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Abstract

In this paper, we address single image-based novel view
synthesis (NVS) by firstly integrating view-dependent effects
(VDE) into the process. Our approach leverages camera
motion priors to model VDE, treating negative disparity as
the representation of these effects in the scene. By identify-
ing that specularities align with camera motion, we infuse
VDE' s into input images by aggregating pixel colors along
the negative depth region of epipolar lines. Additionally, we
introduce a ’relaxed volumetric rendering’ approximation,
enhancing efficiency by computing densities in a single pass
for NVS from single images. Notably, our method learns
single-image NVS from image sequences alone, making it
a fully self-supervised learning approach that requires no
depth or camera pose annotations. We present extensive ex-
perimental results and show that our proposed method can
learn NVS with VDEs, outperforming the SOTA single-view
NVS methods on the RealEstatelOk and MannequinChal-
lenge datasets. Visit our project site".

1. Introduction

Novel view synthesis (NVS) is a fundamental computer
vision task that aims to generate new views of the input

Inttps://kaist-viclab.github.io/monovde-site

scene from arbitrarily different camera positions. Recent
advances in NVS have shown that view-dependent effects
(VDE), which increase the realism and perceived quality of
the novel views, can also be learned and incorporated into
the rendering pipelines. Particularly, NeRF [32] has demon-
strated that radiance fields can be effectively learned by a
multi-layer perceptron (MLP) that allows rendering geom-
etry and VDEs from multi-view captures.

NeReF relies purely on multi-view consistency and can-
not exploit prior knowledge, such as textures and depth
cues common across natural scenes. This limits NeRF
when only a few or only one view is available. On the
other hand, to leverage the 3D prior knowledge in multi-
view datasets, PixeINeRF [46] proposed to train an MLP
that takes as inputs the spatial locations, the viewing direc-
tions, and the pixel-aligned deep features to generate the
colors and densities in the radiance fields. However, Pixel-
NeRF s still limited in learning the ill-posed task of directly
mapping input image pixels to VDEs. Other works, such
as single-image MPIs [40], MINE [26], BehindTheScenes
[42], and SceneNeRF [2] have also proposed single-view-
based NVS, but poorly model VDEs.

VDEs depend on the material’s reflectance, which is a
function of the material properties and the light’s angle
of incidence. Learning such material properties and light
sources from a single image is a very ill-posed problem.
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While MLP [32] and spherical-harmonic-based [1 1, 43, 45]
techniques to encode VDEs are effective when learning
from multiple input images, they are still constrained when
learning from single images. Instead, for the first time, to
tackle the estimation of VDEs for single-view-based NVS,
we propose to rely on the contents of the single images
and estimated (during training) or user-defined (during test
time) camera motions to estimate photo-metrically realistic
view-dependent effects. Our main contributions are:

* We firstly propose a single view NVS method with VDEzs,
called NVSVDE-Net. By recognizing camera motion pri-
ors and negative disparities govern view-dependent ap-
pearance, we model VDEs as the negative disparities in
the scene induced by the target camera motion.

e The NVSVDE-Net is the first to be trained in a com-
pletely self-supervised manner in the sense that neither
depths nor pose annotations are required. While other
methods rely on given depths and/or camera poses, the
NVSVDE-Net learns only from image sequences. Dur-
ing test, only one single image input is required for the
NVSVDE-Net to render novel views with VDEs.

* A novel ‘relaxed volumetric rendering’ approximation
method is proposed, allowing fast and efficient rendering
of novel views from a single image. The NVSVDE-Net’s
rendering pipeline well approximates volumetric render-
ing by a single pass of a convolutional or transformer-
based backbone and re-calibration and sampler MLP
blocks.

Additionally, to better learn from image sequences only,
we introduce a new coarse-to-fine camera pose estimation
network as a secondary contribution.

2. Related Works

Unlike the classical techniques for single view NVS which
require user input or rely on hard-coded domain-specific
assumptions [21, 22], deep-learning-based approaches can
leverage image representations that are common across
scenes to render novel views automatically. We distinguish
between two kinds of deep-learning-based NVS methods
from single images: one kind requires an additional pre-
computed depth map [18, 25, 33] and the other kind only
uses a single image during test time [2, 26, 37, 39, 40, 42,
44, 46]. Our method lies in the second category, with the
remarkable exception of not requiring ground truth (GT)
depths and GT camera poses during training. We focus on
static forward-facing scenes, not object-centric 360-degree
rendering [29] or modeling motion of dynamic objects [28].

2.1. MPI-Based Single View NVS

The multi-plane image representation (MPI) [50] maps sin-
gle or multiple images into a camera-centric layered 3D rep-
resentation. Each input image pixel p = (u,v) is mapped to
D-number of colors and opacities. New views are rendered

by sampling the MPI colors and opacities from novel cam-
era poses and by aggregating them via volumetric render-
ing [9]. In [40], Tucker and Snavely proposed single-view
NVS with MPIs. Estimating densities and colors in MPIs
is challenging and not well-posed to model view-dependent
effects, as the MPI’s colors are not a function of the viewing
directions. Furthermore, Sampling distances in MPIs de-
pend on intersections with multi-image planes, potentially
hindering high-quality rendering. On the other hand, MINE
[26] borrows from [32] and [50] by adopting an MPI that
is trained and queried via NeRF-like strategies, where the
MPI representation is decoded one depth plane at a time.
However, MINE still cannot model VDEs, and its sequen-
tial decoding increases computational complexity.

In contrast, our method explicitly models VDEs and ap-
proximates volumetric rendering by relaxing alpha com-
positing and obtaining refined sample distances at the target
camera view for fine-grained rendering. Furthermore, we
do not rely on ORB-SLAM?2 predicted camera poses and
sparse 3D point clouds for supervision.

2.2. NeRF-based Single View NVS

In Neural Radiance Fields (NeRF) [32], Mildenhall et al.
introduced a method that effectively maps 3D coordinates
and viewing directions to color and density values using an
MLP for volumetric rendering. However, NeRF has limita-
tions: Besides overfitting to a single scene, it needs several
reference views with accurate camera poses and long pro-
cessing times. Nevertheless, recent advances have dramati-
cally reduced neural rendering train and test times [4, 24].

PixelNeRF [46] is a cross-scene generalizable variant of
NeREF, sacrificing rendering quality for scene generaliza-
tion. It maps not only 3D ray points but also projected deep
features into color and opacity values in radiance fields.
Even when viewing directions are incorporated into Pixel-
NeRF’s MLP, the lack of a view-dependent inductive bias
prevents PixeNeRF from generating VDE:s.

Wimbauer et al. extended PixelNeRF in BehindScenes
[42] by sampling colors from epipolar lines and process-
ing densities with an MLP head for each point in the tar-
get ray. BehindScenes is designed to focus on 3D geome-
try but still lacks a mechanism for modeling VDEs as col-
ors are projected between the minimum and maximum dis-
tance bounds in the target view. SceneRF [2] is also built
on PixelNeRF but incorporates a probabilistic ray sampling
strategy and a Spherical U-Net, along with depth penalties
[14, 15]. Their sampling strategy uses Gaussian mixtures
and requires multiple forward passes for rendering. Like
NeRF[32], the MLPs in PixelNeRF [46], BehindScenes
[42], and SceneRF [2] independently process each sample,
amounting to a considerable computational complexity. In
contrast, our approach with fine-grained ray sampling and
relaxed volumetric rendering allows for all opacity estima-
tions in a single pass, yielding efficiency gains.
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2.3. Generative Single-View NVS

NVS from a single image has also benefited from new ad-
vances in generative models. In [35], Ren er al. used an
autoregressive transformer with a VQ-GAN [10] decoder
to model long-term future frames. Similarly, Rombach et
al. proposed GeoGPT [36] where they showed that autore-
gressive transformers can implicitly learn 3D relations be-
tween source and target images. In [39], Tseng et al. pro-
posed a diffusion model [20] with epipolar attention blocks
at its bottleneck that learn to infuse source view informa-
tion along the epipolar lines into the target synthetic view
during the diffusion process. In VQ3D [37], Sargent et
al. proposed to learn 3D-aware representations and gener-
ation from ImageNet [7] using transformer-based [8] au-
toencoders to map images and latent vectors into a tri-
plane representation for neural rendering [3]. Pre-trained
DPT [34] depths and various adversarial losses are used
to train VQ3D. VQ3D is limited to render low-resolution
views (256 x256) with constrained viewpoints more related
to object-centric rendering.

Even when generative models aid NVS from a single
image in generating novel views with very large baselines,
they suffer from severe inconsistencies due to the stochastic
nature of generative models. In addition, they suffer from
large computational requirements and inference times that
still make them impractical for single-view NVS.

2.4. View Dependent Effects

View-dependent effects (VDE) in NVS from multiple im-
ages have been achieved by incorporating viewing direc-
tions into the scene representations. In the case of NeRFs
[1, 32], viewing directions are fed into the late stages of the
MLPs, while in other works [11, 11, 43] view-dependent ef-
fects are modeled by spherical harmonics which map view-
ing directions to intensity changes. Even though these
methods show SOTA view-dependent effects, they have the
severe limitation of not generalizing cross-scenes and re-
quiring several reference frames for inference. Moreover,
fitting new scenes is a time-consuming optimization process
that can take several hours.

In contrast, we introduce a new rendering pipeline, the
NVSVDE-Net, which learns to approximate volumetric
rendering for estimating novel views and view-dependent
effects (VDE) from videos without requiring camera pose
or depth labels. Trained in a self-supervised manner from
image sequences, our NVSVDE-Net can render novel views
with VDEs during inference, even from unseen single-
image inputs. This marks the first instance of showcasing
VDE:s estimated from single images, leveraging local con-
text and camera motion priors.

3. Proposed Method

Volumetric rendering [9] synthesizes novel camera views
by traversing rays r that originate in the target view camera
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Figure 2. VDEs ‘follow’ camera motion. (a) VDEs have dispari-
ties w.r.t. their reflective surfaces in the opposite direction of the
projection of the reflective surface itself. (b) and (c) the max VDE
disparity is proportional to the reflective surface disparity. The
closer the reflective surface, the larger the VDE disparity can be.
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Figure 3. VDEs follow camera motion w.r.t. their reflective
surfaces. We exploit this simple yet effective prior for simple
glossy/diffuse specular reflections, which are plausible to esti-
mate/render for single image inputs.

center into a 3D volume of colors ¢ and densities o. The
continuous volumetric rendering equation (VRE) is

ty

C(r) = T(t)o(t)e(t)dt, (1)

tn

where the accumulated transmittance 7 (¢) indicates the
probability of r traveling between the near distance bound
t,, and ray distance ¢ without hitting a particle. On the other
hand, the density o(¢) is understood as the probability of 7
hitting a particle exactly at ¢. ¢y is the far distance bound.

In NeRF [32], a large number of samples along the ray is
considered to discretely approximate the VRE by Monte-
Carlo sampling while the processing blocks, such as an
MLP or convolutional layers, compute o; and c; for each i
sample along the ray. For this reason, the methods inspired
in NeRF [2, 26, 42, 46] tend to yield very slow rendering
times as each sample requires an independent forward pass.

3.1. Relaxed Volumetric Rendering

Estimating the ¢; and o; for volumetric rendering is not
a trivial task. The complexity of volumetric rendering in-
creases when a few or a single observation is available, as
it becomes a one(pixel color)-to-many(densities and colors)
mapping. For this reason, recent works such as [42] ease
the network burden by only predicting density values (by
several passes of an MLP head) and using colors directly
projected from the input image .

To better incorporate a 3D inductive bias into our mod-
els, we propose to relax further the VRE Eq. (1) by directly
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modeling the ‘ray point weights’ also known as 7 (t)o(t).
This allows NVS to be treated as a classification problem
for geometry and VDE. Eq. (1) can further be relaxed by
using projected colors from a VDE-infused input image 1/
instead of estimated colors ¢;. c is the target VDE camera.

For each ray in our relaxed volumetric rendering, VDE-
infused colors from I? and estimated ray point weights (or
depth probabilities) DT are sampled/perspective-projected
at ray depths ¢; into the target camera c and integrated to
generate the final color estimate I/.(p) at pixel location p =
(u,v), as given by

N—-1
I(p) = > _ DI () (9(p,ti, Relte, K)),  (2)
1=0

where R, and t. are the target camera rotations and trans-
lations, K is the camera intrinsics, and N is the number
of samples in the ray r. Following the literature [12, 17],
t; = tn(ty/t,) 7"/ (N1 exponentially distributes the sam-
pling points in the target rays such that there are more sam-
pling points for the closer depths and fewer for the far-away
distances. g¢(-) is the perspective projection function that
outputs the pixel coordinate (u',v") = ¢g(-), allowing to
sample colors from I¥ at (u/,v’) by bilinear interpolation.
See Supplemental for more details on g(-). Finally, DF (p)
is the i*" channel of the projected depth probability volume,
which approximates 7 (¢)o (t) in Eq. (1) for our relaxed vol-
umetric rendering, and is given by

DP(p) = o ({DE(g9(p, i, Relte, K)IN Y, (3)

where o(-) denotes the channel-wise softmax operator and
{DF(-)}N;! denotes the channel-wise concatenation of
DE(.). DL is the estimated depth logit volume, which de-
scribes the scene’s geometry seen from the input or source
camera view. Additionally, a depth estimate D can also be
drawn from D’ by a dot-product with all ¢; by

D(p) = {t:}}55" - o(D"(p)). (4)

Contrary to MPIs [40, 50], our approximated volumetric
rendering allows us to efficiently and uniformly sample the
target view rays, instead of relying on the intersections of
the target rays into the multi-image planes.

3.2. Synthesis of View-Dependent Effects

View-dependent effects (VDE), such as the reflection de-
picted in Fig. 2-(a), seem to ‘follow’ the camera motions
relative to their reflective surfaces. While the reflective
surface projection (red line) ‘moves’ upwards in the target
camera, the reflected ray (or view-dependent effect) moves
downwards with respect to the reflective surface. We pro-
pose to exploit this strong yet simple and effective prior to
generating a target VDE by re-sampling the pixels that ‘fol-
low’ the camera motion. This operation is equivalent to a

weighted sum of projected source colors along the negative
depth region of the epipolar line?, as shown in Fig. 3. As
depicted in Fig. 3, the target VDE (green ray) intersects the
reflection at the source camera in the negative depth region
of the epipolar line (blue sample).

Following Fig. 3, we define the VDE-infused input im-
age I at the viewing direction of the target camera c as

I(p)=Iu+ Y VE@®)(9(p.1/v; 1t K)), (5)

where Iy = I — I x ksxs roughly contains the high-
frequency details of I by subtracting the low-pass box-
kernel-filtered [ * k55 from I. I aids in generating VDEs
while preserving structural details. N, is the number of
VDE samples from 1. VJP (p) are the projected VDE proba-
bilities or ‘weights’ at the location p. Note that the identity
matrix I (no 3D rotation) in Eq. (5) is used instead of R,
as a pure 3D rotation of the pinhole camera cannot induce
VDEs. Finally, 1/v; describes the hypothetical depth val-
ues used to sample I along the negative disparity region of
the epipolar line.

We made a critical observation to define v;: relative
VDE “motion” cannot be larger than the corresponding
rigid flow generated by the scene depth and camera transla-
tion. That is, the max disparity in VDEs is inversely propor-
tional to the scene depths. This is further visualized in Fig.
2-(b) and (c), which display that the disparity relative to the
reflective surface projection is larger for the closer distance
zo than that at a distance z; in Fig. 2-(a). Then, instead of
modeling |v;| to vary from O to 1/t,,, we define it as

vj = —xlg (% - 6) — 6 (©)

where € is a very small number. V¥ in Eq. (5) is the pro-
jected VDE probabilities from the VDE logits V¥ given by

VE(p) = 0 ({(VE(o(p, v, Tt KDPYGY) . (D)

Similar to D in Eq. (4), a VDE activation map V, which
is useful for visualizing the most reflective regions in an
image, can then be obtained by

V(p) = {v}} - o (VE (D). )

3.3. NVSVDE-Net

With our relaxed volumetric rendering (Eq. 2) and VDE
synthesis (Eq. 5), we can generate novel views with VDEs
via the respective depth (geometry) and VDE logits, D
and VL. Fig. 4 depicts the overall architecture of our
NVSVDE-Net for joint learning of NVS and VDEs. The

2The same effect can be achieved by keeping a positive VDE depth and
inverting the relative camera motion between the source and target views.
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Figure 4. NVSVDE-Net architecture. NVSVDE-Net models VDEs as negative scene disparities under the target camera motion R.|t..
Novel views are estimated in two stages, firstly with coarse fixed ray samples ¢;, then with refined adaptive sampling distances ¢, (p).

NVSVDE-Net predicts D¥ and V* from geometry and
VDE pixel-aligned features in a single forward pass by

D*(p) = Fp(Wp(p),v(p, Re, tc)),
VL(p) = FV(WV(p)v '7(pa Rca tc))a

where Fp and F), are MLP heads (Linear-ELU-Linear) that
re-calibrate the geometry and VDE pixel-aligned features,
Wp and Wy, respectively, for the target camera view c.
Note that such calibration is needed as the samples at dis-
tances ¢; (in Eq. 2) and 1/v; (in Eq. 5) are measured from
the target camera view I, not the input source view I. Pixel
positional information p and relative camera extrinsics R,
and t, are also fed into F'p and Fy, via the positional encod-
ing v(-). We explored both a learnable ~yy (fast and compact
but can potentially overfit) and a sine-cosine [32] v posi-
tional encoding (more general but slower due to requiring
more channels) where there was little difference.

Wp and W) enable cross-scene generalization and
are simultaneously estimated from a CNN-based (or
transformer-based) encoder-decoder backbone Fy as
shown in Fig. 4. Fyy is also fed with the single image
input I and the relative pixel locations (U, V') to improve
learning from random-resized and -cropped patches [16] as
[WDa WV} = FW(Iv (Uv V))

Once D and V;, are computed, they can be used in Eqs.
(2) and (5) to yield the VDE-infused synthetic view I, as
shown in the center of Fig. 4. However, the quality of I
is closely tied to the number of samples N in our relaxed
volumetric rendering approximation. Naively increasing NV
can incur additional computational complexity. Instead, we
incorporate a sampler block Fs to estimate fine-grained ray
samples from projected depth probabilities and colors.

€))

3.3.1 The Sampler Block

The sampler block Fs in our NVSVDE-Net (top left of
Fig. 4) takes as input the projected probability logits D

Image
Encoder

Image

Encoder

3D-rotatation Encoder GAP

Figure 5. Improved PoseNet. Our PoseNet refines initial coarse
extrinsics by predicting a residual between rotation-aligned views.

and projected VDE-infused colors from I7. These are then
mapped by a fully-connected network (Linear-EL.U-Linear-
ELU-Linear) into N* refined per-pixel sampling distances
t*(p) and soft-maxed weights w™* (p) as given by

w*(p),t"(p) = Fs(D(p), {I (9(p. ti, Relte, )}y )-

(10)
wj(p) and ¢} (p) respectively replace D! and ¢; in Eq. (2)
to yield the final synthetic image I/ by a fine-grained re-
laxed volumetric rendering as

I(p) = S0, wi(p)IY (9(p, t; (D), Relte, K). (1)

Note the architecture in Fig. 4 only requires the backbone
to be run once per reference image. Once Wp and Wy,
are estimated, the novel views are generated by running the
computationally inexpensive re-calibration (Fp, Fy) and
the sampler (F's) blocks according to the relaxed VRE in
Eq. (11). Contrary to previous works [2, 26, 42, 46] that
also incorporate MLP heads for late-stage rendering, we
only need to run them once instead of running them for each
point in the target rays. Furthermore, previous single-view-
based NVS methods [2, 26, 40, 42, 46] require either depths
or pose GTs (or both), while our method learns from image
sequences only in an entirely self-supervised manner with
the aid from an improved camera pose estimation network.

3.4. Improved Camera Pose Estimation

Previously, camera-pose estimation networks [15, 49] have
shown reasonable performance for the monocular depth es-
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timation task in driving datasets [6, 13]. However, they can
only handle relatively simple camera motions because the
cameras mounted on cars are primarily exposed to Z-axis
motion and small horizontal rotations. In contrast, indoor
datasets [50] and hand-held captured scenes [27] contain ar-
bitrary translations with considerable rotations on all axes.

We observe that based on perceptual features, it is much
simpler to understand 3D translation between two images if
they are first rotation-aligned. We incorporate this observa-
tion into our improved PoseNet as depicted in Fig. 5. In our
PoseNet, from a pair of input images (I, I.), coarse cam-
era extrinsics (Rg, o) are estimated by aggregating their
deep features (estimated by a shared encoder network) with
a convolutional and global average pooling (Conv+GAP)
layer. This coarse stage resembles the PoseNets in [15, 49].
Ry is then used to rotation-align I. to I. We then extract
deep features from the rotation-aligned pair that contain
much more relevant visual features, such as closer vanish-
ing points and disparities. By an additional Conv + GAP
layer, residual translation and rotation values, AR and At,
are computed and added to Ry and ¢ to yield the final rel-
ative extrinsic parameters R, and ..

3.5. Loss Functions

From a training input image I, synthetic images are esti-
mated for both the previous and next views (/_; and /1)
in the video sequence. We utilize a synthesis 10ss, I, be-
tween each synthetic view, both coarse and fine (I”; and
I, I' | and I, respectively) and their corresponding GT
images (/_; and I ;). Additionally, we incorporate dispar-
ity smoothness [, that aids in regularizing D. The total
loss function is given by

ltotal = lsyn(—[é/) + lsyn(Ié) + asmlsm- (12)

The synthesis loss, /,,,,, is a combination of L1 and percep-
tual (VGG) loss [23] to enforce similar colors and structures
between synthetic and GT views. The VGG loss penalizes
deformations, textures, and lack of sharpness as it compares
estimated and GT views in the deep feature space of a pre-
trained image classification network. The L2 norm of the
perceptual error of the first three max-pool VGG19 [38]
layers (denoted by ¢!) was utilized. lsyn is given by

Lagn = |12 = Lell1 + 0 X0 |01 (12) — &' (L2)]13, (13)

where oy, = 0.01 balances the contributions of the L1 and
VGG terms. I = (1 - O.) ® I. + O, ® I, is the synthetic
view with occluded contents replaced by those in I.. © is
the Hadamart product. We compute the occlusion mask O,
following [17, 31] as

Oc(p) = XN o(DL)ig (0, ti, Relte, K)),  (14)

The edge-aware smootAhness loss Iy, with a weight of
asm = 0.05 regularizes D to be smooth in homogenous
image regions. See Supplemental for more details.

4. Experiments and Results

Extensive experimental results show our method can gen-
erate, for the first time, NVS with VDEs from single image
inputs on real datasets that contain complex camera motions
and scenes with no depth or pose annotations. Please see
Supplemental for additional results and videos.

We train our NVSVDE-Net with the Adam optimizer
(B1: 0.9, Bo: 0.999) with a batch size of 6 for 50 epochs
and 3k iterations per epoch. The initial learning rate is set
to 10~% and is halved at 50, 75, and 90% of the training
for stability and convergence. We set N = 32, N, = 32,
and N* = 16 for our relaxed volumetric rendering. We
train all models on the RealEstate10k [50] and Mannequin-
Challenge [27] datasets with random spatial data augmen-
tations such as random resize and crops, random horizontal
flip, and value-based data augmentations such as random
gamma, brightness, and color shifts. Training patches are
of 240x426 obtained from randomly resized images be-
tween 30% and 85% of their original resolution. Finally,
8-bit RGB images are normalized to the [—0.5, 0.5] range.

We adopt the same ResNet34 [19] IMAGENet [7] pre-
trained backbone in all models (in ours and [2, 42, 46]),
otherwise specified. In particular, we set N = 64, 48, and
32 ray samples for PixeINeRF [46], BehindScenes [42], and
SceneRF [2], respectively. To match NVSVDE-Net’s N*,
we use 4 Gaussians with four samples in SceneRF. For a
fair comparison, we train [2, 26, 40, 42, 46] under the same
self-supervised conditions as our NVSVDE-Net. We ob-
served [2, 42, 46] are unstable in the early epochs when
learning self-supervised, so they are trained from a fully-
trained PoseNet from our best NVSVDE-Net.

4.1. Datasets

RealEstate10k (RE10) [50] is a dataset consisting of 10M
frames from approximately 80k video clips from around
10k YouTube videos of indoor and outdoor human-made
environments. After downloading, we account for 400k and
180k for training and testing, respectively. We randomly se-
lect the 4, 8, 12, or 16" previous or next frame for training.
We use every 1k sample from the test set for testing.

The MannequinChallenge (MC) [27] dataset is a large,
diverse, and challenging dataset that mainly contains hu-
mans in both indoor and outdoor scenarios. It contains
170K frames from 2k YouTube videos where people try to
stay stationary while a recording camera moves around the
scene. After downloading, we account for 60k samples for
training and 9k samples for testing. We randomly select up
to the 6" previous or next frame for training. We use every
20" frame from the test set for testing.

In both datasets, images have a full resolution of
720x1280. We train with 1/3 resolution patches and test
with 1/2 resolution inputs. We render two views from an
input test view, the previous k-th frame and the next k-th
frame for evaluation. k is set to 8 and 1 for RE10k and
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Methods VDE MAE| PSNRT PSNR;;T SSIM{ LPIPS|
RealEstate10k (RE10k) Dataset [50]

PixelNerf [46] No 0.0417 22.8455 28.0945 0.7818 0.3256

BehindScenes [42] No 0.0466 22.9949 28.5941 0.8068 0.2762

MINE [26] No 0.0415 23.1657 27.8785 0.8041 0.2976

Single-view MPI [40]  No 0.0374 23.6260 28.9447 0.8112 0.2925

SceneRF [2] No 0.0373 23.6087 28.9636 0.8130 0.2709

NVSVDE-Net (Ours) Yes 0.0319 24.3131 30.2529 0.8397 0.2325
MannequinChallenge (MC) Dataset [27]

PixelNerf [46] No 0.0511 21.3047 252781 0.7580 0.3455
BHindScenes [42] No 0.0463 21.4307 25.9280 0.7831 0.3101
SceneRF [2] No 0.0467 21.5992 258119 0.7796 0.3080

NVSVDE-Net (Ours) Yes 0.0405 22.4274 27.0263 0.8130 0.2733
Table 1. NVS results. /1 denotes the lower/higher, the better.

Methods VDE MAE| PSNR?T PSNR;;1 SSIM{ LPIPS]
RealEstate 10k (RE10k) Dataset [50]
(w/o VDE) No 0.0323 24.1679 30.1651 0.8362 0.2320
(VDE disabled) No 0.0323 24.2092 30.1046 0.8383 0.2325
(w/o Fp & Fy) No 0.0337 23.9710 29.8303 0.8291 0.2426
(N=48, N*=0) Yes 0.0332 23.9613 29.8602 0.8322 0.2417
(N =32, N*=32) Yes 0.0321 24.3007 30.2156 0.8389 0.2340
ah Yes 0.0325 24.1020 29.9808 0.8343 0.2365
(o-based VRE) Yes 0.0325 24.1729 30.1202 0.8361 0.2375
(Periodic v [32]) Yes 0.0323 24.2506 30.1848 0.8366 0.2350
(No resize-crop, test at 1/3) Yes 0.0331 24.1030 30.4413 0.8213 0.2672
(R18) Yes 0.0338 24.0340 29.9165 0.8289 0.2437
(Swin-t [30]) Yes 0.0322 24.1917 30.1424 0.8354 0.2365
([49]’s PoseNet) Yes 0.0337 23.8736 29.8197 0.8259 0.2415
(Full) Yes 0.0319 24.3131 30.2529 0.8397 0.2325

MannequinChallenge (MC) Dataset [27]
([49]’s PoseNet) Yes 0.0454 21.5004 26.2065 0.7787 0.2897
(Full) Yes 0.0405 22.4274 27.0263 0.8130 0.2733

Table 2. NVSVDE-Net ablation studies.

Figure 6. Our NVSVDEDnet yields novel views with VDEs. See
https://shorturl.at/1tJT7 Fig5-video.

MC, respectively. Network outputs are bilinearly up-scaled
to full resolution before measuring their quality metrics.
We measure the quality of the rendered novel views with
RMSE, PSNR, SSIM [41], and LPIPS [47] metrics.

4.2. Results on RealEstatel0k (RE10k)

The scenes in RE10k contain a considerable amount of per-
ceptually significant view-dependent effects. As shown in
Fig. 6, our NVSVDE-Net learns single-view-based realistic
NVS and VDEs whose activations map the most reflective
regions in the corresponding input images well.

GT / Input PixelNeRF BehindScenes NVSVDE-Net

Figure 7. Companson with previous methods on RE10 [50]. See
https://shorturl.at/1tJT7 Figb-video

Gl NVSVDE Net_Single Vlew MPI GT NVSV E-Net Single View MPI

&.«%ﬁ-ﬁ;-s-- !

Figure 8. NVSVDE-Net VS MPI. Zoom in for details.

Measuring VDEs is difficult due to their sparse nature.
We observed that most VDE that could be modeled from
single images consist of low-frequency information, such
as glossy reflections. Based on that assumption, we propose
the PSNR;; metric in Table 1. PSNR;; takes the PSNR be-
tween an estimated image and its GT image, both filtered by
a 21 x 21-sized Gaussian kernel before comparison. Other
metrics that focus on strong image structures, such as SSIM
and LPIPS, showed transparency to the changes in VDEs,
as VDEs rarely change the high-frequency information or
high-level structures in the natural scenes.

Table 1 shows the results on RE10K [50]. Our
NVSVDE-Net significantly outperforms SceneRF [2] and
MPI [40] by a large margin of 0.7dB in PSNR and 1.3dB
in PSNR; s and previous methods [26, 42, 46] by more than
1.1dB in PSNR and 1.6dB in PSNR;;. We qualitatively
compare PixeINeRF, BehindScenes, and NVSVDE-Net in
Fig. 7, which shows that our model yields more detailed
synthetic views with fewer artifacts. Fig. 7 also shows that
methods [42, 46] that do not model VDEs struggle to yield
plausible geometries for the reflective regions.

Fig. 8 demonstrates cases where MPI [40] and
NVSVDE-Net perform similarly (top row) and instances
where MPI [40] fails due to reflective surfaces, as indicated
by higher error maps (bottom 2 rows). This shows that
modeling VDEs by incorrect geometries is insufficient for
higher-quality rendering. Our method exhibits more realis-
tic highlights and sharper novel views due to VDE synthesis
and fine-grained relaxed VR.
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4.2.1 Ablation Studies

Table 2 shows ablation studies for our NVSVDEnet. We
study the effects of our proposed VDE synthesis in (w/o
VDE), which yields 0.15dB lower PSNR than our full
model. Even though the PSNR difference is not very large,
a clear advantage in predicted geometries can be observed
in Fig. 10, where our model w/o VDEs predicts holes for the
reflective regions. We also ablate the effects of our VDEs
by disabling the VDE estimation in our full model, denoted
by (VDE disabled), which yields 0.15dB lower PSNR;;.

Next, we ablate design choices in our proposed relaxed
volumetric rendering. (w/o Fp & Fy) in Table 2 shows the
negative effects of not adjusting the depth and VDE log-
its volumes. (N = 48, N* = 0) shows that the coarse
synthetic output, even with more samples, is still 0.3dB in
PSNR behind our full model. On the other hand, (N = 32,
N* = 32) shows that only a few adaptive N* = 16 in
our full model is enough for optimal results. (1) is the
coarse synthetic output of our full model. Interestingly, (I)
is 0.2dB lower than I/, but 0.14bB higher in PSNR than
(N = 48, N* = 0), showing that the joint supervision of I/
benefits it. The fine-grained I’ removes most double-edge
artifacts due to discrete ray distance discretization as shown
in Fig. 10. In our relaxed volumetric rendering, we also
explore estimating density values o instead of T (t)o(t).
However, estimating o was not only computationally more
expensive due to the computation of the accumulated trans-
mittance for each ray sample but also yielded slightly worse
quality metrics. A periodic encoding ~ was also explored,
but we observed slightly worse quality metrics.

We also provide metrics for our NVSVDE-Net with dif-
ferent backbones, such as ResNet18 (R18) and Swin tans-
former [30] (Swin-t) transformer backbone. Even when
NVSVDE-Net (swint) quantitative metrics are not better
our ResNet34 full model, its estimated depth and VDE
maps are perceptually more consistent (see Supplemental
for qualitative comparison).

Finally, we also ablate the effect of our improved
PoseNet, with a synthesis quality impact of ~0.5dB and
~0.9dB higher PSNR than the widely adopted [49]’s
PoseNet, on RE10k and MC respectively. Test poses are
also estimated, reflecting the quality of our PoseNet.

4.3. Results on MannequinChallenge (MC)

The bottom part of Table 1 shows quantitative results for
single-image-based NVS on the MC [27] validation set.
The NVSVDE-Net outperforms the existing methods at
least by 0.8dB in PSNR and ~1.2dB in PSNR;¢. Fig. 9
depicts qualitative comparisons between our NVSVDE-Net
and SceneRF [2]. Again, our method yields sharper and
more consistent single-view NVS outputs.

4.4. Runtime Analysis

Our NVSVDE-Net takes 42ms for a 640x360 image on an
Nvidia A6000 GPU on vanilla PyTorch. 12ms are used for

Figure 9. Results on MC [27]. Top to bottom: I, GT, SecneRF
[2], Ours. See https://shorturl.at/1tJT7 Fig7-video.

’+1
R T AN -,‘é“ A 4-
”“’3‘.\

‘
NVSVDE- Net (w/o VDE) NVSVDE-Net (Coarse) NVSVDE Net (Full)

Figure 10. NVSVDE-Net ablation studies. See https://
shorturl.at/1tJT7 Fig8-video.

Input / Target

the backbone operation and 30ms for projections, sampler,
and rendering. Since the backbone runs only once for each
input image, it only takes 30ms to render novel views of the
same scene. Even though our method is near real-time with
33FPS, further speed-ups (up to 3 x) are possible with opti-
mized Python packages, such as TensorRT. In comparison,
SceneRF, PixelNeRF, and BehindScenes in Table 1, which
all share the same 25M-parameter backbone, take 160, 112,
and 99ms for rendering a 640x 360 image, respectively.

5. Conclusions

We firstly presented a novel method, the NVSVDE-Net, that
can learn to perform NVS and VDE estimation on single
images in a self-supervised manner from monocular image
sequences. We showed that our method generalizes well
on unseen test images and that it can generate plausible
VDEs and depth maps from a single image. In addition, our
NVSVDE-Net incorporates a relaxed approximation to vol-
umetric rendering, which we further improve by incorpo-
rating a sampler module for fine-grained ray sampling and
rendering. Our NVSVDE-Net yields more realistic NVS
images with VDEs in comparison to the recent SOTA meth-
ods such as PixeINeRF, BHindScenes, and SceneRF on the
RE10k and MC datasets.
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