail.

ETH-XGaze (DE): A multi-view dataset collected by
18 high-resolution cameras. It provides very large head
pose and gaze distributions. ETH-XGaze dataset contains
80 subjects, results in over 750,000 images in total. We di-
vide the last 5 subjects as the labled test set and the first
75 subjects as the multi-view unsupervised training set. We
follow [25] to optimize the gaze and head pose label to
ensure multi-view consistency.

MPII-NV (DM ): A synthesized multi-view dataset. We
follow [31] to reconstruct 3D faces from MPIIFaceGaze
[37] dataset and rotate every 3D face to generate 18 differ-
ent views, referring to the setting of ETH-XGaze. MPII-NV
dataset contains 15 subjects and 359,984 images in total.
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Table 1. Gaze estimation error of few-shot experiments in degrees. Bold numbers are the best results and underline numbers are the
second best results.

Dataset ETH-XGaze MPII-NV EVE Average
Calibration Num 50 100 200 Avg. 50 100 200 Avg. 50 100 200 Avg.

BYOL[14] 25.67 26.04 25.29 25.67 10.19 12.65 11.26 11.37 10.36 9.74 9.74 9.95 15.66
SimCLR[4] 26.81 24.98 23.86 25.22 12.55 12.13 12.14 12.27 12.53 11.36 11.48 11.79 16.43
Cross-Encoder[33] 16.23 14.72 14.54 15.16 11.47 11.36 11.75 11.53 8.07 7.81 7.48 7.79 11.49
DE (ours w/o MV) 23.32 19.93 17.76 20.34 11.64 10.73 10.74 11.04 10.79 9.73 9.44 9.99 13.79
MV-DE (ours) 8.66 8.08 7.77 8.17 7.28 6.52 6.39 6.73 9.18 8.6 8.68 8.82 7.91

Gain ▼ 7.57 ▼ 6.64 ▼ 6.77 ▼ 6.99 ▼ 2.91 ▼ 4.21 ▼ 4.35 ▼ 4.31 ▲ 1.11 ▲ 0.79 ▲ 1.20 ▲ 1.03 ▼ 3.58
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Figure 6. Gaze estimation error relative to the gaze yaw angle in
the ETH-XGaze dataset. The proposed MV-DE performs signifi-
cantly better when the gaze yaw angle is large.

We use the last subject as the labeled test set.
EVE (DV ): A multi-view dataset with 4 camera views.

As shown in the Fig. 4, the EVE dataset only provides
frontal faces with limited head pose and gaze distribution.
We use the training and testing set split as defined in the
original dataset and sample 3 images per second from the
original videos, result in 527,896 images for unsupervised
training and 64,464 images for testing.

EyeDiap (DD): A single-view dataset with limited
head pose and gaze distribution with 16,674 images in total.
We only use the EyeDiap in the cross-domain experiments.
Thus, we use the whole dataset for training or testing.

We follow [38] to normalize the face images. We em-
ploy Histogram Equalization and normalize the pixel values
to [−1, 1].

4.2. Evaluation of the Learned Representations

In this section, we validate the effectiveness of the learned
face and gaze representations through image reconstruction.
The propose MV-DE is supposed to decouple representa-
tions of the eyeball rotation from general facial information.
In Fig. 5, we combine the face representation with differ-
ent gaze representations and reconstruct the face image for
validation. As shown in row 2, the decoder effectively re-
constructs the input face image from the original face and

gaze representation. When replacing the original gaze rep-
resentation with gaze representation from another view, the
reconstruction results are similar with the original one. It
proves that the MV-DE successfully learned the multi-view
consistency of the eyeball rotation. In the last row, the gaze
representation is replaced by zero vectors. The head pose
and appearance of the reconstructed images are almost iden-
tical with the original image, while the eyeball rotations are
rather random. These results confirm that the MV-DE suc-
cessfully separate eyeball rotation from general facial infor-
mation.

4.3. Application of the MV-DE: Gaze Estimation

The learned gaze representation can be used for gaze es-
timation by adding a MLP head calibrated under the few-
shot learning setting. The estimation error is also an evalua-
tion of the learned gaze representation. In the MV-DE , the
MLP takes the gaze representation and the head pose esti-
mation as input. The estimated head pose is first encoded
to a 30 dimensional embedding and then concatenated with
the gaze representation through 3 linear layers with target
dimensions of (64, 64, 2). The MLP head is trained to esti-
mate the HCS gaze. Then, we rotate the HCS gaze by head
rotation to obtain CCS gaze. Sigmoid function is employed
in the activation layer.

In Tab. 1, we compare the MV-DE with 3 SOTA un-
supervised learning methods. BYOL [14] and SimCLR
[4] are two SOTA contrastive learning methods. We mod-
ify them to adapt the multi-view gaze representation learn-
ing task. We employ face images from different camera
views in the same frame instead of data augmentation meth-
ods to generate the positive pairs. Cross-Encoder [33] is a
SOTA eye-based unsupervised gaze representation learning
method. Gideon et al. also propose an eye-based method
[12], but their method requires sample pairs with different
eyeball rotation while keeping the head stable within a short
video clip. Since such sample pairs are not available in
DE and DM , we exclude their moethod in comparison.
We also remove the multi-view constraint in the MV-DE as
an ablation study (named DE). Without the multi-view con-
straint, the Gaze Encoder is trained by the image reconstruc-
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Table 2. Estimation error of different designs of the MLP head
with 200 calibration samples.

Dimension MLP inputs & outputs DE DM DV

d = 32
eg → CCS Gaze 24.34 42.82 9.83
eg +HP → CCS Gaze 20.59 42.29 9.57
eg → HCS Gaze 8.89 10.49 8.66
eg +HP → HCS Gaze 8.63 7.26 8.60

d = 64
eg → CCS Gaze 22.27 41.70 9.98
eg +HP → CCS Gaze 18.11 34.56 9.55
eg → HCS Gaze 8.43 7.44 8.68
eg +HP → HCS Gaze 7.84 6.39 8.67

d = 256
eg → CCS Gaze 20.97 40.99 10.32
eg +HP → CCS Gaze 18.88 34.05 10.39
eg → HCS Gaze 8.07 6.50 8.72
eg +HP → HCS Gaze 7.59 5.71 8.87

tion task described in Eq. (2).
Overall, the average accuracy of the MV-DE out-

performs other SOTA methods significantly. BYOL and
SimCLR perform worse than the gaze-specialized Cross-
Encoder and the MV-DE, proves that common visual rep-
resentations are not suitable for the gaze estimation task.

Most importantly, the MV-DE outperforms the Cross-
Encoder significantly in the ETH-XGaze and MPII-NV
datasets, where the head pose distributes across a wide
range. On the other hand, the MV-DE achieves comparable
performance with the Cross-Encoder in the EVE dataset,
because the EVE dataset only contains frontal face images
with limited head pose range.

To further investigate the performance gap between the
Cross-Encoder and the MV-DE, we visualize the gaze esti-
mation error relative to the gaze yaw angle within the ETH-
XGaze dataset in Fig. 6. Obviously, the estimation error
of the Cross-Encoder increases severely when the gaze yaw
angle approach 100◦. Samples with such extreme gaze yaw
angle are generally associated with large head poses. Above
results proves the point that the MV-DE are more robust to
large head poses.

Results from the last 2 rows demonstrate the importance
of the proposed multi-view gaze representation swapping
strategy. The multi-view constraint brought a improvement
as large as 5.88◦. But the Dual-Encoder (DE) still achieves
better overall performance than SOTA constrastive learning
methods, primary attributes to the proposed dual-encoder
architecture.

4.3.1 Ablation Study: Design of the MLP Head

The MLP head is responsible for estimating gaze from the
learned gaze representations under the few-shot learning
setting. In Tab. 2, we verify the performances of different
MLP designs with 200 calibration samples. For example,
[d = 64, eg + HP → HCS Gaze] denotes that the MLP

Table 3. Cross-dataset gaze estimation errors of using the MV-
DE as an unsupervised pretrain method. We first pretrain the
model on the ETH-XGaze or the MPII-NV dataset unsupervisely.
Then, we use the labeled training dataset to calibrate the MLP
head.

Method Unsupervised Train Test Dataset

Pretrain Dataset ETH-Xgaze MPII-NV EyeDiap

Baseline - EVE 31.27 32.52 12.55
MV-DE ETH-XGaze EVE 19.67 ▼ 37.10% 10.45▼ 67.87% 11.36 ▼ 9.47%
MV-DE MPII-NV EVE 25.42 ▼ 18.71% 10.33 ▼ 68.23% 11.58 ▼ 7.73%

ETH-Xgaze MPII-NV EVE

Baseline - EyeDiap 44.06 39.46 23.58
MV-DE ETH-XGaze EyeDiap 25.15 ▼ 42.92% 12.11 ▼ 69.31% 10.4 ▼ 55.89%
MV-DE MPII-NV EyeDiap 25.58 ▼ 41.94% 11.51 ▼ 70.83% 10.58 ▼ 55.13%

includes 64-dimensional hidden layers, takes gaze represen-
tations and head poses as the input vector, and predicts gaze
directions within Head Coordinate System (HCS). Note that
in the MV-DE, we rotate the estimated HCS gaze with head
pose label physically.

Results of Tab. 2 lead to 3 conclusions: (1) The MLP
performs signicantly better on predicting HCS gaze, since
the learned gaze representations represent eyeball rotation
instead of the CCS Gaze. Theoretically, combination of
eg+HP should be enough to predict the CCS gaze, but the
estimation error is still huge, probably due to the limited
number of calibration samples and MLP parameters. (2)
Head pose seems helpful for predicting the HCS gaze. This
observation is consistent with previous research [37] that
the additional information of the full face images helps in
the gaze estimation task. (3) 256-dimensional hidden layers
achieve the best performance in the 200-shot settings. But
larger number of parameters require more calibration sam-
ples, the performance of 256-dimensional hidden layers de-
grades in 50 and 100 shot calibration settings. Considering
the balance between the number of parameters and required
calibration samples, we choose d = 64 for the MV-DE.

4.3.2 Additional Experiments: MV-DE as an Unsu-
pervised Pretrain Method

Another potential application of the MV-DE is to used as an
unsupervised pretrain method, since it is more cost-effective
to collect large number of unlabeled face images than la-
beled ones. In Tab. 3, we employ the MV-DE to pretrain
the Gaze Encoder without gaze label in the ETH-XGaze or
the MPII-NV datasets. Then, we freeze the Gaze Encoder
and only train the MLP head in the EVE or the EyeDiap
dataset with gaze label.

To establish a baseline, we directly train the Gaze En-
coder and the regression MLP in an end-to-end manner with
gaze label in the labeled training dataset, just like common
supervised gaze estimation methods. The cross-dataset er-
rors of the baseline method are extremely large on the ETH-
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Figure 8. Results of using the MV-DE for gaze redirection.
Spheres on the bottom-right corner indicates the gaze direction
ground truth within the HCS, i.e. the eyeball rotation.

XGaze and MPII-NV dataset, since the gaze distributions of
the training sets are significantly smaller than the test sets.
When used as a unsupervised pretrain method, the MV-
DE effectively improves the cross-dataset performance of
the baseline model. The distributions of estimation errors in
Fig. 7 demonstrate that with the pretrain of the MV-DE, the
model generates reasonable estimations in a significantly
larger range. Above results indicate that the MV-DE can
be used as a pretrain method to improve cross-dataset per-
formances when large amount of unlabeled face images are
available.

4.4. Application of the MV-DE: Gaze Redirection

The learned representations of the MV-DE can also be used
for the gaze redirection task. Results in Fig. 8 show that
the MV-DE effectively redirects the gaze direction accord-

𝒆𝒆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

Face Source

Weighted Average

Generated Images

𝒆𝒆1
𝑔𝑔𝑓𝑓𝑔𝑔𝑓𝑓 𝒆𝒆2

𝑔𝑔𝑓𝑓𝑔𝑔𝑓𝑓

HCS Gaze Source

(1, 0) (0.75, 0.25) (0.5, 0.5) (0.25, 0.75) (0, 1)

Figure 9. Gaze redirection results of combining different gaze rep-
resentations linearly. Results demonstrate that the gaze represen-
tations exhibit good linearity invariance. Spheres on the bottom-
right corner indicate the ground truth or the target eyeball rotation.

ing to the HCS gaze of the reference images, while keeping
the head pose and identity unchanged. Fig. 8 demonstrate
that the learned gaze representation is subject-independent.
The head pose and identity of the reconstructed images are
controlled by the face representations, where the eyeabll ro-
tation is controlled by the gaze representations as expected.

4.4.1 Linearity Invariance of the Gaze Representation

Gaze, as a physical direction vector, conforms to the princi-
ples of additivity. Ideally, well-learned gaze representations
should possess similar characteristics. In Fig. 9, we com-
bine gaze representations from different samples linearly
with different ratios to reconstruct face images. The sphere
in the bottom-left corner of reconstructed the images indi-
cates the target eyeball rotation angle, which corresponds
to the linear combination of eyeball rotations from the HCS
gaze source images. Results demonstrate that the learned
gaze representation satisfies Linearity Invariance, i.e. the
eyeball rotation of reconstructed images undergo the same
linear combination as the input gaze representations. Ex-
periments in Fig. 9 prove that the MV-DE successfully
captures and retains part of the physical properties of gaze
during the unsupervised learning process.

5. Conclusion
In this paper, we present the Multi-View Dual-
Encoder (MV-DE), an unsupervised gaze representation
learning framework based on multi-view face images.
We propose the Dual-Encoder architecture and the multi-
view gaze representation swapping strategy to learn gaze
representations that are separated from general facial
information without gaze label. Experiments show that the
learned gaze representations can be used for downstream
tasks like gaze estimation and gaze redirection. Gaze
estimation results show that the quality of learned gaze
representations from the MV-DE are significantly better
than other SOTA methods with unconstrained head move-
ments.
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