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Abstract

Learning compatible representations enables the inter-
changeable use of semantic features as models are updated
over time. This is particularly relevant in search and re-
trieval systems where it is crucial to avoid reprocessing of
the gallery images with the updated model. While recent
research has shown promising empirical evidence, there
is still a lack of comprehensive theoretical understanding
about learning compatible representations. In this paper, we
demonstrate that the stationary representations learned by
the d-Simplex fixed classifier optimally approximate compat-
ibility representation according to the two inequality con-
straints of its formal definition. This not only establishes a
solid foundation for future works in this line of research but
also presents implications that can be exploited in practical
learning scenarios. An exemplary application is the now-
standard practice of downloading and fine-tuning new pre-
trained models. Specifically, we show the strengths and criti-
cal issues of stationary representations in the case in which
a model undergoing sequential fine-tuning is asynchronously
replaced by downloading a better-performing model pre-
trained elsewhere. Such a representation enables seamless
delivery of retrieval service (i.e., no reprocessing of gallery
images) and offers improved performance without opera-
tional disruptions during model replacement. Code available
at: https://github.com/miccunifi/iamcl2r.

1. Introduction

By learning powerful internal feature representations from
data, Deep Neural Networks (DNNs) [1–4] have made
tremendous progress in some of the most challenging
search tasks such as face recognition [5–9], person re-
identification [10–12], image retrieval [13–15] and this sig-
nificance also extends to a variety of other data modalities
[16, 17]. Although all of the works mentioned above have
focused on learning feature representations from static and,
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Figure 1. Improved Asynchronous Model Compatible Lifelong
Learning Representation (IAM-CL2R pronounced “I am clear”). In
the process of lifelong learning, a model is sequentially fine-tuned
and asynchronously replaced with improved third-party models
that are pre-trained externally. Stationary representations ensure
seamless retrieval services and better performance, without the
need to reprocess gallery images.

more recently, dynamic datasets [18–21], the now-standard
practice is downloading and fine-tuning representations from
models pre-trained elsewhere [22, 23]. These “third-party”
pre-trained models often incorporate new data, utilize alter-
native architectures, adopt different loss functions or more
in general provide novel methodologies. Whether applied
individually or combined, these advancements aim to en-
capsulate the field’s rapid progress within a single unified
model [24]. This greatly facilitates the exploitation of in-
ternally learned semantic representations, particularly as
models, datasets, and computational infrastructure continue
to expand in size, complexity, and cost [25, 26].

The challenge of fully exploiting such standard practice
in retrieval/search systems has to deal with the underlying
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problem of compatible learning [27–29]. That is the desire
to align the representation of different models trained with
different data, initialization seeds, loss functions, or alterna-
tive architectures—either individually or in combination. In
such applications, maintaining alignment is crucial to mini-
mize the need for repeated reprocessing of gallery images
for feature extraction each time a new pre-trained model
becomes available [24]. Reprocessing is not only computa-
tionally intensive but may also be unsustainable for extensive
gallery sets [25, 26, 30] or unfeasible if the original images
are no longer accessible due to privacy concerns [31]. This
holds across various typical galleries: social networks update
millions of images every month, while in robotics and auto-
motive domains, the update rate can be as rapid as hundreds
of images every second. Similarly, in textual domains, books
can be structured into chapters, paragraphs, and sentences,
enabling the capture of semantic relationships between these
segments. While a similar organizational principle can be
structured for the web with LLMs [17, 32], the challenge lies
in the impracticality of reprocessing such extensive content
with each advancement in representation models. Although
recent research has shown the effectiveness of compatible
representation learning [27–29, 33–41], there is still a lack
of comprehensive theoretical understanding about compati-
bility.

This paper introduces a theorem that demonstrates how
the stationary representations proposed in [42, 43] optimally
approximate compatibility according to the two inequality
constraints of its formal definition as provided in [27]. This
not only establishes a solid foundation for future works,
but also presents implications that can be exploited fine-
tuning third-party models without the need of reprocessing
gallery images. Specifically, we show that a continuously
fine-tuned model can be asynchronously replaced by down-
loading a higher-performing, pre-trained model from an ex-
ternal source. Due to stationarity (and therefore optimal com-
patibility), such a replacement provides seamless retrieval
services with improved performance, eliminating the need
for image gallery reprocessing. We refer to this scenario as
Improved Asynchronous Model Compatible Lifelong Learn-
ing Representation (IAM-CL2R pronounced “I am clear”).
Fig. 1 illustrates the relationship between sequential fine-
tuning and model replacement. Furthermore, as will be elab-
orated in the related work section, our foundation draws
connections with the Neural Collapse phenomenon [44] and
its associated theory.

Our second contribution is related to a specific challenge
that arises: the tendency of the old and the new replaced mod-
els to align at their first-order statistics, an inherent property
of stationary representation. Consequently, cross-entropy
based prediction errors alone, when fine-tuning the represen-
tation, may not fully capture higher-order dependencies. To
address this issue while preserving compatibility, we show

that learning stationary representations using a convex com-
bination of the cross-entropy loss and the infoNCE loss [45]
is equivalent to training under one of the compatibility in-
equality constraints in [27]. This combined loss, termed
Higher-Order Compatibility (HOC), distinguishes itself from
the use of cross-entropy alone by capturing higher-order de-
pendencies and optimally approximating compatibility.

2. Related Work
Neural Collapse. Neural Collapse (NC) is an empirical
phenomenon that demonstrates the alignment between fea-
tures and the classifier in a symmetric configuration [44].
Specifically, each class feature vector and its corresponding
class prototype vector align with each other (i.e., collapse
onto the same vector), forming a regular Simplex geometry
in a subspace of the representation space. This particular
configuration, which results in maximal separation of the
collapsed vectors, is also referred to as a regular Simplex
ETF (Equiangular Tight Frame). As training progresses and
the training phase goes beyond zero classification error, the
network increasingly approaches collapse. Notably, this also
agrees with the double descent generalization regime ob-
served within the same training phase [46]. The two phe-
nomena together indicate a form of stable steady-state for
the internal representations of Deep Neural Networks.

Prior to the observation of neural collapse, other re-
search applied the steady-state of the Simplex geometry
directly from the beginning of training. The fixed classi-
fier with mutually orthogonal prototypes, introduced in [47],
firstly demonstrates no degradation in classification perfor-
mance. Building on this initial model, the regular polytope
fixed classifiers—such as the d-Simplex, d-Cube, and d-
Orthoplex—advance the concept further by observing sta-
tionary and maximally separated representations, as intro-
duced in [48] and further detailed in [42]. Prior to these
developments, [49] delved into the early energy-based in-
vestigations of symmetric and maximal separation in the
representation space. The distinction between the natural
emergence of a regular Simplex ETF and intentionally fixing
the regular Simplex geometry at the beginning of training is
that prior fixing can preserve regions in the representation
space for future classes, as introduced in [50] and more re-
cently in [51] and [52]. Our work takes advantage of this
preservation for future classes, allowing third-party repre-
sentation models to be trained from scratch and fine-tuned,
while mitigating the interference in the representation space
of the classes involved in both processes.

As neural collapse is related to the interaction between
the neural network’s final and penultimate layers, it offers a
tool to examine training dynamics and convergence, as in-
troduced in [53] and [54] under the name of Unconstrained
Feature Model (UFM) and Layered Peeled Model (LPM),
respectively. In both [55] and [56], the favorable conver-
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gence of fixing the final classifier according to the UFM is
demonstrated. In [54], it is shown that training on imbal-
anced datasets does not necessarily result in NC. Additional
observations from [57] suggest that NC can emerge in both
imbalanced and long-tail scenarios when the classifier is
fixed to a d-Simplex geometry. Further detailed results on
NC are presented in [58]. Our proof is based on the assump-
tion from the UFM and LPM that the backbone has sufficient
expressiveness to allow for the independent study of each
feature. Our proof is also based on the assumption of d-
Simplex fixed classifier, whose inherent symmetry allows to
reduce the extent of the analysis to a single pairwise class
interaction, as it causes all the interactions to be identical.

Compatible Representations Learning. Compatible rep-
resentations broadly refer to the ability to align different
learned representations, as discussed in [59–63]. The dis-
tinction outlined in [27] is that the alignment of models
should be achieved without wasting the information learned
from new data. This capability is typically evaluated in a
query and gallery setting, where query and gallery features
are extracted from two different representation models. The
model for the query is trained using an extended dataset
that includes additional data not present in the one used
for training the gallery’s model. The study in [27] further
presents a method called Backward Compatible Training
(BCT), which applies regularization to a new model using
the classifier from the previous learning phase. This approach
implicitly aligns the current improved model with the pre-
viously trained classifier, which is kept fixed. Several other
methods have adopted this basic working principle: The fun-
damental aspect of this principle is that the challenge of
model alignment is primarily demanded by the new model,
which must learn from both the additional and the old data
how to compensate for the inadequate representations of
the previously learned models. Conversely, as also recently
highlighted in [41], methods such as [64] or the more recent
[28, 65, 66] train a lightweight transformation to convert
old representations into new ones for backward compatibil-
ity. However, these methods do not entirely eliminate the
re-processing cost. As the number of chained mappings in-
creases, the entire chain necessitates re-evaluation each time
the representation model is updated. This makes them un-
suitable for sequential learning and large gallery-sets. While
its primary focus is on classification, the study in [37] is
one of the first methods employing sequential chaining trans-
formations for aligning representations within a common
reference space. The works in [39] and [38] bypass the use
of chaining transformations, focusing instead on aligning
representations for compatibility purposes in lifelong learn-
ing scenarios. Both approaches leverage auxiliary losses to
ensure similarity among previously learned representations.
Additionally, [39] achieves alignment with an absolute ref-
erence through the use of fixed classifiers, in line with the

neural collapse phenomenon.
The work in [41] argues that there is an inherent trade-off

in the definition of compatibility introduced in [27], which
inspires them to “hold” incompatible information of the new
model on additional orthogonal dimensions to avoid this
conflict. Their argument seems to be in line with the recent
work [29] and [39] based on stationarity in which (nearly)
orthogonal dimensions are pre-allocated from the beginning
using a regular d-Simplex fixed classifier. In this paper, we
establish a formal relationship among compatibility, neural
collapse, and stationarity, showing that stationarity provides
an optimal approximation to the compatibility definition
formulated in [27].

3. Theoretical Results
3.1. Stationarity and Compatibility

Preliminaries. Let G = {xi}
Ng

i=1 be a gallery-set com-
posed of a set of Ng images xi ∈ RD with class labels from
Y = {yi}Li=1 and ΦG = {ϕ(xi) ∈ Rd | ∀xi ∈ G} be the set
of feature vectors of the gallery-set G obtained with represen-
tation model ϕ. Let Q = {xi}

Nq

i=1 be a query-set composed
of Nq images xi ∈ RD and ΦQ = {ϕ(xi) ∈ Rd | ∀xi ∈ Q}
be the set of feature vectors of the query-set Q obtained with
ϕ. Visual search is performed using a distance function d(·, ·)
to identify the closest gallery features to the query features.

Let T1, T2, . . . , TT be a sequence of T tasks, where each
task T is composed of labeled images xi of class yi ∈ K
with K the set of classes in T . At task t, the model ϕt is fine-
tuned starting from the previous representation model ϕt−1.
Compatibility between the current model ϕt and a previous
model ϕk, with k < t, is achieved when the feature vector
of any query image obtained with ϕt, the set ΦQ

t , can be
compared with feature vectors in ΦG

k without reprocessing
the gallery-set. The following provides a formal definition
of compatibility [27]:

Definition 1 (Compatibility) Given two representation
models ϕt and ϕk, with ϕt learned after ϕk, ϕt and ϕk

are compatible according to the distance function d(·, ·) if it
holds:

d
(
ϕk(xi), ϕt(xj)

)
≤ d

(
ϕk(xi), ϕk(xj)

)
(1a)

∀ (i, j) ∈
{
(i, j) | yi = yj

}
and

d
(
ϕk(xi), ϕt(xj)

)
≥ d

(
ϕk(xi), ϕk(xj)

)
(1b)

∀ (i, j) ∈
{
(i, j) | yi ̸= yj

}
with k < t, t = (2, 3, . . . ,T ), k = (1, 2, . . . , T − 1).

Main Result. In this paragraph, we state and prove that
learning stationary feature representations according to a d-
Simplex fixed classifier necessarily implies optimal approx-
imation of the compatibility as defined in Eqs. 1a and 1b.
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(a) Same class (b) Different class

Figure 2. Key concepts and relationships underlying Theorem 1. Distances in feature space of two distinct samples within their hyperballs
before and after model update, with the update process represented by a dotted arrow. (a): Distances between samples xi and xj of the
same class y before (red) and after (cyan) model update. (b): Distances between samples xi of class yi and xj of class yj , before (red) and
after (cyan) model update. Compatibility is verified by computing the expected lengths of the segments and verifying if they satisfy the
inequalities of the compatibility definition. A transparently colored instance shows counter-intuitive distance behavior. Expectation reveals
the underlying pattern of approximation.

The formulation involves examining the expected distance
between feature points before and after a learning update
in a high-dimensional space, where the feature points are
assumed to be distributed in hyperballs (i.e., high dimen-
sional ball) centered at the prototypes of the d-Simplex fixed
classifier. This abstraction allows for mathematical manip-
ulation and analysis of the cluster as a single entity rather
than individual points.

Theorem 1 (Stationarity =⇒ Compatibility) Let W =
[w1,w2, . . . ,wK ] be the d×K matrix of a d-Simplex fixed
classifier with K pre-allocated classes. Given two tasks, Tk
and Tt. The task Tt is derived from Tk by incorporating an
additional training set ∆T , such that Tt = Tk ∪∆T . The
combined task, Tt, comprises a set of classes each denoted
by y, where y ∈ {1, 2, . . . ,Kt} and Kt < K. Under the as-
sumption that learning the new task Tt causes the hyperball
Bk(wy) with radius ryk to shrink into a smaller hyperball
Bt(wy), i.e., ryt ≤ ryk for all y in the set {1, 2, . . . ,Kk},
then it necessarily follows that ϕt and ϕk optimally approxi-
mate the compatibility inequality constraints as defined in
Def. 1 in expectation.

The proof is available in the Appendix.

Discussion. The Theorem relies on two main assumptions:
the use of a d-Simplex fixed classifier [42] and the model’s
sufficient expressiveness, as described in the UFM abstrac-
tion [53, 54]. The latter assumption enables us to consider
features independently1. While the former allows focusing

1Essentially, the Neural Collapse phenomenon, which is observed across
various networks and datasets, also appears in a two-layer neural network
when assuming input feature independence (i.e., a UFM). This equivalence
supports the assumption that: 1) real network backbones are typically
expressive enough to learn features as independent entities, and 2) UFM
can be used as a tool to study neural networks properties.

on a single pairwise class interaction, since interactions with
all other classes are symmetrically similar and cannot change.
Fig. 2 illustrates the key concepts and relationships presented
in Theorem 1.

Without loss of generality, the Theorem considers two dis-
tinct hyperballs of different radius Bnew(wy) and Bold(wy)
representing the semantic clusters of a generic class y, re-
spectively before and after a generic learning update. The
assumption that features are distributed in hyperballs stems
from the margin-based softmax loss2 introduced in [67]. This
interpretation has since been utilized in various studies, such
as SphereFace [68] and ArcFace [8]. Besides the margin for-
mulation, empirical evidence, such as Neural Collapse [44],
shows that class features not only cluster around their asso-
ciated prototypes but also, with sufficient training epochs,
collapse into them, resulting in hyperballs tightening around
the prototypes. Due to the stationarity property induced by
the d-Simplex classifier Bnew(wy) and Bold(wy) hyperballs
have the same center in the representation space on the clas-
sifier prototype wy. After the learning step, Bnew(wy) has
a shorter radius (i.e., adding new information improves the
discrimination capability of the model [69–72]).

In particular, Fig. 2a shows the case in which feature vec-
tors are from samples of the same class. As defined in Eq. 1a
compatibility requires that, after updating, the distance be-
tween ϕnew(xi) (in the cyan hyperball) and ϕold(xj) (in red
hyperball) is less than or equal to distance between ϕold(xi)
and ϕold(xj). The figure displays two configurations: one
where the condition is met and another where it is not met
(shown in transparent colors).

Fig. 2b shows the case in which the feature vectors are

2The margin enforces the confinement of features within a hyperball or a
hyperdisc (the local approximation of a hypercap) around class prototypes.
A disc in high-dimensional space can be considered a hyperball when
referring to its filled volume.
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from samples of different classes. As defined in Eq. 1b com-
patibility requires that, after updating, the distance between
ϕnew(xi) of class yi (in the cyan hyperball centered in wyi

)
and ϕold(xj) of class yj (in the red hyperball centered in
wyj

) is greater than or equal to than the distance between
ϕold(xi) and ϕold(xj). The Theorem establishes that, on av-
erage, this condition cannot be optimally satisfied and that
stationarity is the best approximation achievable under the
given constraints. A detailed justification for this is provided
in the proof of Theorem 1, with a clearer and more focused
exposition presented as a Corollary in the Appendix.

Informally, the proof of the Theorem starts with the
premise that, upon retraining a model, the probability of
finding a class feature near the corresponding class proto-
type from the old model—an indicator of compatibility be-
tween the two models—is nearly zero. Subsequently, the
proof establishes that the optimal approximation for a com-
patible representation is obtained when the average distance
between the same hyperball in two distinct learned models
is minimized. This minimization occurs when the two corre-
sponding hyperballs are centered at the same class prototype
and when adding more classes does not alter this distance,
i.e., the stationarity condition.

Our formulation calculates the average distance between
hyperballs based on the Ball Line Picking problem, which de-
termines the expected length of a line segment that connects
two random points inside a hyperball [73–78]. Differently
from that problem, our theorem considers a line segment
connecting two random points in two distinct hyperballs,
each with a different radius. Specifically, we analyze the
cases as shown in Fig. 2. These hyperballs represent the
“class-state” before and after the learning step during each
model update. Closed-form solutions are not available for
this problem, except in a specific two-dimensional case [79].

3.2. Stationarity and Higher-Order Alignment

A specific challenge arises when fine-tuning station-
ary learned representation models, for example in the
IAM-CL2R setting of Fig. 1. In this case the old and the
new models align at the first-order statistics, an inherent
property of stationarity [42]. The consequence is that cross-
entropy based prediction errors may not fully capture higher-
order dependencies in representation space. We conjecture
that simple cross-entropy mostly focuses on prediction er-
rors related to the forgetting of the internal representation
which may not promote compatibility when the represen-
tation model is largely aligned. To address this problem,
we show that adding the infoNCE loss function [45, 80] is
equivalent to training with the cross-entropy loss under one
of the compatibility constraints while capturing higher-order
dependencies.

The loss for training at task t the stationary representation

model ϕt assumes the form [42]:

LSCE(ϕt) =

= −
∑
B

log

 exp
(
W⊤

yi
ϕt(xi)

)
Kt∑
j=1

exp
(
W⊤

j ϕt(xi)
)
+

K∑
j=Kt+1

exp
(
W⊤

j ϕt(xi)
)

(2)

where W⊤
j ∈ Rd denotes the j-th column of the d-Simplex

classifier matrix W ∈ Rd×K , being K the number of pre-
allocated classes, Kt = |

⋃t
i=1 Ki| the number of classes

learned until time t with Kt < K, and B is a mini-batch of
samples of Tt. The first term in the denominator accounts
for the classes learned until t. The second term accounts for
future classes, preserving dedicated regions in the represen-
tation space. This ensures that adding new classes minimally
impacts the representation of previously learned classes
[29, 39, 50, 81]. We train the representation model ϕt with
the following convex combination, namely:

LHOC(ϕt) = λLSCE(ϕt) + (1− λ)LNCE(ϕt, ϕt−1), (3)
with λ ∈ [0, 1]

where: LSCE(ϕt) is the cross-entropy loss of Eq. 2, and

LNCE(ϕt, ϕt−1) = −
∑
B

log

 ∆
(
ϕt−1(xi), ϕt(xi)

)∑
j ̸=i

∆
(
ϕt−1(xi), ϕt(xj)

)

(4)

with

∆
(
ϕt−1(xi), ϕt(xj)

)
= exp

(
τ · ϕt−1(xi)ϕt(xj)

||ϕt−1(xi)ϕt(xj))||

)
(5)

is the contrastive loss [45, 80] based on τ -scaled cosine sim-
ilarity between ϕt−1(xi) and ϕt(xj). We show that training
the representation model with the LHOC of Eq. 3 is both: (1)
able to capture higher-order dependencies between old and
new model representations and (2) equivalent to learning
under the compatibility constraints in Def. 1a. We refer to
this loss as the Higher-Order Compatibility loss (LHOC).

Through Theorem 1 presented in the previous section, we
establish that the constraint of Eq. 1a cannot be exploited
in combination with the constraint of Eq. 1b. Based on this
result we show that, under no specific conditions, the con-
strained optimization problem using solely the inequality
constraint of Eq. 1a:

argmin
ϕt

LSCE(ϕt)

s.t. d
(
ϕk(xi), ϕt(xj)

)
− d

(
ϕk(xi), ϕk(xj)

)
≤ 0

∀ yi = yj
(6)
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Figure 3. Training loss of a d-Simplex fixed classifier during a
model update. Values are the cross-entropy loss of Eq. 2 (red line)
and the loss of Eq. 3 (blue line). Models are trained on MNIST.

can be transformed into a tractable form. Rooted in the work
of [82], this transformation not only provides an approach to
solve the tractability issue but, within the context of compat-
ibility, it also allows preserving the optimality as outlined in
the proof of Theorem 1. As shown in [82], the model for a
constrained problem like Eq. 6 can be equivalently learned
with a convex combination of the cross-entropy loss and the
Kullback-Leibler divergence function.

On the other hand, as discussed in [83], the con-
trastive loss LNCE(ϕt, ϕt−1) can be approximated as the
Kullback-Leibler divergence between the product of the
marginals of the joint distribution of ϕt and ϕt−1. More-
over, LNCE(ϕt, ϕt−1) also approximates the mutual infor-
mation between ϕt and ϕt−1, thereby enabling to capture
higher-order dependencies between consecutive updates of
the model. As a consequence, training with the loss in Eq. 3
is equivalent to the optimal classifier for the constrained opti-
mization problem stated in Eq. 6 and at the same time, thanks
to the term LNCE(ϕt, ϕt−1), takes into account higher-order
variations between ϕt−1(xi) and ϕt(xj). In the following,
we call training the representation model using d-Simplex
with LHOC as d-Simplex-HOC.

In Fig. 3, we illustrate the effects of LHOC compared to the
cross-entropy loss. We use a toy example with the LeNet++
CNN architecture [84] with the d-Simplex fixed classifier.
The model is initially trained on the first five MNIST classes
and then fine-tuned on all ten classes. The cross-entropy
training error (red curve) converges rapidly to low values. In
contrast, the convergence with the LHOC loss (blue curve) is
more gradual, which allows for the capture of richer infor-
mation during back-propagation.

4. Experimental Verification

Referring to the IAM-CL2R learning scenario presented in
Fig. 1, this section provides empirical evidence to verify
the practical implications of the theoretical results discussed
earlier.

4.1. Datasets and Settings

Pre-trained Models. We pre-train our models in a super-
vised manner using the ImageNet32 [85]. Three distinct
models are pre-trained on ImageNet32 with 100, 300, and
600 classes. The model trained with 100 classes is used to
initialize the model before fine-tuning on the sequence of
tasks. The other two models are used to simulate the prac-
tice of downloading and fine-tuning pre-trained models and
serve as third-party models that will replace the current one
undergoing fine-tuning.
Fine-tuning. We replicate the fact that dataset size for train-
ing third-party models is typically significantly larger than
the dataset size used for fine-tuning [86]. According to this,
pre-trained models are fine-tuned with a reduced version of
CIFAR100 [87] denoted in this paper as CIFAR100R.

We considered two distinct task sequences consisting of
7 and 31 tasks each. We fine-tune the pre-trained model with
an initial task comprising 10 classes. Subsequently, for the
sequences of 7 and 31 tasks, the respective tasks contain
15 and 3 classes each. The fine-tuning process incorporates
incoming task data, consisting of 300 images per class, and
utilizes an episodic memory that stores 20 images from each
class of previous tasks.
Model Replacement. In our experiments, we verify the
impact of replacing the current fine-tuned model with two
improved models pre-trained elsewhere. The two replace-
ments occur while fine-tuning on CIFAR100R: at the third
and fifth tasks in the shorter sequence, and at the eleventh and
twenty-first tasks in the longer sequence. We also consider
the challenging scenario of improved model replacement
considering more sophisticated network architectures.

The d-Simplex fixed classifier is pre-allocated with a num-
ber of classes K, ensuring enough space to accommodate
future classes for both pre-training and fine-tuning. Class as-
signments for pre-training are made from left to right, and for
fine-tuning, from right to left. This straightforward conven-
tion is used to ensure that classes assigned for pre-training
and fine-tuning remain distinct, without overlap. Other non
overlapping assignment methods could also be used.
Network Architectures. We use ResNet18 [88] as net-
work architecture. In the scenario using more sophisticated
network architectures, we initially replace ResNet18 with
SENet18 [89], followed by a subsequent replacement with a
RegNetY 400MF [90].
Hyper-parameters. The ResNet18, SENet18, and Reg-
NetY 400MF models were pre-trained on ImageNet32 using
the following hyper-parameters: 300 epochs, a batch size of
128, and an initial SGD optimizer learning rate of 0.1, which
was adjusted using a Cosine Annealing schedule. For each
task used for fine-tuning, the model is trained for 70 epochs
with a batch size of 128, starting with a learning rate of 0.001
that was reduced by a factor of 10 after the 50th and 64th
epochs. The d-Simplex was pre-allocated with K = 1024
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Figure 4. Average multi-model Accuracy (AAt) evaluated across 31 tasks using CIFAR100R/10, showing: (a) model replacements at tasks
11 and 21 (indicated by yellow markers); (b) no model replacement.
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(a) CVS [38]
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(b) BCT-ER [27]
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(c) d-Simplex-FD [39]
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(d) d-Simplex-HOC (in this paper)

Figure 5. Compatibility Matrices for d-Simplex-HOC, CVS, BCT-ER, and d-Simplex-FD on CIFAR100R/10 across 7 tasks. Model
replacements at tasks 3 and 5 are highlighted in bold. Entries failing to meet compatibility criteria as defined in [27] are marked with a
light-red background.

classes (i.e., d = K − 1).
Performance Evaluation. The evaluation focuses on the
open-set recognition task, in which separated datasets for
training and evaluation are required. The standard 1:N search
protocol, applicable to re-identification and similar tasks
[27], is employed in the evaluation. To ensure strict separa-
tion between datasets, the CIFAR10 dataset is utilized for
evaluation during fine-tuning with CIFAR100R. Specifically,
the test set of CIFAR10, comprising 10,000 images, is used
as the gallery set, while its training set of 50,000 images
serves as the query set.

Following [27] and [29], we measure performance pro-
gression across the two sequences of tasks using two estab-
lished metrics: Average Compatibility (AC) and Average
multi-model Accuracy (referred shortly as to AAt). The
metric AC quantifies the extent of compatibility across all
possible pairs of model combinations by providing a nor-
malized count of times in which compatibility is achieved.
Conversely, AAt calculates the mean accuracy across all
combinations of the previously learned models until task t,
providing an overall measure of accuracy.

4.2. IAM-CL2R: Comparative Results

We performed a comparative analysis of d-Simplex-HOC
against FAN [37], CVS [38], d-Simplex-FD [39], and the
lifelong adapted versions of BCT [27] (BCT-ER), LCE [28]
(LCE-ER), and AdvBCT [36] (AdvBCT-ER). The experi-
ments also incorporate a baseline method, Experience Replay
(ER), in which the model is fine-tuned using cross-entropy
loss on data of the new task and an episodic memory. Ab-
lation studies of IAM-CL2R with the d-Simplex-HOC are
provided in the Appendix.
Replacing: Same Architecture, Expanded Data. Fig. 4
presents the Average multi-model Accuracy at task t (AAt)
for learning scenarios with model replacement as depicted
in Fig. 4a and for those without as depicted in Fig. 4b. The
experiment involves fine-tuning a ResNet18 model across
31 tasks. The comparison provides insights into the perfor-
mance benefits that can be obtained by replacing models
when representations are trained in a compatible manner.
The d-Simplex-HOC effectively incorporates improvements
from model replacements, showing increased performance
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Figure 6. Plots of Average multi-model Accuracy (AAt) for 31
tasks on CIFAR100R/10, showing the impact of model replace-
ments with different network architectures at tasks 11 and 21.

compared to the case without model replacement, as indi-
cated in Fig. 4b. The d-Simplex-FD demonstrates a similar
capability, though to a reduced extent. The other methods
have a clear performance decay after model replacements
and end up with a worse performance than the case with-
out replacement. This can be attributed to the fact that after
replacement, fine-tuning is applied to a model obtained by
retraining the network from scratch, leading to an entirely
different representation.

Further performance details, as indicated by the self and
cross-test accuracy values, are shown according to the com-
patibility matrices [27, 29]. Fig. 5 shows these values for
CVS, BCT-ER, d-Simplex-FD, and d-Simplex-HOC in the 7
tasks sequence. The values reveal that the d-Simplex-HOC
effectively leverages the improved expressive power of the
models after replacement, except in one instance. This ex-
ception, where the model is not compatible and the cross-
test accuracy falls below the self-test accuracy, is shown
in Fig. 5d. Both CVS and BCT-ER score near zero cross-
tests accuracy after model replacements as indicated by the
values in the blue sub matrix blocks shown in Fig. 5a and
Fig. 5b. This leads to mostly non-compatible representations.
Although both d-Simplex-HOC and d-Simplex-FD utilize
the d-Simplex fixed classifier to learn stationary represen-
tations, the former shows better performance. This can be
attributed to the high-order alignment achievable through the
HOC loss. To provide a full evaluation of compatibility, the
AAt of Fig. 4 is complemented with the Average Compati-
bility AC in Tab. 1. We also report the Average multi-model
Accuracy AA7 and AA31 for methods compared at the end
of the 7-th and 31-th task, respectively. It is observed that, in
both instances, all models—with the exception of d-Simplex-
HOC—fail to achieve significant compatibility performance.
Replacing: Different Architectures, Expanded Data.
Fig. 6 shows the performance of the evaluated methods when

METHOD

7 tasks 31 tasks

AC AA7 AC AA31

ER baseline × 36.22 <0.01 31.30
FAN [37] × 36.32 <0.01 30.79
BCT-ER [27] × 35.59 × 29.88
LCE-ER [28] × 34.89 × 29.30
AdvBCT-ER [36] × 35.73 × 30.10
CVS [38] × 36.31 0.01 31.34
d-Simplex-FD [39] 0.05 56.58 0.21 56.27
d-Simplex-HOC 0.95 68.13 0.65 67.40

Table 1. Compatibility metrics with CIFAR100R/10 for 7 tasks
with model replacements at task 3 and task 5, and 31 tasks with
model replacements at task 11 and task 21. “×” indicates the case
in which compatibility is not achieved.

the original ResNet18 is replaced first by a SENet18 and
then by a more expressive RegNetY 400MF. It is observed
that the change of network architecture not only does not ad-
versely affect compatibility in the d-Simplex-HOC but takes
advantage of their more expressive representation power. In
particular, direct comparison of Fig. 6 with Fig. 5 shows
that d-Simplex-HOC improves performance gradually with
each model replacement. This is in contrast to d-Simplex-
FD, which does not demonstrate the same trends leading to
a plateau around the 20-th task. Given the different feature
sizes before and after the second model replacement with the
RegNetY 400MF architecture—512 and 384, respectively—
all methods except d-Simplex-HOC and d-Simplex-FD re-
quire non-trivial extensions to adapt to the changed feature
size. According to this, for these methods, evaluation cannot
be reported.

5. Conclusion

In this paper, we have investigated the concept of learning
compatible representations through the principle of station-
arity. We demonstrated that stationary representations opti-
mally approximate compatibility according to its definition.
We demonstrated that better model alignment through higher-
order dependencies can be obtained by training with a loss
derived from one of the compatibility inequality constraints.
Finally, empirical evidence confirmed that stationary rep-
resentations enable uninterrupted retrieval service allowing
for fine-tuning and model replacement to occur concurrently
and asynchronously with limited interference.
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