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Figure 1. We propose a novel approach of hybridizing the eigenbases originating from different operators for mapping between function
spaces in deformable shape correspondence. While the Laplace-Beltrami operator (LBO) eigenbasis is robust to coarse isometric deformations,
it fails to encapsulate extrinsic characteristics between shapes. In contrast, elastic basis functions [21] align with high curvature details
but lack the robustness for coarse isometric matching. The proposed hybrid basis can be used as a drop-in replacement for the LBO basis
functions in modern functional map pipelines, improving performance in near-isometric, non-isometric, and topologically noisy settings.

Abstract

Non-isometric shape correspondence remains a funda-
mental challenge in computer vision. Traditional methods
using Laplace-Beltrami operator (LBO) eigenmodes face
limitations in characterizing high-frequency extrinsic shape
changes like bending and creases. We propose a novel ap-
proach of combining the non-orthogonal extrinsic basis of
eigenfunctions of the elastic thin-shell hessian with the in-
trinsic ones of the LBO, creating a hybrid spectral space
in which we construct functional maps. To this end, we
present a theoretical framework to effectively integrate non-
orthogonal basis functions into descriptor- and learning-
based functional map methods. Our approach can be in-
corporated easily into existing functional map pipelines
across varying applications and can handle complex de-
formations beyond isometries. We show extensive evalua-
tions across various supervised and unsupervised settings
and demonstrate significant improvements. Notably, our ap-
proach achieves up to 15% better mean geodesic error for
non-isometric correspondence settings and up to 45% im-
provement in scenarios with topological noise. Code is avail-
able at: hitps://hybridfmaps.github.io/
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X : {lennart .bastian, yizheng. Xie}@tum. de

1. Introduction

Establishing dense correspondences between 3D shapes is
a cornerstone for numerous computer vision and graphics
tasks such as object recognition, character animation, and
texture transfer. The complexity of this task varies signifi-
cantly depending on the nature of the transformation a shape
undergoes. Many classic correspondence methods leverage
that rigid transformations can be represented in six degrees
of freedom in R3 and preserve the Euclidean distance be-
tween pairs of points. Iterative closest point (ICP) [4], and
its variations [25, 40], which alternate between transforma-
tion and correspondence estimation, are very popular due
to their simplicity. In this setting, local extrinsic surface
properties in the embedding space stay invariant under rigid
transformations such that they can be used as features during
optimization, for example, the change of normals. For the
wider class of isometric deformations (w.r.t. the geodesic
distance), the relative embedding of the shape can change
significantly, and Euclidean distances between points may
not be preserved. In this class, only intrinsic properties —
those that do not depend on a specific embedding of the
surface — stay invariant, and the correspondence problem
becomes much harder due to the quadratic size of the so-
lution space. For example, solving a quadratic assignment
problem preserving geodesic distances [24] or heat kernel
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[52] is intrinsic by nature, but it is also an NP-hard problem.

In this context, spectral shape analysis, a generalization
of Fourier analysis to Riemannian manifolds, has emerged
as a powerful tool for non-rigid correspondence by lever-
aging intrinsic shape structure. One popular method that
takes advantage of this tool is functional maps, introduced
by Ovsjanikov et al. [37], which synchronizes the eigen-
functions of the Laplace-Beltrami operator (LBO) through a
low-dimensional linear change of basis. Numerous adapta-
tions have led to advances in shape correspondence in recent
years, for example, in both the learned supervised [15, 28]
and unsupervised settings [11, 12, 26, 45, 51]; and while
other basis choices have been proposed [21, 36, 39], almost
all of these methods use the eigenfunctions of the LBO to
span the to-be-mapped function spaces. One reason is that
the LBO has been extensively studied, and the behavior
of its eigenfunctions is well understood. For instance, the
LBO’s eigenfunctions have a relatively consistent ordering
and general invariance under isometric deformations. These
understandings have been leveraged for efficient regular-
ization [44] and coarse-to-fine optimization [18, 35]. Other
basis sets have been studied and shown to be effective in
specific cases [13, 39], but none are so generally applicable
and flexible as the LBO eigenfunctions.

A known weakness of the LBO basis, which at the same
time comes from its biggest strength, is the reduction to low-
frequency information. This leads to efficient optimization
and robustness to noise but also inaccuracy in small details.
To counter this challenge, Hartwig et al. [21] proposed to
utilize a basis derived from the spectral decomposition of
an elastic thin-shell energy for functional mapping. These
bases are particularly suitable for aligning extrinsic features
of non-isometric deformations, for example, bending and
creases [21]. However, due to the non-orthogonality of these
basis functions, careful mathematical treatment is required
to construct the appropriate optimization problem. Further-
more, the elastic basis functions do not exhibit the isometric
invariance and robustness of the LBO basis functions, limit-
ing their applicability (see Sec. 5.3).

To address the shortcomings of the bases on their own,
we propose to estimate functional maps in a hybrid basis
representation. We achieve this by constructing a joint vector
space between the LBO basis functions and those of the thin
shell hessian energy [21, 54]. We demonstrate that combin-
ing intrinsic and extrinsic features in this manner provides
several advantages for both near-isometric and non-isometric
shape-matching problems, promoting robust functional maps
that can represent fine creases in the shapes as well as large
topological changes. Due to the principled nature of our ap-
proach, the combined basis representation can be used in
place of pure LBO basis functions in many functional map-
based methods. We demonstrate this on several of the most
strongly performing axiomatic and learning-based pipelines,

leading to considerable performance improvements on vari-

ous challenging shape-matching datasets.

Contributions. Our contributions are as follows:

* We introduce a theoretically grounded framework to esti-
mate functional maps between non-orthogonal basis sets
using descriptor-based linear systems, a foundational ele-
ment of nearly all functional map-based learning methods.

* We propose a hybrid framework for estimating functional
maps that leverage the strengths of basis functions originat-
ing from different operators. We employ this framework
to construct functional maps robust to coarse deformations
and topological variations while capturing fine extrinsic
details on the shape surface.

* We conduct an extensive experimental validation establish-
ing a strong case for the proposed hybrid mapping frame-
work in various challenging problem settings, achieving
notable improvements upon state-of-the-art methods for
deformable correspondence estimation.

2. Related Work

Shape understanding has been studied extensively; a com-
prehensive background is beyond the scope of this work. We
refer the reader to one of several recent surveys [14, 46].
This section provides an overview of the works most closely
related to ours.

Intrinsic-Extrinsic Methods. Both intrinsic and extrinsic
approaches have advantages and disadvantages, and an opti-
mal method probably uses both. Several works combining
the functional maps framework with extrinsic features exist,
for example, with SHOT descriptors [47], including surface
orientation information [16, 41], anisotropic information [2],
or spatial smoothness of the point map [51]. SmoothShells
[18] uses extrinsic information as a deformation field, align-
ing the surfaces in a coarse-to-fine approach guided by the
frequency information of the LBO eigenfunctions. These
approaches still use the purely intrinsic LBO eigenfunctions
to define the functional maps basis, adding extrinsic infor-
mation through regularization or additional steps.
Functional Maps. The functional map framework proposed
in [37] uses the eigenfunctions of the LBO to pose the corre-
spondence problem as a low-dimensional linear system by
rephrasing it as a correspondence of basis functions instead
of vertices. The frequency-ordering of the LBO eigenfunc-
tions, as well as their invariance to isometries, allow them to
span a comparable but expressive space of smooth functions,
which can be efficiently matched by using point descriptors,
for example HKS [50], WKS [6] or SHOT [47].

Follow-up work has been proposed to improve the cor-
respondence quality [35, 38], extend it to more general
settings [23, 44], and learn to generate optimal descrip-
tors [20, 28, 48]. These methods are particularly power-
ful as they exploit the structure of the geometric manifolds
through the functional correspondence of eigenfunctions on

3314



the shapes but still incorporate a learned descriptor to more
accurately represent nuances in the shape surface topology.
Unsupervised learning-based approaches have been proven
highly effective in recent years [5, 10-12, 26, 45], even
surpassing the performance of supervised methods. Such
approaches have not only succeeded on a wide range of com-
puter vision benchmarks but have recently proven effective
in the medical domain [7, 8, 11, 31].
Basis Functions. Many improvements have been proposed
for the functional map framework, but most methods still use
the Laplace-Beltrami eigenfunctions as the underlying basis.
Despite this, other basis types have been proposed for shape
analysis, for example, the L1-regularized spectral basis [36],
the landmark-adapted basis [39], a basis derived from gaus-
sians [13], or localized manifold harmonics [33]. The latter
proposed to “mix” a localized basis with the normal LBO
eigenfunctions. DUO-FMNet [17] proposes calculating an
additional functional map for the complex-valued connection
Laplacian basis. However, the basis functions in both cases
are orthogonal and purely intrinsic. Another approach is to
learn the optimal basis set for functional maps [22, 32, 49],
but these tend to not generalize to new applications and, thus,
cannot be used out of the box. Various other extrinsic bases
have been proposed [1, 29, 53], but none of these have been
demonstrated suitable for functional correspondence.
Recently, Hartwig et al. introduced an elastic basis based
on the eigendecomposition of the Hessian of the thin-shell
deformation energy for functional maps [21]. While it pre-
serves some desirable properties of the LBO (like frequency
information) and is better suited for detail alignment, our
results indicate it does not perform well in learned functional
map-based pipelines (c.f. Sec. 5.3). In this work, we analyze
the reasons for this and propose a novel way to preserve
the advantages of the elastic basis while joining it with the
performance of LBO-based approaches.

3. Background: Functional Maps

Functional maps [37] offer a compelling framework for
shape matching by abstracting point-to-point correspon-
dences S; — S5 to a functional representation between func-
tion spaces on manifolds F(S1) — F(S2). This paradigm
simplifies the map optimization problem to a linear and com-
pact (low-rank) form, enabling additional regularization.
Until now, the Laplace-Beltrami eigenfunctions have
been used almost exclusively as the basis to span the to-
be-matched function spaces due to their desirable properties,
for example, orthogonality, isometry invariance, and allow-
ing a significant dimensionality reduction. In Sec. 3.1, we
will study the more general setting of computing functional
maps for non-orthogonal basis sets, an extension of the non-
orthogonal ZoomOut [35] that has been proposed in [21].
But first, we introduce the default functional map framework.
Spectral Decomposition. A positive semidefinite (p.s.d)

linear operator 7 (in most cases the LBO, A) is computed on
the mesh representation of each shape, followed by solving
the generalized eigenvalue problem:

Tos = NiMo;. (D

Ordered by eigenvalues, the first k£ eigenfunctions @, can
be used as a truncated basis for each shape. As both 7 and
the mass matrix of lumped area elements for each shape M
are p.s.d., the eigenfunctions are orthogonal w.r.t the norm
induced on the vector space by M: @7 M ®j, = I.
Functional Map Estimation. Given two point descriptors
functions Dy € F(S1), D2 € F(S2) which are known to be
corresponding, the functional map between two basis sets
can be computed via a least-squares problem. Let Dy, :=
@IDi denote the descriptor functions projected into the LBO
eigenfunctions ®; using the Moore-Penrose pseudo inverse
®,. We can then compute an optimal functional map by
solving the following optimization problem [15, 37]:

C* = arg mcin E(C) = Eqaa(C) + AEs(C)  (2)

E4a(C) = ||CDg, — Da,|%
Ereg(c) = HCAl - A2CH%‘

where A; a diagonal matrix of the eigenvalues of 7 [15] or
the resolvant [42]. This energy can be solved in closed form
row-by-row with k least squares problems when defined in
the Frobenius norm [15].

Learned features have proven robust for a wide variety

of surface representations. Unless mentioned otherwise, we
use deep features from DiffusionNet [48] and denote these
as D; € R™* for shapes S; and S5.
Map Regularization. The estimated map can be interpreted
as a change of basis between shapes. In case of an underde-
termined linear system in Eq. (2) or noisy descriptor func-
tion, C' can be further regularized with losses that promote
orthogonality, bijectivity, isometry, or additional pointwise
descriptor preservation [12, 15, 45]. If the regularizer is in
a simple quadratic form, it can be backpropagated through
and used to train the descriptor functions.

3.1. Non-Orthogonal Basis Functions

Wirth et al. [54] originally proposed an elastic thin-shell
energy for spectral analysis. Hartwig et al. [21] then recently
demonstrated how the spectral decomposition of this elastic
deformation energy can be used for functional mapping de-
spite being non-orthogonal [21]. The elastic energy Ws|f]
consists of a membrane contribution Wyem, Which measures
the local distortion of the surface, and bending energy Whend
encapsulating curvature (c.f. appendix for a complete defi-
nition). By construction, the semi-positive definite hessian
of the elastic deformation energy can be decomposed at
the identity as in Eq. (1), yielding a set of eigenfunctions.
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Figure 2. A Percentage-Correct-Keypoint ablation between the pure
LB basis, pure elastic basis (orthogonalized), and our hybrid ap-
proach at the same spectral resolution (k = 200). The elastic basis
attains better detail alignment than the LB basis but yields infe-
rior overall global correspondences. The proposed hybrid approach
achieves the best of both worlds. Experiments are conducted with
the ULRSSM [12] framework on SMAL.

These vector-valued eigenmodes are suitable for functional
mapping after projection onto the vertex-wise normals of
the surface and selecting the first £ non-orthogonal basis
functions ¥ = [¢)1, ..., 9] € R™* [21].

Much of the simplicity of the functional maps framework
can be attributed to the orthogonality of the basis functions
w.r.t the mass matrices on each shape. The mass matrix ac-
counts for the anisotropic metric on the non-Euclidean shape
manifolds which must be observed for common operators
such as the inner product (-, -) s and norm || - ||as. The re-
duced mass representation M), = ¥TM¥ € R¥** can
be used to construct a metric in the spectral space of each
shape. Notably, these operations reduce to the standard inner
product when represented in the orthogonal LBO basis.

However, this is not the case for non-orthogonal basis
functions, and careful treatment must be taken to avoid ne-
glecting the anisotropic metric. Hartwig et al. [21] derive the
necessary operations, such as the orthogonal projector, and
reformulate optimization problems to use the elastic basis in
the ZoomOut [35] framework for functional map refinement.
For a thorough treatment of these fundamental definitions,
we refer the reader to the relevant literature [21, 54]. Our
method requires several additional operations and losses to
utilize the elastic basis in a learned setting, including the
formulation in Eq. (2), which we will derive in Sec. 4.

4. Method: A Hybrid Approach

The LBO eigenbasis is the predominant choice in functional
map-based [37] approaches due to their robustness and in-
variance to isometric deformations, but they tend to struggle
with aligning high-frequency details. On the other hand, the
recently proposed elastic basis functions have proven effec-
tive at representing extrinsic creases and bending [21] (see

Fig. 2). However, we observed that naively replacing the
LBO basis with the elastic basis does not always improve
performance, particularly in learning-based frameworks (see
Tab. 2).

To overcome the deficiencies of both basis choices, we
propose constructing functional maps between hybrid spaces
consisting of the LBO and elastic basis functions. This attains
the best of both worlds: a stable, isometric functional map
at low frequencies and sensitivity to extrinsic creases and
high-curvature details. To achieve this, we generalize the
deep functional maps framework outlined in Sec. 3 to non-
orthogonal basis functions in Sec. 4.1, then introduce the
hybrid functional map estimation in Sec. 4.2, and discuss
necessary adjustments for learning pipelines in Sec. 4.3.

4.1. Generalization to the Hilbert-Schmidt Norm

In this section, we will generalize Eq. (2) to functional maps
between non-orthogonal basis sets, for example, the elastic
basis [21]. For an orthogonal basis, Eq. (2) can be writ-
ten with the Frobenius norm in spectral space. For non-
orthogonal basis functions, this requires using an inner prod-
uct induced by the mass matrices on each shape [21]; norms
to measure distances in each Hilbert space or the magnitude
of linear operators must be scaled similarly.

Data Term. The original formulation of Eq. (2) takes the
difference of the descriptors D1, D5 as functions on the sur-
face using the .S, inner product; this reduces to the standard
inner product in spectral space for the LBO eigenfunctions.
For non-orthogonal basis sets, the spectral space is a Hilbert
space equipped with an inner product induced by the reduced
mass matrix My, o = \112TM2 V5. The data term then reads:

Lemma 4.1. The descriptor preservation term Fy,, can be
represented in the norm induced by Mj, o as:

|CDy, — D, », = [[v/Mi2(CDy, — Dy,)|l. 3)

We include a derivation in the appendix for completeness.

Regularizer. Next, we derive E., which ensures the
functional map C' commutes with the diagonal matrix of
eigenvalues A; of the respective linear operator [15, 37]
or its resolvant [42]. A key to functional map formulation
of Hartwig et al. [21] is the use of the Hilbert-Schmidt
norm for linear operators between Hilbert spaces, as it
considers the geometry on both the domain and range of
the operator as opposed to the Frobenius norm. We note
that the term ., measures the magnitude of the operator
(CAy — A2C) : F(S1) — F(S2), and should therefore take
into account the anisotropic metrics on each space.

Proposition 4.2. The regularization term E,., can be formu-
lated in the Hilbert-Schmidt norm as:

[CA1 — A2Clls = [[\/ My 2(CA1 — A2C) M;Z%HF
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Figure 3. Hybrid Functional Maps in a typical pipeline. Features are first extracted from a pair of shapes with a Siamese network (a). They
are then projected onto eigenbasis sets from different linear operators (b). We then solve for a block diagonal functional map spanning the
constructed hybrid function space (b). Additional regularization can be used to impose structure on parts of the hybrid functional map (c).

This problem can be expanded to a k* x k? linear system:

[((A1y/ M 1) @ /Myz — /M1 @ (v Mk,2A2))é||2

with the Kroneker product @, and C = vec(C) the col-
umn stacked vectorization of C, and using Lemma 4.1. This
system can be solved in closed form.

Proof. The first statement follows from the definition of the
HS-norm, using the cyclicity of the trace and equivalence
with the scaled Frobenius norm. A detailed discussion re-
garding how to reformulate this optimization problem in the
expanded form can be found in the appendix. O

It was previously shown that the formulation of E(C') in
the Frobenius norm admits a closed-form solution [15, 42].
This is crucial to the deep functional maps pipeline; we
found that solving iteratively with a differentiable convex
optimizer proves prohibitively expensive when solved to
sufficient accuracy for the outer SGD iteration to converge.
We therefore solve Eq. (2) in the expanded form to consider
the anisotropic metrics on F(S1) and F(S3). However, the
expanded k% x k2 system becomes prohibitively large at
k = 200, the spectral resolution typically used in advanced
functional maps pipelines. In the next section, we show that
separating the functional map optimization in Eq. (2) into
two problems under mild assumptions effectively resolves
this issue and enables proper regularization for practical
applications.

4.2. Hybrid Functional Map Estimation

Our experiments suggest that although the elastic basis per-
forms sub-optimally compared to the LB basis in deep-
learning settings, it achieves a higher percentage of matches
at a low geodesic error threshold, suggesting superior align-
ment of fine details and creases (see Fig. 2). Motivated by
this, we propose constructing a hybrid basis by combining
basis functions from both operators. Intuitively, the low-
frequency LBO eigenfunctions approximate the shape and

enable coarse alignment, while the elastic eigenfunctions
conform to creases and regions of high curvature. In this
hybrid function space, a functional map C'is articulated as a
block matrix, with each entry C'J encoding the correspon-
dence between two basis sets (see Fig. 1).

11 12
C= (gzl g22)

C'! and C?2 correspond to intra-basis maps and the off-
diagonal blocks C'*2 and C?! to inter-basis maps. The re-
sulting hybrid map can be used directly to obtain dense
point-to-point correspondences via nearest neighbor search
in the hybrid basis or via map refinement strategies [35].

We observe that, while mutually non-orthogonal, the LBO
and elastic eigenbasis exhibit very different behaviors on
the shape, and therefore assume that inter-basis maps are
undesirable (enforcing C'? = 0 and C?' = 0). Eq. (4)
then separates into two optimization problems (one for each
basis type), resulting in a block diagonal functional map
(see Fig. 3). In the appendix, we support this with mathemat-
ical intuition and empirically show that inter-basis matchings
adversely affect the convergence of the map.

The combined framework enables the application of the
hybrid basis to large functional map systems (e.g. £ = 200)
with proper adaptation for a non-orthogonal basis, combining
the benefits of different basis types and exceeding the perfor-
mance of each basis when used individually (see Fig. 2).

“4)

4.3. Learning in a Hybrid Basis

Deep functional map pipelines regularize the FM obtained
from Eq. (2) with additional loss functions. These are de-
scribed in detail in Sec. 5 for each specific pipeline. Similar
to Sec. 4.2, we note that each loss can be separated in our
block diagonal hybrid formulation (c.f. appendix for details).

The isometric invariance of the LBO loss functions pro-
vides a strong supervision signal for unsupervised FM meth-
ods. As the elastic basis functions lack these properties,
training from scratch with various architectures leads to
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Table 1. Shape correspondence estimation under various conditions, including isometric, non-isometric, and settings with topological

noise. The proposed hybrid approach yields performance improvements in axiomatic, supervised, and unsupervised settings.
1 SHREC’19 methods are trained on FAUST and SCAPE as in recent methods [12, 26].

. FAUST SCAPE SHREC’19" | SMAL DT4D-H TOPKIDS
Geodesic Error (x100) . .
intra-class  inter-class
< | ZoomOut [35] 6.1 7.5 - 384 4.0 29.0 33.7
§ DiscreteOp [43] 5.6 13.1 - 38.1 3.6 27.6 35.5
.§ Smooth Shells [18] 2.5 4.2 - 30.0 1.2 6.4 10.8
<t | Hybrid Smooth Shells (ours) 2.6 4.2 - 28.4 1.3 5.7 7.5
| FMNet [28] 11.0 33.0 - 42.0 9.6 38.0 -
3 GeomFMaps [15] 2.6 3.0 7.9 8.4 1.9 4.2 -
Hybrid GeomFMaps (ours) 24 2.8 5.6 7.6 2.2 4.1 -
Deep Shells [19] 1.7 2.5 21.1 29.3 34 31.1 13.7
< | DUO-FMNet [17] 2.5 4.2 6.4 6.7 2.6 15.8 -
2 | AttentiveFMaps-Fast [26] 1.9 2.1 6.3 5.8 1.2 14.6 28.5
g AttentiveFMaps [26] 1.9 2.2 5.8 5.4 1.7 11.6 234
5 SSCDFM [51] 1.7 2.6 3.8 54 1.2 6.1 -
S | ULRSSM [12] 1.6 1.9 4.6 39 0.9 4.1 9.2
Hybrid ULRSSM (ours) 1.5 1.8 3.6 33 1.0 3.5 5.0

suboptimal convergence. We, therefore, parameterize the op-
timization in Eq. (5) through linear annealing during training:

L(C) = L1p(C) + pLpns(C) 5

Intuitively, this favors coarse isometric matching early on
during training with the LBO eigenfunctions and leverages
the tendency of the elastic basis to align creases and de-
tails later for optimal convergence. Empirically, we find this
achieves superior performance compared to fine-tuning from
LBO pre-trained descriptors, which likely converges to local
minima near the LBO optimum.

5. Experimental Results

This section provides a summary of the datasets used and
our experimental setup. We refer to the appendix for a com-
plete description of the datasets, splits, hyperparameters, and
reformulation of method-specific losses in the HS-norm. We
use k = kg + kgpas to signify the total spectral resolution,
the number of LBO and elastic basis functions, respectively.

5.1. Datasets

We evaluate our method on several challenging benchmarks
encompassing near-isometric (FAUST [9], SCAPE [3],
SHREC [34], DeformingThings4D intra- [27]), non-
isometric (SMAL [55], DeformingThings4D inter- [27]), and
topologically noisy (TOPKIDS [30]) settings. We use the
more challenging re-meshed versions as established [12, 17].

5.2. Hybrid Basis in Different Frameworks

To understand the efficacy of the proposed hybrid basis in
various methodological settings, we use it instead of the

LBO basis in three different methods spanning supervised
(GeomFMaps [15]), unsupervised (ULRSSM [12]), and ax-
iomatic settings (Smooth Shells [18]). Due to inherent vari-
ability, we reproduce each experiment 5 times in both the
baseline (LBO) and hybrid configuration, reporting the best
results consistent with standard practices. The total num-
ber of basis elements k is kept fixed per method for all
experiments; we replace only the highest-frequency LBO
eigenfunctions with the elastic basis functions correspond-
ing to the smallest eigenvalues. Quantitative experimental
results (c.f. Tab. 1) are organized into sections (supervised,
unsupervised, axiomatic), where we compare to competitive
methods in the same category. Qualitative results are shown
in Fig. 4 and in the supplementary.

GeomFMaps [15] originally proposed the addition of
a Laplacian regularization term to the FMNet framework,
which has proven effective at enforcing isometric characteris-
tics of the map calculated from Eq. (2). We replace the LBO
basis functions with the hybrid formulation, solving them
separately as proposed in Sec. 4. For the elastic part of the
functional map, we replace both the Eg,, and Eieg terms in
the map optimization problem with our weighted variations.
We also regularize the ground truth supervision loss Ly =
(C — Cy) with the weighted HS-norm. The hybrid functional
map is refined during inference to obtain dense point-to-point
correspondences by performing a nearest-neighbor search in
the hybrid vector space. Following the recommendations of
the original authors [15], all final results in Tab. 1 are run at
a spectral resolution of kg = 20, kgj,s = 10.

Results. We compare our results with those of GeomFMaps
under the LBO basis and the supervised method FMNet [28].
Notably, the proposed hybrid basis outperforms LBO Ge-
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Figure 4. Qualitative Results on SMAL, DT4D-H, and TOPKIDS. Comparison of ULRSSM in the LBO basis and in the proposed
hybrid basis. Hybrid functional maps yield higher-quality correspondences, particularly under topological noise. ULRSSM in the LBO basis
frequently creates coarse mismatches such as incorrectly assigning appendages, whereas the elastic basis better represents these details. The
first six columns show texture transfer. The last columns transfer normals making the less accurate alignment of creases in ULRSSM visible.

omFMaps in most settings, spanning near-isometric and
non-isometric shape matching, where a particular benefit
can be seen for SHREC’19 and SMAL, with a 2.3 and 0.8
improvement in mean geodesic error, respectively.
ULRSSM [12] has recently achieved SoTA performance
in various challenging shape-matching settings. We evaluate
our proposed hybrid basis when used in ULRSSM instead
of the pure LBO functional basis. ULRSSM uses the func-
tional map computation term described in Eq. (2). Hence,
we proceed to split the optimization problem as described
in Sec. 4.2 and adapt the elastic part with the proposed
weighted formulation. The authors of ULRSSM additionally
regularize the functional map C' to preserve bijectivity Lyij,
orthogonality £, and a loss coupling functional and point-
to-point maps Louple in a differentiable manner. For the elas-
tic optimization, these are all reformulated in the HS-norm.
We use the same overall spectral resolution k£ = 200 as the
original implementation[12], with kg = 140, kg,s = 60.
This choice of basis ratio is discussed in the appendix.
Results. Using the hybrid basis instead of the LBO basis
in ULRSSM results in notable performance improvements,
even in near-isometric matching settings such as FAUST
and SCAPE Tab. 1. Improvements are most significant in
the non-isometric settings, including SMAL and inter-class
DT4D-H, where the hybrid basis outperforms LBO with a
geodesic error of 0.6. The most notable performance increase
can be observed for TOPKIDS, where the hybrid basis yields
a 45% improvement in geodesic error. Percentage-correct-
keypoints (PCK) plots underscore these results (see Fig. 5).

Smooth Shells [18] remains one of the most strongly

performing axiomatic methods for spectral shape matching.
The method generates initial hypotheses for aligning a shape
pair through a Markov-Chain Monte-Carlo (MCMC) step in
a low-dimensional spectral basis (k = 20). The algorithm
then proceeds with an alternating optimization using both
extrinsic and intrinsic information. Following the principle
that Laplacian eigenfunctions capture coarse shape features
well, we perform the MCMC initialization in the LBO basis.
During the hierarchical matching step, we extend the product
manifold with an additional dimension consisting of the
elastic basis. We use a spectral resolution of kg = 300,
kgs = 200, while the original implementation uses k =
500.
Results. We observe that the performance with the proposed
hybrid basis also leads to improved performance of Smooth
Shells’ over pure LBO, particularly for non-isometric and
topologically noisy settings. Notable improvements can be
seen for the TOPKIDS and SMAL datasets, with a 3.3 and
1.6 improvement in mean geodesic error, respectively.

5.3. Ablations and Implementation

We conduct two ablations to support the design choices
regarding the generalization to the Hilbert-Schmidt (HS)
norm in Sec. 4, and the hybrid formulation. All experiments
are conducted on ULRSSM with k& = 200 basis functions.
To motivate the generalization to the HS norm, we con-
sider two alternatives. The first involves using the standard
functional map solver without making any adjustments to
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Figure 5. Percentage-Correct-Keypoint Plots depicting the geodesic error for state-of-the-art unsupervised methods on the datasets SMAL,
DT4D-H inter, and TOPKIDS. We compare AttentiveFMaps, ULRSSM, and Hybrid ULRSSM(Ours).

the non-orthogonal elastic basis. The second alternative, we
orthogonalize the basis using Gram-Schmidt under the inner
product induced by M, making it directly usable in a stan-
dard FMap framework. Next, we compare the proposed hy-
brid formulation against using either pure LB or pure elastic
basis functions. Due to the complexity of the k2 x k? expan-
sion under the HS-norm in Sec. 4, ULRSSM with 200 elastic
basis becomes computationally intractable. We therefore or-
thogonalize the elastic basis functions as an approximation
to the proper adaptation of a fully elastic functional map.

Results. The results can be seen in Tab. 2 and Fig. 2. We
observe that using the standard Frobenius norm or orthog-
onalizing the elastic basis yields inferior results compared
to the HS-norm adaptation. Furthermore, both pure LB and
pure elastic basis adaptations perform worse than the pro-
posed hybrid framework (c.f. Fig. 2). Interestingly, we ob-
serve that while the elastic basis functions achieve a superior
detail alignment, and the LBO a better coarse alignment,
the hybrid basis surpasses the performance in both regimes.
We conclude that both basis hybridization and the HS norm
adaptation contribute to notable performance improvements.
Implementation Details. Experiments are carried out in
Pytorch 2.1.0 with CUDA version 12.1, except for Smooth
Shells, which is run in Matlab based on the implementa-

LB Elastic Adaptation Geo. error (x100)
X 4 + intractable

X 4 - 40.2 +£0.80

X v + 5.75£1.20

v X = 5.15£0.99

v 4 - 4.37 £ 1.57

4 4 + 4.33 £0.56

v 4 + 3.83 £0.74

Table 2. Ablation study of the proposed hybrid basis and the effect
of two adaptations to the non-orthogonal elastic basis: generaliza-
tion to the HS norm (#) as proposed in Sec. 4 and orthogonalization
(+). Experiments are conducted with ULRSSM [12] on the SMAL
dataset at spectral resolution £ = 200. The green row represents
our approach , and the orange row the original ULRSSM [12].
Experiments are conducted 5 times; mean = stdev. is reported.

tion provided by the authors. Supervised and unsupervised
methods are trained and evaluated on an NVIDIA A40. A
complete list of hyperparameters for each of the methods
used is provided in the appendix.

6. Limitations and Conclusion

This work explores the efficacy of combining basis functions
originating from different operators for deformable shape
correspondence. Our findings highlight the importance of
accurately treating non-orthogonal basis functions to reflect
the anisotropic metric on each shape. Imposing orthogonal-
ity on the basis functions shows improvement over naive
adaptation but does not supplant proper mathematical adap-
tation of the optimization objectives. Additionally, the elastic
basis functions underperform when used independently in a
learned context; integrating it with low-frequency LBO basis
functions significantly enhances spectral matching accuracy.

Solving the expanded k2 x k? system from Sec. 4 leads
to computational overhead; however, this is tractable for
the elastic basis size of 60. Performance gains in the ex-
panded form justify this trade-off. Future research could
potentially address partial shapes or noisy point clouds with
non-orthogonal basis functions as these are active areas of
interest [5, 11, 22].

Overall, the proposed hybrid functional mapping ap-
proach, leveraging both elastic and LBO eigenfunctions,
exhibits notable performance in diverse settings, including
isometric and non-isometric deformations and under topo-
logical noise. Our findings open new avenues for integrating
various non-orthogonal basis functions into deep functional
mapping frameworks, paving the way for further advances
in spectral shape matching for challenging settings.
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