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Abstract

Knowledge of lane topology is a core problem in au-

tonomous driving. Aerial imagery can provide high res-

olution, quickly updatable lane source data but detecting

lanes from such data has so far been an expensive man-

ual process or, where automated solutions exist, undriv-

able and requiring of downstream processing. We pro-

pose a method for large-scale lane topology extraction from

aerial imagery while ensuring that the resulting lanes are

realistic and drivable by introducing a novel Bézier Graph
shared parameterisation of Bézier curves. We develop a

transformer-based model to predict these Bézier Graphs

from input aerial images, demonstrating competitive results

on the UrbanLaneGraph dataset. We demonstrate that our

method generates realistic lane graphs which require both

minimal input, and minimal downstream processing. We

make our code publicly available at https://github.
com/driskai/BGFormer

1. Introduction
Autonomous Vehicles (AVs) require knowledge of their sur-
roundings to operate. So far, all systems not reliant on a
safety driver have required pre-built High Definition maps
(HD maps). HD maps can deliver a strong prior about the
road and lane topology, e.g. so the AV can navigate amid
occlusions. But creation of HD maps is time-consuming
and expensive, typically requiring a fleet of road vehicles
equipped with LiDAR and cameras followed by extensive
manual curation and human annotation [18].

One of the core components of an HD map is precise
lane geometry and topology data. Previous works have at-
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Figure 1. Our trained model detecting a lane Bézier Graph on an
intersection. Bézier endpoints P 0,3 shown in cyan, control points
P 1,2 in white, resulting curves in red.

tempted to automate the generation of this data from on-
board sensors [4, 5, 10] or - recently - from aerial imagery
[3, 9, 30, 31]. Generating lane-level data from aerial im-
agery is of particular interest since this can be efficiently
obtained at large scale using Unmanned Aerial Vehicles
(UAVs) or satellites. In this way, AVs could be equipped
with regularly updated HD maps that cover a large area.

However, these approaches are not without their chal-
lenges. Lane geometry and topology is typically predicted
in the form of a lane graph: a graph in which nodes repre-
sent a discrete sampling of lane centre lines, with edges rep-
resenting connectivity. Existing methods typically predict
the position of each node in 2D space, but this frequently
results in noisy, non-physical lane centre lines requiring ex-
tensive downstream processing and human oversight.

We improve on these methods by introducing a shared
parameterisation of cubic Bézier curves in a graph struc-
ture that we refer to as a Bézier Graph. By associating
Bézier direction vectors with nodes, we enforce a strong
prior that lane direction should be continuous at boundaries.
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the final published version of the proceedings is available on IEEE Xplore.
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By associating cubic Béziers with edges, we efficiently rep-
resent high-fidelity lane geometry while encouraging real-
istic, smooth lanes. We develop an end-to-end transformer-
based method to generate Bézier Graphs from aerial images,
demonstrating competitive benchmark performance and in-
creased drivability of the generated lane graphs.

To summarise, our main contributions are as follows:
• We introduce a novel Bézier Graph of lane topology and

geometry, achieving smoother lanes and direction conti-
nuity throughout the network. We demonstrate a method
for generating these from existing lane graphs.

• We develop BGFormer (Bézier Graph Transformer), an
end-to-end transformer-based method to directly generate
Bézier Graphs from aerial images.

• We evaluate our work on the UrbanLaneGraph [3]
dataset, validating the advantages of our method. We
highlight additional benefits, including drivability and
faster inference.

2. Related Work
2.1. Road and Lane Detection
Lane graph detection is closely related to the problem of
road graph detection. However, they work at different
scales; road graphs will typically cover a much greater area
but without distinguishing individual lanes. As such, road
graphs are useful for coarse navigation and routing tasks,
but not independently suitable for AV deployment.

Road graph detection methods typically utilise aerial
images and, as noted by [25], typically follow one of two
approaches: image segmentation followed by processing to
obtain a graph, or direct graph detection. With more rele-
vance to our work, we focus on the latter category. Several
approaches iteratively construct road graphs by predicting
adjacent nodes from the current node [1, 12]. Sat2Graph
[2] additionally encodes an input image into a fixed dimen-
sional context vector using an encoder-decoder structure.
RNGDet and RNGDet++ [25, 27] are recent transformer-
based approaches which iteratively predict sets of vertices.

Lane graph detection can be broadly split into two cat-
egories: methods using onboard sensors and methods using
remote aerial imagery. In the former category, HDMapNet
[11] uses onboard sensors to predicts a surrounding ras-
terised HD map, which is postprocessed into a vectorised
map. VectorMapNet [16] learns end-to-end vectorised HD
maps, similarly from a system of onboard cameras and LI-
DAR. CenterLineDet [26] uses an RNGDet-style [25] ver-
tex buffer-and-update system to iteratively create vectorised
lane centrelines from fused onboard sensor data.

A few papers in this area are of particular relevance as
they also utilise Bézier curves. Several [8, 20] represent
disconnected lanes using Bézier curves, but do not aggre-
gate these into a graph. LaneGAP [13] detects separate

lane paths, representing these as Bézier curves, then dis-
cretises these paths into a sequence of nodes before aggre-
gating the nodes into a lane graph. By contrast, our method
is the only one to directly predict a graph where edges en-
code Bézier curves and both positions and directions are
shared across nodes, thus retaining the Bézier parameterisa-
tion in the graph representation. This affords a stronger en-
forcement of direction continuity and, uniquely, allows the
Bézier curves representing lanes to smoothly branch into
multiple other curves.

Lane detection using aerial imagery has seen less re-
search. LaneExtraction [9] was the first to generate
“routable” lane centrelines from aerial imagery, extracting
lanes at non-intersection areas and then enumerating all
possible turning lanes. LaneGNN [3] removed the distinc-
tion between intersection and non-intersection inference,
estimating reachable lanes from a starting point using a se-
mantic segmentation network; sampling nodes and edges to
fill this segmentation and then training a Graph Neural Net-
work (GNN) to filter the resulting graph. Zürn et al. [31],
detected lane graphs from aerial images using only recorded
vehicle tracklets as signal, omitting human annotation.

2.2. Transformers for Graphs in Computer Vision

Until the recent pioneering work of Relationformer [21],
graph generation from images was specialised to particular
research areas; for example, road and lane graph generation
(see above), extracting biological “vessels” from 3D data
[19, 22], scene graph generation from 2D images [17, 24].

Relationformer [21] presented a unified image-to-graph
generation approach, using a DETR-style [6] transformer
network to encode the input image and propose node
“queries” located within the image. This work achieved
state-of-the-art performance across a range of benchmarks
and datasets, including several relating to road graph gen-
eration. However, direct application of this method to the
challenge of lane graph prediction is made difficult by a sig-
nificant increase in graph size; the lane graph crops studied
here are significantly larger than the 200 “object” (node) to-
kens of the original architecture, an issue due to O(N2) at-
tention scaling. Our method can be seen as - alongside other
improvements - addressing this scale issue with a more ef-
ficient Bézier Graph parameterisation of lane geometry.

Our work is the first to introduce Bézier Graphs and
jointly parameterise Bézier curves over an entire lane net-
work, thus distinguishing us from prior work that models
disconnected lanes with independent Bézier curves, or dis-
cards the Bézier parameterisation through discretisation be-
fore merging into a graph. In addition, to the best of our
knowledge our architecture is the first to detect lane graphs
from aerial imagery in a fully end-to-end fashion, contrast-
ing with existing multi-stage processes and resulting in a
simpler, more efficient lane prediction pipeline.
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3. Method
Our approach is comprised of three components: Sec. 3.1
describes our Bézier Graph parameterisation and fitting
method, Sec. 3.2 introduces BGFormer, a transformer-
based model for generating Bézier Graphs from aerial im-
agery, and Sec. 3.3 describes our algorithm for aggregating
graphs into a consistent global Bézier Graph.

3.1. Bézier Graphs
A lane graph is defined as a directed graph Gl = (Vl, El)
comprising a set of nodes Vl and directed edges El ✓ Vl ⇥

Vl. Nodes are attributed with 2D positions Xl 2 R|Vl|⇥2,
edges represent valid movements between nodes in such a
way that a single lane is followed i.e. edges representing
lane changes are not included, but a node may have multiple
successors where a lane branches. Lanes, as in the source
Argoverse [7] dataset, are defined generally as a segment of
road where cars drive in a single-file fashion in a single di-
rection, and as such include the “implied” lanes for turning
or at intersections.

A Bézier Graph is also defined as a directed graph Gb =
(Vb, Eb), Eb ✓ Vb ⇥ Vb. Nodes in this graph represent the
beginnings and ends of cubic Bézier curves, and edges rep-
resent the curves themselves. In addition to position, nodes
are attributed with direction unit vectors Db 2 R|Vb|⇥2, and
edges with two length values, Eb 2 R|Eb|⇥2

+ .
Each edge in Gb represents a cubic Bézier curve in

the following manner. Consider edge (vi, vj) 2 Eb,
where nodes vi, vj have positions xi,xj 2 R2 and direc-
tions d̂i, d̂j 2 R2 respectively. The edge has attributes
(`1, `2)T 2 R2

+. The associated curve, parameterised by
t 2 [0, 1] is defined as

B(t) =
3X

r=0

✓
n
r

◆
(1� t)n�rtrP r,

P 0 = xi, P 1 = xi + `1d̂i,

P 2 = xj � `2d̂j , P 3 = xj .

(1)

Note this choice of Xb,Db,Eb parameterisation encodes
an important inductive bias: positions and directions are
associated with nodes and thus shared between connected
curves, ensuring smooth direction continuity where lanes
merge and split. The direction lengths ` are however asso-
ciated with individual edges, allowing edges incident to the
same node to have different control points P 1,2. This is vi-
sualised in Fig. 1 in which the dashed white lines represent
direction vectors, white dots represent control points P 1,2.

In this new formulation, the edges of the graph are more
expressive than the edges of the source lane graph, no longer
only representing linear transitions. This additional expres-
siveness typically affords |Vb| ⌧ |Vl| when representing the
same underlying road network.

We introduce an algorithm for converting a standard lane
graph to a Bézier Graph via an optimisation routine that
aims to fit Bézier curves to paths in the input graph. The
aim of the routine is to choose a subset Vb ✓ Vl and opti-
mise the direction parameters Db and the length parameters
Eb such that the curves closely represent the input graph.
That is, every edge in the input graph is closely matched by
a segment of a curve in the Bézier Graph and vice versa.
The choice of subset should additionally be motivated by
the underlying road network geometry. This is important to
allow the network of Sec. 3.2 to learn to predict the posi-
tions of the nodes from an image.

The subset Vb is determined using a two-step process
shown in Fig. 2b. First, we select all nodes which have in or
out degree not equal to 1; these are lane endpoints, includ-
ing locations where lanes merge or split. We connect these
nodes with edges where there exists a path between them
that does not contain any of the selected subset of nodes.
Then, we further split these edges where there exist large
changes of curvature - this avoids long paths with multiple
turns which are inadequately fit with cubic Bézier curves.

The direction and length parameters Db,Eb are opti-
mised in the following way. For each node in input graph
Gl we can associate a corresponding edge in Eb due to the
surjective mapping described in the previous paragraph. We
associate each node with a Bézier parameter t 2 [0, 1]; fol-
lowing the example of [15], t is calculated as the fraction of
the cumulative length of the source graph path at which the
original node lies. Note this mapping Vl ! Eb⇥[0, 1] needs
only be computed once, before optimisation. For given val-
ues of Db,Eb, we then compute a corresponding location in
the Bézier Graph, yielding a matrix of predicted positions
FGl(Db,Eb) 2 R|Vl|⇥2. We choose Db,Eb by minimising
the L2 distance ||Xl � FGl(Db,Eb)||2. Note this requires
joint minimisation of the Bézier parameters across the en-
tire graph; for this we used gradient descent, and discovered
that the Adam optimiser was highly efficient for this task.
An example result of this Bézier fit can be seen in Fig. 2c.
We describe the optimisation procedure in greater detail in
the supplementary material, and a JAX implementation can
be found in our provided code.

3.2. Bézier Graph Transformer

We learn to generate Bézier Graphs in a supervised fashion,
given input aerial image I and associated target Gb. Our
architecture is based on Relationformer [21], but with adap-
tations to predict Bézier Graphs. The model is described
below, with architecture overview in Fig. 3.

Transformer Backbone: Our transformer encoder-
decoder uses the deformable-DETR [29] style architecture
of Relationformer: a convolutional backbone is used to first
extract image features which are passed into a transformer
encoder, generating an image encoding. A transformer de-

15367



(a) Ground truth graph, where node colour rep-
resents curvature. High curvature is yellow,
low is dark blue.

(b) Assignment of Bézier endpoints. Lane end-
points shown in red, additional endpoints due
to curvature changes shown in blue.

(c) Result of the Bézier fit.

Figure 2. The Bézier Graph fitting process, starting from a ground truth lane graph.

Figure 3. Illustration of the BGFormer model. Input image embeddings are generated by a CNN backbone and transformer encoder. A
transformer decoder combines node and edge queries with the encoder output through self- and cross-attention, generating a set of node
embeddings and a single edge embedding. A node head acts on each node embedding to predict its probability, position and direction.
Predicted node positions and directions are concatenated with the embedding vectors to produce node context vectors, and pairs of these
are concatenated with the edge embedding to produce context triples. An edge head acts on these triples to predict edge probability and
attributes. The predicted values are combined to yield the final Bézier Graph.

coder applies cross-attention to N learnable queries and
the encoder output, generating N query embeddings. The
first N � 1 of these embeddings are treated as node tokens
ni, 1  i  N � 1, and the remaining embedding is treated
as a single edge token e.

Node Head: We use a multilayer perceptron (MLP) to
regress node positions and directions:

[x̃0
i, d̃i] = MLPn(ni). (2)

Since the target output position is normalised to [0, 1] we
apply a sigmoid non-linearity to obtain the final predicted
position, x̃i = �

�
x̃0
i

�
. For predicting the probability of a

given token representing a node as opposed to the no object
class, we use a single linear layer,

p̃i = � (Wni + b) . (3)

Edge Head: Our edge head also uses an MLP followed by
a sigmoid non-linearity. This predicts the existence and at-

tributes of an edge between any two given nodes i, j. For
each pair i, j it takes in a context triple consisting of con-
text vectors for nodes i and j, and the edge context token
e. The node context vectors are their corresponding object
tokens ni,nj concatenated with their node-head predicted
attributes. The edge head outputs a predicted edge proba-
bility pij and normalised edge length values ˜̀ij :

ci = [ni, x̃i, d̃i], cj = [nj , x̃j , d̃j ], (4)

[pij , ˜̀ij ] = � (MLPe([ci, e, cj ])) . (5)

Similar to the node positions, these edge lengths are nor-
malised to [0, 1] and then multiplied by the image dimen-
sion to obtain the final predicted edge lengths.

3.2.1 Loss Function and Graph Matching

To train the prediction model, we require a matching be-
tween the predicted - unordered - model outputs and the
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nodes and edges of the ground truth Bézier Graph. For
this we take the DETR [6] approach of using the Hungarian
algorithm, matching the predicted and ground truth nodes
according to the predicted class probabilities and node at-
tributes, and deriving the edge matching from this.

For node attributes, we use the L1 regression loss: we
denote this L

n
p for the component corresponding to node

position loss and L
n
d for the node direction. Note that these

are computed on the nodes which are assigned the “node”
class by the Hungarian matcher, as these are the only nodes
which have a ground truth position and direction. For the
node classification loss Ln

c , we use the standard Deformable
DETR Focal Loss [14, 29].

To compute edge loss, we follow the example of Rela-
tionformer, considering only edges between nodes which
have been matched to ground truth nodes. Denote the
matching of node i by ci where ci = ; indicates that ci
is not matched to a ground truth node. Define the set of
possible edges between these matched nodes as Eposs:

Eposs = {(i, j) |1  i, j  N � 1 ^ (ci 6= ;) ^ (cj 6= ;)} .
(6)

From this we define the subset which exist in the ground
truth set Eb as Evalid:

Evalid = Eposs \ Eb. (7)

From this, we can define the set of background edges - those
which are possible but which don’t exist in the ground truth:

Ebackground = Eposs \ Evalid. (8)

Following relationformer, we define the edge probability
loss L

e
prob as the binary cross entropy (BCE) loss between

the predicted edge probabilities and the ground truth edge
probabilities, taking as our edge samples all of Evalid and
a random sample of Ebackground such that we sample three
background edges for every valid edge. We define the
edge attribute loss Le

a as the MSE loss between `ij and the
ground truth edge lengths, computed only over Evalid.

The total loss is then computed as a weighted sum of all
of the aforementioned losses:

L = �n
pL

n
p + �n

dL
n
d + �n

cL
n
c + �e

probL
e
prob + �e

aL
e
a. (9)

3.3. Global graph aggregation
In order to predict lane graphs over larger areas than can be
predicted directly, we first predict local graphs from crops
of the image and then aggregate these into a global graph.
In this section we introduce a graph aggregation algorithm
that iteratively predicts a Bézier Graph for each crop, post-
processes the model output and uses the Hungarian match-
ing algorithm to produce a globally consistent graph. Pseu-
docode for our method is shown in Algorithm 1.

Algorithm 1 Bézier Graph global aggregation
Require: Images = {I0, . . . , In}

1: Gagg  (;, ;)
2: for Ii 2 Images do
3: Glocal  predict(Ii)
4: post process(Glocal)
5: agg nodes nodes on boundary(Gagg)
6: local nodes nodes on boundary(Glocal)
7: matches match and threshold(agg nodes, local nodes)
8: Gagg  aggregate(Gagg, Glocal,matches)
9: end for

10: return Gagg

Given a large input image, we subdivide the image into
tiles of size 512 ⇥ 512 pixels which mutually overlap by
14 pixels. We initialize empty global Bézier Graph and it-
eratively predict a Bézier Graph for each tile, apply post-
processing and aggregate it into the global graph. This com-
paratively simple “tiling” method as compared to LaneGNN
[3] is enabled by our model predicting all lanes in a crop,
rather than only a successor lane graph.

Post-processing comprises two steps that prune the pre-
dicted Bézier Graph for an individual tile. The first step
removes singleton nodes: those with no edges, which are
meaningless in the context of a lane graph. The second step
is to remove edges that form triangles of the following form:
let i, j and k be predicted nodes such that there exist pre-
dicted edges ij and jk. If there is also an edge ik then we
delete this edge from the predicted graph. This is because
these edges tend to ‘cut the corner’ of the true lane predicted
by the model, and are likely to be mistakes.

After post-processing the predicted graph for the current
tile we aggregate this into the current global graph. We
gather all nodes from the global and tile graphs within a
region either side of the tile boundary. We then apply the
Hungarian algorithm to find a matching between the tile
and aggregated sets of nodes according to the following cost
function:

c(i, j) = kxi � xjk2 + I[di·dj0]. (10)

The first term computes the Euclidean distance between
node i and node j. The second term adds a fixed cost 
if the direction vectors are misaligned. Given the result of
the matching we merge any pairs of matched nodes with a
cost below a fixed threshold c. Nodes are merged by tak-
ing the average of the predicted position and direction vec-
tors. This represents another significant advantage of the
Bézier Graph formulation: a principled method of averag-
ing over lane direction at aggregation, enforcing direction
continuity. All remaining nodes and edges in the predicted
tile graph are added into the global graph. Figs. 5a and 5b
show the output of our method before and after merging.
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4. Experimental Results
4.1. Lane Prediction Tasks
We evaluate on the two lane prediction tasks introduced
alongside the UrbanLaneGraph dataset [3]:
• Successor Lane Graph Prediction (Succ-LGP): Given

an image crop and a starting location, predict the lane
graph which is reachable from that location.

• Full Lane Graph Prediction (Full-LGP): Given a larger
image, predict the full lane graph within that image.
We approach the Full-LGP task with minimal additional

assumptions; LaneGNN from the original UrbanLaneGraph
paper [3] assumes that there exists a lane starting in the bot-
tom center of input image crops, and therefore requires ini-
tial locations obtained from a separately trained model. By
contrast, as detailed in Sec. 3.3, we employ a strategy of
tiling the entire image with crops and aggregating to form
the full lane graph, requiring no prior starting positions.

However, this puts us at a disadvantage at the more con-
strained task of Succ-LGP. For this task, all evaluation ex-
amples have a lane beginning in the bottom center of the im-
age which is implicit in the training of LaneGNN but which
our standard training method does not assume.

Therefore, we train two variants of our model to target
the two tasks and ensure we are not at a disadvantage for
Succ-LGP. The first, Full-LGP, is trained on 512⇥512 crops
of the training set, where all ground truth lanes within those
crops are included. The second, Succ-LGP, is trained on
256 ⇥ 256 crops where there always exists a lane begin-
ning in the bottom center of the image, and the only lanes
included are those which are reachable from that point.

We evaluate both on the eval files provided by Urban-
LaneGraph. Succ-LGP is evaluated on held-out 256 ⇥ 256
tiles, Full-LGP on 5000⇥ 5000 images.

4.2. Bézier Graph Fit
In Tab. 1 we provide quantitative results for the closeness of
the Bézier Graph fitting procedure evaluated on the training
tiles for each of the tasks introduced in section Sec. 4.1.

The small Hausdorff distances indicate that the Bézier
Graphs are able to effectively represent the underlying lane
topology across all cities in the dataset. We show also that
Bézier Graphs result in ⇠ 90% reductions in graph size,
demonstrating that this representation is highly efficient.

4.3. Evaluation Metrics
We follow the evaluation procedure of [3] and use the fol-
lowing metrics to evaluate predicted graphs:
• GEO/TOPO [9]: the GEO metric measures geometric

and topological similarity between graphs by matching
nodes within a radius of 8 pixels. The TOPO metric com-
putes the GEO metric over the ego subgraph around each
node so that graph connectivity is taken into account.

Hausdorff |V| (% reduction)
City (pixels) Max Mean

Su
cc

es
so

r

Austin 1.1± 1.0 12 (83) 4± 2 (84± 6)
Detroit 1.2± 1.1 17 (82) 4± 2 (84± 6)
Miami 1.2± 1.3 16 (83) 4± 2 (84± 7)

Palo Alto 1.3± 1.4 21 (72) 5± 2 (84± 6)
Pittsburgh 1.2± 1.4 11 (84) 4± 2 (84± 7)

Washington 1.2± 1.3 14 (82) 4± 2 (84± 6)

Fu
ll

Austin 3.3± 3.4 60 (91) 14± 8 (92± 4)
Detroit 3.4± 3.5 60 (91) 17± 10 (92± 5)
Miami 3.2± 3.2 64 (90) 15± 9 (92± 5)

Palo Alto 4.0± 5.5 77 (92) 16± 10 (93± 4)
Pittsburgh 3.7± 5.1 49 (91) 13± 8 (92± 5)

Washington 3.1± 3.3 52 (92) 15± 9 (93± 5)

Table 1. Metrics on the Bézier Graph fit for each training tile.
Succ-LGP uses 256x256 tiles, Full-LGP uses 512x512. Hausdorff
(pixels) refers to the mean value (averaged over all training tiles
for that city and experiment) of the maximum Hausdorff distance
between the Bézier fit and the ground truth. |V| denotes number of
nodes, percentage reduction compared to ground truth in brackets.

• APLS [23]: Average Path Length Similarity is the mean
difference in shortest path lengths between nodes in the
two graphs scaled from 0 to 1.

• SDA [3]: Split Detection Accuracy measures the predic-
tive accuracy on lane splits in the graph.

• Graph IOU [30]: computes the intersection over union
between the two graphs in pixel space assuming a lane
width of 10 pixels.

4.4. Successor Lane Graph Prediction

In this section, we evaluate our model’s performance on the
Succ-LGP task, using a node threshold of 0.5 and an edge
threshold of 0.3. Quantitive results are shown in Tab. 2, and
qualitative results are shown in Fig. 4.

Our model improves on many of the metrics, with partic-
ular improvements in APLS and SDA, but achieves worse
recall performance. We believe these results can be ex-
plained by looking at the trends apparent in Fig. 4: our
model is less likely to include incorrect lane splits, which
appears to be an issue with the LaneGNN model. This is
reflected in improved SDA results. However, our model
frequently omits entire lanes from its prediction, reducing
recall values. This can be explained somewhat by the model
architecture; our predictions tend to consist of relatively few
nodes and when a single node is omitted, an entire lane will
be omitted. LaneGNN, on the other hand, follows a “sub-
tractive” approach, initially sampling nodes and edges to fill
a segmentation of reachable lanes and then using a GNN to
remove edges from this graph. This results in significantly
fewer nodes being omitted, but likely contributes to the in-
correct lane split issue.
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Figure 4. Qualitative comparison of the Succ-LGP variant of our model with LaneGNN [3]. Top row shows the ground truth data, second
row shows LaneGNN (nodes in cyan, edges in red), bottom row shows our method (Bézier endpoints in cyan, curves in red).

Model SDA20 " SDA50 " Graph IoU " APLS " TOPO P/R/F1 " GEO P/R/F1 "

LaneGraphNet [28] 0.0 0.0 0.063 0.179 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0
LaneGNN [3] 0.227 0.377 0.347 0.202 0.600 / 0.699 / 0.646 0.599 / 0.695 / 0.643

BGFormer (ours) 0.492 0.549 0.312 0.772 0.603 / 0.501 / 0.547 0.762 / 0.576 / 0.656

Table 2. Succ-LGP results. See Sec. 4.3 for a description of the metrics used. P/R/F1 denotes precision/recall/F1 score.

4.5. Full Lane Graph Prediction

For the Full-LGP task, evaluation is conducted on the 11
5000 ⇥ 5000 eval aerial images provided by the Urban-
LaneGraph dataset, covering 6 different cities and a wide
variety of interconnected road and lane geometries; the re-
sulting metrics are presented in Tab. 3. A qualitative com-
parison of our method and LaneGNN is visualised in Fig. 5.
To ensure a fair inference time comparison, all images and
models were evaluated on a machine with an AMD EPYC
7282 16-Core Processor, NVIDIA A6000 GPU and 64GB
of RAM.

In addition to the processing described in Sec. 3.3, we
experiment with one other post-processing variation. We
observed that our model occasionally predicted tiles entirely
empty of lanes, damaging lane connectivity and recall met-
rics. We therefore employ a simple method to combat this,
applying the model to several different rotations of each tile
and selecting an optimal prediction from the set of rotated
predictions. In our experiments, we use integer multiples of
90� rotations, and select the prediction with |E| closest to
the mean |E| across these four rotations. We report results
with and without this step in Tab. 3, showing that its inclu-
sion consistently improves both precision and recall scores.

Curiously, Tab. 3 shows that the trends observed in
Succ-LGP are reversed in the Full-LGP experiments; BG-
Former scores consistently higher in recall metrics, and
lower in precision metrics, when compared to LaneGNN.
This is likely due to the differences in tiling and aggrega-
tion; LaneGNN employs a “driving” method, meaning that
a single missed node can result in an entire downstream lane
being missed, discouraging high recall scores. BGFormer
achieves significantly higher APLS scores, likely due to
its more robust aggregation strategy discouraging discon-
nected graphs, as evidenced in Fig. 5.

The visual comparison of Fig. 5 reveals further distinc-
tions between the approaches. The lanes of BGFormer are
smoother and appear closer to a physically drivable net-
work, particularly when predicting curved paths. This ca-
pability leads to a graph structure that closely mirrors ac-
tual lane layouts, enhancing the reliability of the model for
navigation purposes. To further test this “drivability” im-
provement we define a simple additional metric: the KL
divergence between the predicted and ground truth curva-
ture distributions across the aggregated graphs. We plot this
metric for each of the 11 evaluation images in Fig. 6. We
observe that BGFormer achieves a lower KL divergence for
every one of these evaluation graphs, with an average of
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(a) BGFormer before merge (b) BGFormer after merge (c) LaneGNN [3]

Figure 5. Qualitiative comparison of example Full-LGP results. Our output - using the BGFormer model with the greatest F1 score from
Tab. 3 - is shown in Fig. 5b, LaneGNN in Fig. 5c. Predicted lanes are depicted in red, ground truth lanes in green. For clarity we show a
crop of the image, the corresponding full 5000⇥ 5000 prediction can be found in the supplementary material.

Model R / T SDA20 " SDA50 " IoU " APLS " TOPO P/R/F1 " GEO P/R/F1 " Time (s) #
LaneGNN [3] - / - 0.047 0.108 0.112 0.065 0.554/0.303/0.392 0.688/0.382/0.491 9783.83

BGFormer (ours)

5 / H 0.054 0.112 0.125 0.187 0.446/0.441/0.443 0.532/0.521/0.526 108.15
5 / L 0.063 0.126 0.128 0.212 0.427/0.446/0.436 0.520/0.536/0.528 101.42
3 / H 0.052 0.106 0.132 0.208 0.451/0.461/0.456 0.536/0.543/0.539 401.87
3 / L 0.064 0.123 0.137 0.229 0.431/0.464/0.447 0.523/0.554/0.538 416.49

Table 3. Full Lane Graph Prediction results. Our BGFormer model is evaluated with different settings, shown in the “R / T” column. R
values denote whether rotation is applied (3) or not (5) to each tile during processing - see the description in Sec. 4.5 for more details. T
values denotes the node and edge detection threshold used: H (high) for 0.6/0.5 respectively, L (low) for 0.5/0.3 respectively.

Figure 6. KL divergence between the predicted and ground truth
curvature distributions across the aggregated evaluation graphs.
LaneGNN in orange, BGFormer in blue.

0.04 ± 0.02 as compared to 0.12 ± 0.03 for LaneGNN, in-
dicating that the predicted distribution of curvatures is con-
sistently closer to the ground truth distribution. Several in-
dividual distributions are shown in the supplementary ma-
terial.

Finally, we highlight our relatively simple end-to-end
model architecture. By comparison, LaneGNN requires

four independently trained models: a separate pre-trained
LaneExtraction [9] model to provide starting positions and
directions on the 5000 ⇥ 5000 tiles, two image models to
segment all lanes and ego reachable lanes respectively, and
a GNN model to filter down the sampled graph. We high-
light also that the Bézier formulation naturally results in a
smooth lane graph, avoiding the spatial smoothing used by
other models. The comparitive simplicity of our method
and aggregation scheme contributes to the >95% reduction
in Full-LGP inference times shown in Tab. 3.

5. Conclusion

In this paper, we presented a novel method for repre-
senting lane networks in a Bézier Graph, and an end-to-
end transformer-based method for generating lane Bézier
Graphs from aerial images. We demonstrated that our
model produced physically realistic, drivable lanes, reduc-
ing the need for downstream postprocessing.

Future work could further adapt the prediction heads;
one specific area of improvement would be to modify the ar-
chitecture to eliminate the ‘corner cutting’ edges (Sec. 3.3),
removing the need for a post-processing step. A further
direction for future work would be combining the present
techniques with onboard sensors, to achieve the best of the
Bézier Graph drivable priors with real-time detection.
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