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Abstract

The increasing use of transformer-based large lan-
guage models brings forward the challenge of processing
long sequences. In document visual question answering
(DocVQA), leading methods focus on the single-page set-
ting, while documents can span hundreds of pages. We
present GRAM, a method that seamlessly extends pre-
trained single-page models to the multi-page setting, with-
out requiring computationally-heavy pretraining. To do
so, we leverage a single-page encoder for local page-level
understanding, and enhance it with document-level desig-
nated layers and learnable tokens, facilitating the flow of
information across pages for global reasoning. To enforce
our model to utilize the newly introduced document tokens,
we propose a tailored bias adaptation method. For ad-
ditional computational savings during decoding, we intro-
duce an optional compression stage using our compression-
transformer(C-Former ),reducing the encoded sequence
length, thereby allowing a tradeoff between quality and
latency. Extensive experiments showcase GRAM’s state-
of-the-art performance on the benchmarks for multi-page
DocVQA, demonstrating the effectiveness of our approach.

1. Introduction
Document understanding, particularly in the context of
DocVQA, has gained substantial research interest [5, 6,
16, 25, 36, 37] and offers a wide array of practical appli-
cations, focusing on data extraction and analysis of sin-
gle page documents. However, Multi-Page DocVQA (MP-
DocVQA) poses a more realistic challenge, considering that
the majority of documents, including contracts, manuals

*Work conducted during an internship at Amazon.
†Corresponding author: alongolt@amazon.com
‡Corresponding author: litmanr@amazon.com

+
How many 
diagrams
are there?

Multi Page Encoder 

Global-Local Encoder Block

Page Sub-Layer

Doc Sub-Layer 

Page Sub-Layer

Doc Sub-Layer 

C-Former

Page 
Attention

Doc 
Attention

Compression Transformer

Decoder

Figure 1. An Overview of GRAM. We suggest an interleaved en-
coder architecture combining page- with document-attention lay-
ers, allowing information to propagate between different pages.
An optional compression transformer (C-former) is introduced to
allow a trade-off between quality and latency.

and scientific papers, often extend well beyond a single
page. Despite the practical relevance of MPDocVQA, it
has received limited attention, primarily due to the absence
of suitable datasets. Two recently introduced datasets, MP-
DocVQA [33] and DUDE [18], have opened up new av-
enues for MP-DocVQA research.

Recent DocVQA approaches rely on transformers [35],
at the heart of their architecture. While transformers are a
powerful tool, they face challenges when dealing with long
input sequences [4, 7, 10–12, 27, 38]. This difficulty stems
from the self-attention mechanism, which scales quadrati-
cally in terms of computation and memory, with respect to
the input sequence length. Addressing this limitation has
attracted significant research efforts, primarily in the field
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of natural language processing (NLP). Proposed NLP-based
solutions can be divided into two main directions: The for-
mer aims to modify the attention mechanism to cut com-
putational costs [4, 7, 38]. The latter involves altering the
positional embedding mechanism to improve performance
on longer sequences, with minimal fine-tuning [11, 12, 27].

A possible option of tackling MPDocVQA is to extend
NLP-based approaches to handle multi-modal document
data, including visual representations, along with OCR text
and corresponding 2D locations and relative page position.
However, this requires extensive pre-training, with rela-
tively scarce multi-page document data, and thus is also
sub-optimal in terms of performance. Instead, we opt for
leveraging powerful single-page DocVQA models, espe-
cially pretrained on millions of single-page documents, and
finetuning them to the multi-page scenario. For this pur-
pose, we combine concepts of local (page) and global (doc-
ument) tokens, which promote an exchange of information
within and across pages, while keeping computational cost
in check. We choose pages as atomic units in our proposed
scheme, as page structure often represent a semantic unit in
DocVQA.

We present GRAM (Global ReAsoning for Multi-page
VQA), a novel approach for endowing multi-page process-
ing capabilities to existing single-page DocVQA models.
Alongside page tokens that encapsulate both textual and vi-
sual contents of each page, we introduce doc(ument) learn-
able tokens, which aim is dispersing global information
across all pages. These two sets of tokens interact within
our newly-devised two-stage encoder blocks. The initial
stage utilizes an existing single-page layer and enhances it
by including both page and doc tokens as input, allowing
them to freely interact. In the second stage, we prioritize
computational efficiency by restricting self-attention solely
to the global doc tokens. This global reasoning layer cap-
tures collective information from multiple pages, enabling
the system to respond to cross-page inquiries, as illustrated
in Fig. 1. Considering that doc tokens did not appear in pre-
training, to boost their significance during finetune, we em-
ploy a designated bias adaptation mechanism which strikes
a balance between local and global learnable tokens.

While our method inherently deals with long sequences,
we circumvent a quadratic reliance on sequence length
by segmenting the document into pages — its semanti-
cally logical parts. We restrict interaction solely among
doc learnable tokens, across all pages, thereby mitigating
the computational burden of depending quadratically on
the page count. Apart from encoding, the auto-regressive
decoding stage poses a computational burden in long se-
quences. To this end, we introduce a compression stage
that precedes the decoder, implemented with a compres-
sion transformer, termed CFormer. The CFormer receives
the concatenated output of all pages and compresses it to a

much shorter sequence, distilling the most pertinent infor-
mation in the document. Our key contributions are:
• We propose GRAM, an approach to endow single-page

DocVQA methods with multi-page capabilities, without
pretraining, allowing the model to process multi-page
documents, while preserving single-page performance.

• We introduce document learnable tokens and bias adapta-
tion that enable an effective communication and collabo-
ration between individual pages to support reasoning over
multiple page documents.

• Our C-Former module suggests a trade-off between accu-
racy and compute, distilling information from multi-page
sequences into more compact representations.

• We obtain SOTA results over the MPDocVQA and
DUDE datasets, and provide extensive ablations to each
component in our method.

2. Related Work
Long Sequence Approaches are an active field of research
in NLP, aiming to improve the design of chat-systems [24]
and image instruction tasks [19, 21]. In these applications,
the ability to manage and process long sequences is vital,
as conversations cannot be cut short, or limited to just a
few interactions. Common approaches to tackle long se-
quences include sparse attention mechanisms [4, 7, 38] and
methods to improve results on long sequences during infer-
ence [11, 27, 28]. ‘Sliding window’ approaches of limit-
ing the range of neighbors each token can attend to, lead
to a significant reduction in computation and memory con-
sumption. Prominent works of this kind include Long-
Former [7], where each token attends to a set of its nearest
neighbors, along with additional global tokens. The work
of Big-Bird [38] adds additional non-neighboring tokens at
random, whereas Colt5 [4] uses the same sliding window
approach, but performs heavier computations for important
tokens and shallow operations for filler words or punctu-
ation. Although Tito et. al. [33] have demonstrated that
the above approaches do not perform as well on the task
of MPDocVQA, we do incorporate the ideas of combining
both local and global tokens throughout encoding to expand
the attention onto additional pages.

DocVQA has attracted increasing attention [5, 6, 9, 16,
25, 26, 31, 36, 37] with the introduction of the DocVQA
dataset by Mathew et al. [22]. Most methods in DocVQA
leverage OCR [1–3, 20, 23] to input both text and layout
information (bounding box coordinates and possibly font
type) into the model, where some further explore different
techniques to combine the two types of data streams, or al-
ternatively, clever schemes of pretraining. DocVQA meth-
ods can be roughly divided to two categories: extractive
and abstractive. Extractive methods [16, 25, 36, 37] rely on
the fact that the explicit answer resides in the written text,
thus only output a corresponding text span within the input
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Figure 2. GRAM Architecture. (a) Depicts a high-level architecture overview. For each page, the visual, textual and question tokens
are concatenated together with learnable doc tokens (darker color shade). The processed information is fed into the multi-page encoder.
The encoder output can be fed directly into the decoder to create the final prediction. Optionally, a compression model, C-Former , can be
used between the encoder and the decoder to compress the encoder output into a predetermined length, thus reducing overall latency for
long documents. (b) Shows a global-local encoder layer, containing two sub-layers. The first sub-layer uses self-attention that operates on
each page separately, while the second applies a self-attention step on the doc tokens to fuse information between the different pages. The
corresponding tokens are then routed back to their respective page and go into the next global-local encoder layer.

sequence. Abstractive methods [5, 6, 14, 26, 31], on the
other hand, have the capacity to generate free-form answers
which do not necessarily appear in the text, thus providing
flexibility in real-world applications. Notably, existing re-
search in DocVQA does not scale in a straightforward way
to deal with the more realistic multi-page scenario.

MPDocVQA has recently gained momentum with the
launch of two new multi-page datasets: MP-DocVQA [33]
and DUDE [18], offering two separate recipes to tackle
longer documents. The first approach of Tito et. al., re-
ferred to as HiVT5 [33], suggests compressing the encod-
ing of each page separately, and feeding the decoder with
the concatenation of the compressed outputs from each
single-page encoder. While this approach is advantageous
in terms of computation, we later show the compression
may severely hinder the results. In addition, there is no
communication between the single-page encoders until the
final stage of decoding, whereas in our method, we allow for
exchange of page and document information throughout all
stages of encoding. Another prominent approach, proposed
by Landeghem et. al. [18], which relatively preserves qual-

ity, involves concatenating all the pages into one long se-
quence and feeding it to a standard encoder-decoder struc-
ture. This, however, poses a heavy computational burden as
transformers’ self-attention component scales quadratically
with input sequence length.

3. GRAM
3.1. Base Architecture

The underlying idea in our approach is using existing
encoder-decoder single-page models for document under-
standing and extending them to multi-page scenarios, with-
out additional pretraining. In this work, we provide such
a recipe over the notable DocFormerv2 [6]. For the sake
of completeness, DocFormerv2 is a T5-based [28] encoder-
decoder transformer model which operates over both visual
and textual features to support document understanding.
Each page is represented by textual features T ∈ RNt×d

which encapsulate OCR tokens and their corresponding 2D
bounding box positions [36], along with visual V ∈ RNv×d

and question Q ∈ RNq×d embeddings. Where Nt, Nv and
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Nq are the lengths of the OCR, visual features and the ques-
tion. The output result Y is obtained by passing the concate-
nated inputs through the encoder-decoder model,

Y = D(E(concat(T,V,Q))), (1)

where E and D, are the encoder and decoder, respectively.
Our method uses these basic building blocks in designing

a multi-page solution. To this end, we introduce a bi-level
global-local encoder, as illustrated in Fig. 2. At the local
page-level of each block, we utilize the layers of the existing
single-page encoder E to process each page separately, to-
gether with learnable doc tokens. Next, we introduce a slim
global layer in each block that facilitates communication
between doc tokens across all pages. This bi-level localized
processing ensures the model can understand the content
of each page effectively, while also combining information
across pages in the document. After M such blocks, we
feed the encoded features from all pages into the existing
decoder D to produce the overall output.

3.2. Global-Local Reasoning

To operate on multiple pages we break down the document
to K pages, and the single-page encoder to M encoder lay-
ers, Ej , j = 0, ...,M − 1. We then construct M blocks,
with two sub-layers each. The first page sub-layer origi-
nates from the existing pretrained encoder layer, referred to
as Ej

page, and operates in parallel, with shared weights, for
all pages in the document. This layer receives both page
and doc tokens. The second, newly introduced, document
layer Ej

doc collects only the doc tokens from all pages and
promotes sharing information across all of the document.

Formally, we augment the input of the standard single-
page encoder with page-specific indexing (Ti,Vi,Q) and
incorporate page-positional embedding Pi to both text and
visual features, where i = 0, ...,K − 1:

T̃i = Ti +Pi, Ṽi = Vi +Pi, . (2)

Next, we formulate our bi-level global-local block. The
input to the first page-level sub-layer in each block is
the concatenation of the textual, visual and question fea-
tures, denoted Xj

i = concat(T̃i, Ṽi,Qi), along with page-
specific doc tokens Gj

i ∈ RNg×d,

Xj+1
i , G̃j+1

i = Ej
page(concat(X

j
i ,Gj

i )). (3)

Here, the features undergo self-attention, normalization
and feed-forward layers. The layer output Xj+1

i is passed
on as input to the next bi-level block, whereas only the doc
tokens G̃j+1

i , enter the second doc sub-layer, which again
includes self-attention, normalization and feed-forward

{Gj+1
i }K−1

i=0 = Ej
doc(concat({G̃

j+1
i }K−1

i=0 )). (4)
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Figure 3. Global-Local Attention: In long sequence approaches
(a), attention is applied jointly to the entire sequence of concate-
nated local and global tokens. Our method, separates the compu-
tation into two steps — page-level (b) and document-level (c)—
leveraging the natural division of documents into pages.

In this stage, the doc tokens can interact and pass infor-
mation from page to page, after which being passed on to
the next block, as depicted in Eq. (3). This design allows
information to flow between pages while keeping compu-
tational costs in check. When concluding the traversal over
M such layers, the outputs across all pages are concatenated
and fed to the decoder D,

Ymulti = D(concat({XM
i ,GM

i }K−1
i=0 )). (5)

To visualize the difference between the attention masks
in our method, we compare it with previous long sequence
approaches [4, 7, 38] in Fig. 3. These prior methods op-
timize computation by using attention masking on nearby
tokens and allowing limited global connections. However,
naively applying such methods to multi-page documents
will treat it as a single stream, which does not consider the
division into pages. Our global-local blocks, with a two-
stage attention-masking mechanism, better suit multi-page
documents. In addition, our two-level design benefits from
existing, extensively pretrained single page models.

3.3. Bias Adaptation

An already-pretrained model, introduced with a new stream
of data, might disregard it altogether [13, 14, 34, 39]. To
overcome this, we force the system to account for the
newly-introduced doc tokens by modifying the encoder’s
bias method. Originally, the bias method intervenes in the
attention mechanism, diminishing the relationships between
distant tokens. However, in our specific case, the distance
between doc and page tokens does not represent their actual
relevance. To enforce the encoder to pay closer attention
to the doc tokens, we assign them a positive constant bias
value. Particularly, we replace the values in the bias ma-
trix, corresponding with the doc tokens, with fixed ones.
Instead of a single bias value, we utilize a different value
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for each attention head, as performed in ALiBi [27], en-
abling more fine-grained control of the global features in
each head. Specifically, the constant doc bias value is set to
c· 1

2a , where c is a constant and a is the attention head index.
This yields a decaying bias value across different attention
heads, resulting in hierarchical importance of the document
information, where the first heads are more oriented towards
doc tokens and the last towards page tokens.

3.4. Compression Transformer

Our global-local solution to MP-DocVQA resolves the
problematic quadratic dependency on the number of pages
K during encoding. However, the auto-regressive decod-
ing complexity scaling linearly with K also poses a prac-
tical challenge during inference time, as we later discuss
in Sec. 3.5. To alleviate this burden, we place an optional
transformer-based model, named C-Former (Compression
TransFormer), between the encoder outputs and the de-
coder, as depicted in Fig. 2. The C-Former has the ability to
revise the information across all pages and distill only the
important details, required to correctly answer the question.

Specifically, the C-Former is a light-weight transformer-
based decoder [28], denoted as DC , featuring cross-
attention, layer norm and feed-forward layers in each
block. The input to C-Former includes Nc learnable to-
kens C ∈ RNc×d, concatenated with the input ques-
tion C̃ = concat(C,Q). In addition, we feed it with
the outputs of the global-local interlaced encoder, concate-
nated to one long sequence, referred as O, where O =
concat({XM

i ,GM
i }K−1

i=0 ). The output of C-Former is thus

OC = DC(Q=C̃,K=O, V=O),

where we pass forward only the first set of Nc output em-
beddings and ignore the rest, setting the output sequence
dimension to Nc. C-Former offers flexibility in controlling
the tradeoff between ANLS quality and computational effi-
ciency by controlling the output sequence length Nc.

3.5. Computation Analysis

Next, we turn to provide a thorough computational com-
plexity analysis. We consider a document that comprises
of K pages, each with N tokens, and the maximum answer
length is L. For simplicity, we assume that all encoders and
decoders have one layer. The naı̈ve way to support multi-
page documents is using an existing single-page encoder-
decoder model, fusing all of the textual page inputs to-
gether, and feeding them as one long sequence. We refer to
this approach as ‘concat’. The self-attention complexity of
such a configuration scales quadratically with the sequence
length, O((N ·K)2). Conversely in our method, we operate
on the document pages with two alternating encoding stages
in each layer. The first stage performs a self-attention over
both the page and doc tokens. Hence, the complexity of

such sub-layer is O((N +Ng)
2 ·K), where Ng is the num-

ber of doc tokens. The second stage features a self-attention
operation over the doc tokens, across all pages in the doc-
ument. The complexity of this operation is O((Ng · K)2).
Overall, the total complexity for one global-local encoder
block is O((N + Ng)

2 · K + (Ng · K)2). Since Ng is a
constant, and the number of pages is usually less than the
number of words in each page (K < N ), we obtain a com-
plexity of O(N2 ·K), which is not quadratic in K.

Prior to decoding, the outputs of all per-page en-
coders are concatenated, thus the output sequence
length is (N +Ng) ·K. Since the decoder is
auto-regressive, its complexity depends quadrati-
cally on the maximum output length, L, namely,
O((N +Ng) ·K · L2) = O(N ·K · L2). Since this
operation of decoding is performed iteratively during
inference, the combined sequence length (N + Ng) · K
becomes computationally heavy. To alleviate this concern,
we propose an optional C-Former model, which performs
compression prior to decoding. The overall complex-
ity in this decoding scheme includes passing through
the C-Former and then through the decoder, leading to
O((N + Ng) · K · Nc) + Nc · L2) which is equivalent
to O(N · K + L2), since Nc is a constant, denoting the
number of compression tokens in C-Former.

4. Experiments
4.1. Experimental Settings

Datasets and Metrics The MPDocVQA dataset [33] fea-
tures 46K questions, spanning over 48K images, and in-
cludes layout elements as figures, tables, lists and dia-
grams, with printed, handwritten and typewritten text. MP-
DocVQA contains mostly extractive questions, for which
answers are present in the given text. DUDE is smaller in
size (23.7K questions over 3K documents), but offers com-
plex questions that require a reader to rationalize beyond
the written text content. We report our results using the
ANLS metric, introduced in [8], computing a generalized
accuracy. Results for DUDE can be broken apart to several
types of questions, categorized to four groups: ‘extractive’
– for which the answer is found directly in the text; ‘abstrac-
tive’ – requiring a free-form answer that does not necessar-
ily appear in the document; ‘list of answers’ – requiring a
list of answers, as opposed to a single one, and ‘unanswer-
able’ – where the result cannot be determined using the text.

Implementation Details Our underlying architecture is
based on Docformerv2 [6]. Recall, our interlaced encoder
features M blocks (12 in ‘base’ and 24 in ‘large’), where
each block contains a page sub-layer which originates from
an extension of Docformerv2’s encoder layer. Every struc-
ture contains self-attention, normalization and feed-forward
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Method Params
MPDocVQA DUDE

ANLS ANLS ANLS per Question Type
Extractive Abstractive List of answers Unanswerable

Longformer [7] 148M 55.06 27.14 43.58 8.55 10.62 10.78
BigBird [38] 131M 58.54 26.27 40.26 7.11 8.46 12.75
LayoutLMv3 [38] 125M 55.13 20.31 32.60 8.10 7.82 8.82

Hi-VT5†
beamsearch [15] 316M − 35.74 28.31 32.98 10.60 62.90

Hi-VT5[33] 316M 62.01 23.06 17.60 33.94 6.83 61.67
Hi-VT5* 257M 60.78 23.86 7.21 16.56 3.53 72.77
DocFormerv2concat [6] 257M 69.67 44.21 41.66 41.86 15.13 65.19
GRAMC−Former 286M 70.80 40.07 40.43 39.61 11.42 52.55
GRAM 281M 73.68 46.15 46.07 44.82 15.27 62.18

T5-2D [18] 770M − 46.06 55.65 50.81 5.43 68.62
DocGptVQA [30] > 3.5B − 50.02 51.86 48.32 28.22 62.04
DocBlipVQA [29] > 3.5B − 47.62 50.69 46.31 30.73 55.22
Hi-VT5* [33] 784M 71.35 28.89 18.21 26.17 6.84 58.99
DocFormerv2concat [6] 784M 76.40 48.44 50.82 48.06 17.67 59.04
GRAMC−Former 864M 77.60 45.47 47.63 44.91 14.34 56.99
GRAM 859M 80.32 51.15 53.67 50.35 18.40 63.23

Hi-VT5*† [33] 784M 73.51 49.18 49.29 48.35 13.30 65.95

DocFormerv2†
concat [6] 784M 76.77 50.79 52.70 49.61 17.33 65.14

GRAM†
C−Former 864M 78.12 50.97 55.15 50.46 17.26 61.04

GRAM† 859M 79.67 53.36 56.83 52.32 19.96 65.43

Table 1. Quantitative Results. We present ANLS results for the MPDocVQA [33] and DUDE [18] test sets. The methods are grouped
according to the model type and size, starting from encoder-only models (top), T5-base models (middle) and T5-large models (bottom). †

denotes training with both MPDocVQA and DUDE.

Method Training Data ANLS
DocVQA MPDocVQA DocVQA MPDocVQA

DocFormerv2concat
✓ ✗ 86.60 72.73

✗ ✓ 85.28 76.40

✓ ✓ 86.47 75.37

GRAM
✓ ✗ 86.70 73.12

✗ ✓ 85.29 80.32

✓ ✓ 86.32 78.66

Table 2. DocVQA vs. MPDocVQA Performance. Test results
over both datasets using the large model variants. A checkmark
denotes whether a dataset was included in training or not.

layers. We extend the page layer from Docformerv2 to fea-
ture also the doc learnable embeddings. The second doc
sub-layer is similar in structure to the first sub-layer, only it
is initialized from scratch, with the following specification:
dff = 1024, dkv = 64, nheads = 4, d = 256. We im-
plement 32 doc learnable tokens for each page, uniformly
initialized to random values. For bias adaptation, the ini-
tial bias value is set to c = 20, with variations between
encoder heads, as described in Sec. 3.3. We incorporate an
additional optional compression stage using C-Former – a
randomly-initialized T5 [28] tiny decoder, with an encoder
mask instead of a causal one. The output sequence extracted

from C-Former is Nc = 256. Finally the decoder is initial-
ized with pretrained weights from DocformerV2.

The model is trained with the Hugging Face Trainer [17]
for 200k steps, starting with a warm-up of 1k steps, with
linear learning rate decay. We use learning rates of 3e−5

and 1e−4 for the already pretrained encoder and decoder
weights, versus the newly initialized doc sub-layer weights.
Training is performed on a cluster of 8×A100 GPUs, each
with 40GB of RAM. During training, each page encoder re-
ceives 800 tokens, dealing with up to 4 pages. During test-
ing, we increase the maximum length of tokens to 8, 000.

Baselines We report the results of previous work on both
MP-DocVQA and DUDE datasets (if those exist), includ-
ing the NLP-based Longformer [7] and BigBird [38], which
were adapted to MPDocVQA by [33]; LayoutLMv3 [16],
originally designed for DocVQA; and Hi-VT5 [33] and T5-
2D [32], specifically suggested for MP-DocVQA Task. We
also add for reference the results of methods published in
the leader-boards of MPDocVQA and DUDE, which do not
have corresponding papers, including DocGptVQA [30],
DocBlipVQA [30], and Hi-VT5beamsearch [15] ([15] was
trained on both MP-DocVQA and DUDE). In our approach,
we present two variations: GRAM and GRAMC−Former.
While GRAM utilizes the full length of the encoder output,

15603



Figure 4. Qualitative comparison between our approach and Hi-VT5 [33] indicate that the integration of our global-local encoder enhances
reasoning capabilities, especially when the inquiries require multi-page context.

GRAMC−Former allows the user to control the trade-off
between performance and latency.

To ensure a fair comparison, since we use the pretrained
model of DocFormerv2 [6], we implement two additional
baselines, referred to as Hi-VT5* and DocFormerv2concat.
The first follows a similar structure as Hi-VT5 [33], with the
encoder originating from DocFormerv2, however without
the page answer prediction, as it does not exist in DUDE.
The second recreates the approach of [18], where only the
textual tokens of all pages are concatenated to one long se-
quence, then passing through the DocFormerv2 model. The
second approach poses a computational burden, thus we use
only 600 tokens during training per page, with up to 4 pages,
and during test only 400 tokens.

4.2. Results

We present the performance of our method over the MP-
DocVQA [33] and DUDE [18] datasets in Tab. 1. The meth-
ods are divided into three groups: the top contains encoder-
only, and methods that rely on the T5-base model (up to
316M parameters); the middle section, approaches that use
the T5-large model (over 770M parameters), and finally the
bottom, T5-large models, trained on both datasets.

As can be seen, in the first group, the encoder-only
NLP methods, LongFormer [7], BigBird [38] and Lay-
outLMv3 [16] can only handle relatively well ‘extractive’
style tasks as in MPDocVQA dataset [33], but often strug-
gle with ‘abstractive’ questions that are more abundant in
DUDE [18]. As to T5-‘base’ models, versus our best com-
petitor Docformerv2concat, we obtain an improvement of
(+4%,+1.9%) on MP-DocVQA and DUDE datasets. As
to methods that combine an additional compression before
decoding (Hi-VT5, Hi-VT5*), our C-Former achieves an
increase in (+8.8%,+16.2%) over the best candidates on
the MP-DocVQA and DUDE datasets.

As for the group of ‘large’ models, we include
the results of T5-2D [18] DocGptVQA [30] and

DocBlipVQA [29]. Note that our model surpasses
DocFormerconcat, the primary baseline, achieving improve-
ments of (+3.9%,+2.7%) on MP-DocVQA and DUDE,
respectively. We also outperform DocGptVQA [30], a
method that appears in the leaderboard of DUDE, by
+1.1%, thereby obtaining SOTA results for GRAM ‘large’.

The final category showcases large encoder-decoder
models, fine-tuned on both MP-DocVQA and DUDE train-
ing sets, showcasing the benefits of augmented training
data. GRAM consistently demonstrates performance gains
over the baseline, illustrating its robustness across differ-
ent datasets and training scenarios. Next, we present in
Tab. 2 the effect of training on DocVQA vs. MPDocVQA .
Our method achieves performance on-par on the single page
task, while enhancing performance on the multi-page sce-
nario by +3.3%, compared to the baseline.

In Fig. 4, We show qualitative results on the DUDE
dataset of GRAM versus Hi-VT5* [33]. Our method
demonstrates proficiency in addressing questions that in-
volve attention over multiple pages (‘how many diagrams
are there’), an increased visual analysis capability (‘Which
month shows the hurricane?’), and heightened abstractive
ability (‘What is the EPS code for Little Rock?’).

5. Ablation Study

We perform an ablation study on our approach, evaluating
the influence of each constituent component using DUDE’s
validation set [18]. This validation set enables the group-
ing of documents by their respective page counts: 1, 2–4,
5–10, 11–end, encompassing 1747, 2259, 1062, 1241 sam-
ples in each category, respectively. Our investigation delves
into the impact of the number of doc tokens and the bias
adaptation methods. Moreover, we employ the C-Former
for sequence compression, adjusting the compression ratio
and examining the balance between performance and la-
tency (see supplementary for more details).
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#Doc
Tokens

Bias
Type

Compression
Dimension

ANLS by Number of Pages
DUDE validation dataset

All 1 2-4 5-10 11-end
✗ ✗ ✗ 46.16 47.18 48.66 43.34 42.57

16 ✗ 46.39 48.35 49.06 43.16 41.56

32 Decaying ✗ 47.88 49.29 49.90 45.90 43.94

64 ✗ 46.70 47.98 49.22 44.00 42.60

32
✗ ✗ 47.52 49.85 49.93 44.90 42.10

Constant ✗ 46.14 47.41 48.13 44.44 42.19

Decaying ✗ 47.88 49.29 49.90 45.90 43.94

32 Decaying

8 39.83 39.73 41.41 36.98 39.52

32 40.42 40.95 41.64 38.12 39.39

256 41.99 42.57 43.77 38.40 41.01

1024 42.56 42.97 44.30 38.94 41.93

4096 43.59 44.75 44.64 40.54 42.67

Table 3. GRAM Ablation Study. Results on DUDE validation
set ablating over (a) the dimension of doc tokens, (b) the attention
bias employed and (c) the C-former input dimension.

GRAM Components We focus our initial exploration on
the impact of the number of doc tokens Ng . As can be
seen in Tab. 3, while Ng = 16 leads to performance on-
par with not using doc tokens at all, for the optimal value of
Ng = 32, we obtain an increase of +1.7% in ANLS. Shift-
ing our focus to bias adaptation methods, Tab. 3 shows that
using constant bias has a negative effect on the results, sug-
gesting this method is not flexible enough in maintaining a
balance between the page and doc tokens. However, our de-
caying bias-adaptation approach does improve results over-
all, versus no-bias (+0.36%), especially for longer docu-
ments (+1% improvement for 5-10 pages and +1.84% for
11 pages and more). This is to be expected, since incor-
porating new doc tokens and increasing their importance
can potentially affect single-page performance. Finally, in
Tab. 4, we reinforce our choice of pages as semantic logi-
cal units for MPDocVQA. We first ablate our method with
and without page embedding. Next, we compare our page-
based division with varying fixed-length division of tokens
for encoder. Results in Tab. 4 clearly demonstrate an ad-
vantage towards page-level encoding in MPDocVQA. This
aligns with our initial assumption that structured documents
are often designed with page-division in mind.

Performance-Latency Trade-off We assess the impact
of C-Former on performance, considering compression out-
put lengths of 8, 32, 256, 1024, 4096. Note, performance
gradually improves with an increase in the compression
output length. However, longer output lengths correspond
to heightened model latency. Note that using C-Former
for shorter documents can be redundant, as there is little
to no compression compared to the input sequence length
and results decrease. In Fig. 5, we scrutinize the trade-
off between computational efficiency and compression rate

Page
Embedding

Segment
Length

ANLS by Number of Pages
DUDE validation dataset

All 1 2-4 5-10 11-end
✓ ✗ 47.88 49.29 49.90 45.90 43.94
✗ ✗ 46.12 48.74 48.11 43.59 40.99
✓ 256 45.22 46.38 46.69 44.13 41.83
✓ 512 45.09 45.90 47.32 42.65 41.98
✓ 1024 44.39 44.98 46.63 41.69 41.78

Table 4. The Significance of Pages as Semantic Units. Re-
sults on DUDE validation set ablating over (a) utilization of page-
embedding, (b) segment length for fixed-size encoding inputs.

OOM

Figure 5. Latency comparison. We compare the dependency be-
tween overall latency and the number of pages in input document
for GRAM, GRAMC−Former , DocFormerv2concat and Hi-VT5.

by comparing to DocFormerv2concat [6] and Hi-VT5*
[33]. We discover that DocFormerv2concat reaches a mem-
ory limit at approximately 20 pages, due to its quadratic
memory increase with sequence length. At this juncture,
GRAMC−Former surpasses DocFormerv2concat by per-
forming 3.5 seconds faster. Notably, GRAMC−Former can
gracefully handle documents surpassing 300 pages, effec-
tively bridging the gap between performance and latency.

6. Conclusions

Our method, termed GRAM, extends existing single-page
document models to efficiently handle multi-page docu-
ments without necessitating computationally-intensive pre-
training. Leveraging the single-page encoder for local page-
level comprehension, we introduce document learnable to-
kens and designated layers, enabling seamless informa-
tion exchange across pages. Additionally, our proposed
bias adaptation method enforces effective utilization of our
newly introduced document tokens. The incorporation of a
C-Former model reduces sequence length, balancing qual-
ity with latency in the decoding step. Extensive experiments
demonstrate GRAM’s state-of-the-art performance across
multi-page DocVQA benchmarks.

15605



References
[1] Aviad Aberdam, Ron Litman, Shahar Tsiper, Oron Anschel,

Ron Slossberg, Shai Mazor, R Manmatha, and Pietro Perona.
Sequence-to-sequence contrastive learning for text recogni-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 15302–15312,
2021. 2

[2] Aviad Aberdam, Roy Ganz, Shai Mazor, and Ron Litman.
Multimodal semi-supervised learning for text recognition.
arXiv preprint arXiv:2205.03873, 2022.

[3] Aviad Aberdam, David Bensaı̈d, Alona Golts, Roy Ganz,
Oren Nuriel, Royee Tichauer, Shai Mazor, and Ron Litman.
Clipter: Looking at the bigger picture in scene text recogni-
tion. arXiv preprint arXiv:2301.07464, 2023. 2

[4] Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago
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