
The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN
Inversion and High Quality Image Editing

Denis Bobkov1 Vadim Titov2 Aibek Alanov1,2 Dmitry Vetrov3

1HSE University 2AIRI 3Constructor University, Bremen

dnbobkov@edu.hse.ru, titov@2a2i.org, aalanov@hse.ru, dvetrov@constructor.university

Figure 1. Editing examples and graphical comparison for StyleFeatureEditor. Our approach takes a real image, inverts it to the
StyleGAN latent space, edits the found latents, and synthesises the edited image. On the left, we present examples of our approach, while
on the right, we display a comparison with previous approaches. To evaluate inversion quality, we used LPIPS↓. Additionally, to compare
the editing capabilities, we compute FID↓ for 3 editing directions (see 4.3) and average them with coefficients equal to the average
FID per editing direction. The size of markers indicates the inference time of the method, with larger markers indicating a higher time.
StyleFeatureEditor capable of reconstructing even finer image details and preserving them during editing.

Abstract

The task of manipulating real image attributes through
StyleGAN inversion has been extensively researched. This
process involves searching latent variables from a well-
trained StyleGAN generator that can synthesize a real im-
age, modifying these latent variables, and then synthesiz-
ing an image with the desired edits. A balance must be
struck between the quality of the reconstruction and the
ability to edit. Earlier studies utilized the low-dimensional
W-space for latent search, which facilitated effective editing
but struggled with reconstructing intricate details. More
recent research has turned to the high-dimensional fea-
ture space F, which successfully inverses the input image
but loses much of the detail during editing. In this paper,
we introduce StyleFeatureEditor – a novel method that en-
ables editing in both w-latents and F-latents. This tech-
nique not only allows for the reconstruction of finer im-
age details but also ensures their preservation during edit-
ing. We also present a new training pipeline specifically
designed to train our model to accurately edit F-latents.
Our method is compared with state-of-the-art encoding ap-
proaches, demonstrating that our model excels in terms of
reconstruction quality and is capable of editing even chal-
lenging out-of-domain examples.

1. Introduction

In recent years, GANs [15] have achieved impressive re-
sults in image generation, which has led to their use in a
wide variety of computer vision tasks. One of the most suc-
cessful models is StyleGAN [21–24], which not only has
a high quality of generation, but also a rich semantic la-
tent space. In this space, we can control different semantic
attributes of the generated images by changing their latent
code [2]. However, to apply this editing technique to real
images, we must be able to find their internal representation
in the StyleGAN latent space. This problem is called GAN
inversion [47], and although it is well studied and many ap-
proaches have been proposed [2, 5, 12, 28, 32, 38, 44, 46],
it is still an open problem to develop a method that simul-
taneously satisfies three requirements: high-quality recon-
struction, good editability, and fast inference. Our work is
dedicated to the development of such a method.

Existing GAN inversion approaches can be divided
into two groups: optimization-based and encoder-based.
Optimization-based methods [1, 2] learn a latent represen-
tation for each input image that best reconstructs that im-
age. This results in good inversion quality, but such over-
fitted latent codes may deviate from the original distribution
of the latent space, resulting in poor editing. While there
are approaches that improve the quality of editing by fine-
tuning the generator itself for a given image [33], this does

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9337

not address the main drawback of such methods, which is
that the inversion is too long, making them impractical to
use in real-time applications. In contrast, more practical
encoder-based methods [32, 38] allow us to obtain a la-
tent representation of the input image in a single network
pass. However, with these approaches, it is more difficult to
achieve both high quality and good editability at the same
time. This is the so-called distortion-editability trade-off
[38]. Inversion quality and editability are directly related to
the dimensionality of the latent space in which we encode
the input image. In low-dimensional W and W+ spaces,
we will get low reconstruction quality but high editability,
because the low dimensionality of the latent code is a good
regularizer that keeps it in the StyleGAN manifold. If we
train the encoder to predict in the high-dimensional Style-
GAN feature space Fk, this will significantly increase the
quality of the reconstructions at the expense of degraded
editability, since in such a space it is easier to overfit to a
particular image and escape the region in the latent space
where semantic transformations work. Methods working
in Fk [28, 40, 44] try to challenge this problem by using
additional transformations over the tensor Fk, but it is not
completely solved. In particular, the editability problem is
amplified when one increases the dimensionality of the Fk

feature space by taking them from earlier layers to improve
the quality of reconstructions.

In this paper, we propose a framework that allows us to
train an encoder in a high-dimensional Fk space that simul-
taneously achieves both excellent reconstruction quality and
good editability. The main idea of our approach is to divide
the training of our encoder into two phases. In the first, we
train an encoder that predicts a latent code in Fk space with
high resolution, which allows us to reconstruct images with
high quality, but at the same time significantly reduces ed-
itability. To recover the editability , we introduce a second
phase of training : we propose to train a new Feature Ed-
itor module that task is to modify the feature tensor Fk to
obtain the target editing in image generation. The main dif-
ficulty in training this module is that we do not have a train-
ing data, where for each image there would be its edited
versions. Therefore, we proposed to automatically generate
such data using an encoder operating in W+ space. That
is, as training samples for Feature Editor, we take recon-
structions of real images using a standard encoder with low
inversion quality, but with good editability. And on this data
we train the Feature Editor, which predicts F ′

k for the fea-
ture tensor Fk of the input image, from which its edited
version should be generated.

Thus, thanks to the proposed two-phase encoder learning
framework, we are able to train an inversion model that has
both high reconstruction quality, significantly better than
the current state-of-the-art, and good editability. We con-
ducted extensive experiments, demonstrating a significant

improvement over state-of-the-art methods in the inversion
task, and comparable results in the image editing. In par-
ticular, we have significantly improved the reconstruction
metrics in terms of LPIPS and L2 by more than a factor
of 4 compared to StyleRes[28], while the running time is
equivalent to conventional encoder-based methods.

2. Related Work
Latent Space Manipulation. With the development of
StyleGAN models [21–24], they started to be actively used
for the task of image editing. Many methods have shown
that by changing the latent code of an image in the latent
space of StyleGAN, it is possible to change the semantic at-
tributes of the image [2]. There are methods that find such
directions using supervised approaches utilized attribute la-
belled samples or pre-trained classifiers [3, 14, 35, 37].
Unsupervised methods do not use any kind of labelling
[9, 16, 34, 39], instead they, for example, perform PCA ei-
ther in StyleGAN’s feature space [16] or find directions in
the weight space [9]. Other methods use a self-supervised
learning approach [19, 30, 36]. And there are methods
that utilize language-image models [31] to find desired edits
guided by text [13, 27, 43]. To apply all these methods to
real images, it is necessary first to encode images in Style-
GAN’s latent space.

GAN Inversion. The task of GAN inversion [47] is to
find the latent code for a real image, from which it can
be generated by StyleGAN and the result has to be per-
ceptually equal to the input image and can be edited by
changing this latent code. Existing GAN inversion methods
can be divided into two types: optimization-based methods
[1, 2, 7, 8, 10, 33, 46, 48] and encoder-based methods [4–
6, 12, 18, 26, 28, 29, 32, 38, 40, 44, 46].

Optimization-based methods. Optimization methods
find latent code by optimizing directly over the reconstruc-
tion losses. The first approaches [1, 2, 10, 46] performed
optimization in Z/W /W+ spaces. To improve the quality
of the reconstruction, later methods proposed to optimize
additionally in the StyleGAN feature space [48]. Since the
latent code can escape from the StyleGAN manifold during
the optimization process and thus negatively affect the ed-
itability, it has been proposed to additionally fine-tune the
generator weights for each image [33]. Although high re-
construction quality and good editability can be achieved
with these approaches, the optimization process is too long,
requiring up to several minutes for each image, which is not
applicable for real-time interactive editing.

Encoder-based methods. Encoder-based methods al-
low learning the mapping from the space of real images to
the StyleGAN latent space in one or more passes through
the neural network. Basically, these methods differ in the
latent spaces they encode to. The first methods trained the
mapping for the simplest Z, W , W+ spaces [29, 32, 38, 46],

9338

Figure 2. The Inverter training pipeline. Input image X is passed to Feature-Style-like backbone that predicts w ∈ W+ and Fpred ∈ Fk.
Then Fw = G(w0:k) is synthesized and passed with Fpred to the Fuser that predicts Fk. Inversion X̂ = G(Fk, wk+1:N) is generated.
Additional reconstruction X̂w = G(w0:N) is synthesized from w-latents only. Loss is calculated for pairs (X, X̂) and (X, X̂w).

which gave good editability but low reconstruction qual-
ity. Next methods were proposed that additionally pre-
dicted changes in the generator weights using a hypernet-
work to better reconstruct the input image [5, 12]. This
increased the quality of the reconstruction without sacri-
ficing editability. There are also methods that propose to
use multiple passes over the encoder to refine the details of
the image during reconstruction [4, 5]. The most success-
ful methods train encoders for StyleGAN’s feature space
Fk [28, 40, 44]. Such methods achieve the highest recon-
struction quality among encoder-based methods, and are
comparable to optimization-based methods. The main re-
maining problem is poor editability, since in such a high-
dimensional latent space it is very easy to overfit the image
and go out of the natural StyleGAN manifold.

In our paper, we propose a framework that preserves the
editability of an encoder trained in the StyleGAN’s feature
space Fk, and achieves phenomenal reconstruction quality.

3. Method

3.1. Overview

The goal of StyleGAN inversion methods is to find an in-
ternal representation of the input image in the StyleGAN
latent space that contains as much information and detail
as possible about the image itself, and at the same time al-
lows editing it. This internal representation can be searched
in different StyleGAN latent spaces, which have different
properties. We can distinguish two main latent spaces that
are considered in the StyleGAN inversion task, namely W+

and Fk. W+ is the concatenation of N vectors w1, . . . ,
wN , which are fed into each of the N convolutional layers
of StyleGAN. Fk is feature space, which is the combination
of the W+ space and the space of the feature outputs of the
k-th convolutional layer of the StyleGAN.

It is known that the representation of an image in W+

space preserves few details, but allows good editing. In
Fk space the situation is the opposite – we can almost per-
fectly reconstruct the original image, but this representa-
tion is difficult to edit. The latest most advanced encoders
Feature-Style [44] and StyleRes [28] work in Fk space, and
to solve the editing problem, they offer their own techniques
to transform the Fk ∈ Fk feature tensor during editing. But
these techniques do not solve the problem completely. And
it is exacerbated if the resolution of the Fk feature tensor
is increased. In this case, the quality of reconstructions im-
proves significantly, but the editability completely vanishes.

In our work, we propose a way to edit Fk feature tensor
that preserves high quality of the reconstruction with good
editability. The basic idea is to train an additional mod-
ule called Feature Editor, which will transform the feature
tensor Fk in the right way for each edit. But to train Fea-
ture Editor, we will need a special training dataset, where
for each image we need to have its edited versions. It is
clear that it is very difficult and expensive to manually build
such a dataset. Therefore, we generated this dataset using
an encoder that operates in W+ space. That is, for each real
image from the dataset, we find its reconstruction in W+

space, get its edited version, and use these two images to
train our Feature Editor module. This approach allowed us
to significantly improve the quality of edits, even for high
resolutions of Fk . Further, we give more details about the
architecture of StyleFeatureEditor and the training process.

3.2. Architecture

In this section, we describe StyleFeatureEditor, which con-
sists of two parts: Inverter I and Feature Editor H . The task
of Inverter is to extract reconstruction features from the in-
put image, while Feature Editor should transform these fea-
tures according to the information about the desired edit.

9339

Inversion loss calculation

Generator
4 1024

Inversion loss

Inverter

Training data and
sampling

 (e4e)

Inverter

Generator
4 1024

G
en

er
at

or
4

 6
4

Feature Editor
Editing loss

G
en

er
at

or
4

 6
4

Generator
64 1024

Editing loss calculation

 Trainable weights

Concatenation -latents editing

Editing direction
Legend

Fixed weights Feature Editor

Figure 3. The Feature Editor training pipeline and inference. To obtain editing loss, one need to synthesize training samples: XE –
training input, and X ′

E – training target. The pre-trained encoder E takes the real image X and predicts wE ∈ W+. Edited direction
d ∈ D is randomly sampled, after which wE is edited to w′

E = wE + d. Image XE and intermediate features FwE are synthesized from
wE , while X ′

E and Fw′
E

are synthesized from w′
E via generator G. XE is used as input and passed to frozen Inverter I that predicts Fk and

w that is edited to w′ according sampled d. Then ∆ is calculated, and Feature Editor H edits Fk according ∆. The edited reconstruction
X̂ ′

E is synthesized from F ′
k and w′

k+1:N . Editing loss is calculated between X ′
E and X̂ ′

E . To obtain the inversion loss, the real image X

is passed to I that predicts w and Fk, Fk is edited to F ′
k by H with ∆ = 0. The inversion X̂ is synthesized from F ′

k and wk+1:N . The
Inversion loss is calculated between X and X̂ . Inference pipeline is the same as synthesizing X̂ ′

E but with the assumption that I takes
real image X instead of XE .

Inverter. I consists of Feature-Style-like Encoder Ifse
and an additional module Ifus called Fuser. Ifse consists
of Iresnet50 backbone, Feature predictor and Linear layers
(see Fig. 2). First, the input image X is passed to the back-
bone, which predicts 4 intermediate features, pools them to
the same dimensionality, concatenates them, and maps to
w ∈ W+ by Linear layers. The third intermediate feature is
also passed to Feature predictor that predicts Fpred ∈ Fk:

(w,Fpred) = Ifse(X). (1)

Despite good inversion quality, Feature-Style Encoder
fails to reconstruct fine details of the image, thus we in-
creased the predicted feature tensor from Fpred ∈ F5

to Fpred ∈ F9 that increases its dimensionality from
R512×16×16 to R512×64×64 respectively.

To take into account the impact of w0:k we additionally
synthesize output of the k-th generator layer Fw = G(w0:k)
via the StyleGAN2 generator G. Fw then fused with pre-
dicted Fpred by an additional module Ifus, which predicts
Fk ∈ Fk:

Fk = Ifus(Fpred, Fw) (2)

Thus, I takes input image X and predicts w and Fk:

(w,Fk) = I(X). (3)

after then, the reconstructed image X̂ is synthesized from

Fk and wk+1, . . . , wN :

X̂ = G(Fk, wk+1:N). (4)

It is also possible to synthesize image X̂w = G(w) from
w-latents only, which we use during training.

Feature Editor. The predicted feature tensor Fk con-
tains much of the input image information, which allows
even finer image details to be reconstructed. However, if
we do not transform Fk during editing, artefacts may ap-
pear or editing may not work at all. Therefore, we propose
an additional Feature Editor module H that transforms pre-
dicted Fk according to the desired edit. In order for H to
understand what to change, it is necessary to have informa-
tion ∆ about which regions Fk need to be edited. To obtain
such information, we propose to use a pre-trained encoder
E in W+ space that is capable of good editing (we use pre-
trained e4e encoder [38]).

E takes input image X and predicts wE = E(x) ∈ W+,
which is edited to w′

E = wE+d by editing direction d. The
outputs of the k-th generator layer FwE

and Fw′
E

are syn-
thesized from wE and w′

E respectively. Difference between
FwE

and Fw′
E

contains information about edited regions:

∆ = FwE
− Fw′

E
. (5)

After gaining ∆, H transforms Fk to F ′
k according ∆:

F ′
k = H(Fk,∆). (6)

9340

The edited image X̂ ′ is synthesized from F ′
k and

w′
k+1, . . . , w

′
N , where w′ is edited w (see Fig. 3):

X̂ ′ = G(F ′
k, w

′
k+1:N). (7)

To sum up, the inference pipeline of StyleFeatureEditor
during editing consists of predicting w and Fk (Eq. 3), edit-
ing w to w′ = w+d, computing ∆ according Eq. 5, editing
Fk (Eq. 6) and synthesizing edited image (Eq. 7). Inversion
assumes the same pipeline, but with ∆ = 0.

3.3. Training Inverter (Phase 1)

This section is related to training Inverter I to reconstruct
source images. The pipeline of phase 1 is presented in Fig.
2.

The source image X is passed to I which predicts
w,Fk = I(X), where w ∈ RN×512 and Fk ∈ R512×64×64.
Then the generator G synthesizes X̂ = G(Fk, wk+1:N) –
reconstruction of the input image X . The loss function
Lphase1 is calculated between X and X̂ . In addition, to
force information flow not only through feature space Fk,
we also calculate Lphase1 for reconstruction X̂w = G(w)
obtained from w-latents only.

The loss function Lphase1 consists of two equal parts:
the image loss Lim applied to both (X, X̂) and (X, X̂w),
and the regularization Lreg for constraining the norm of Fk

tensor. Lim is calculated as a weighted sum of per-pixel
loss L2, perceptual LPIPS loss Llpips [45], identity-based
similarity loss (ID) Lid [32] by utilizing a pre-trained net-
work (ArcFace [11] for the face domain and ResNet-based
[38] for non-facial domains), adversarial loss Ladv by em-
ploying a pre-trained StyleGAN discriminator D which we
fine-tune during training. As the regularization loss, we use
Lreg = ∥Fk∥2. So, the total loss Lphase1 is calculated as:

Lim = L2 + λlpipsLlpips + λidLid + λadvLadv, (8)
Lphase1 = Lim + λregLreg, (9)

where λlpips = 0.8, λid = 0.1, λadv = 0.01, λreg = 0.01.

3.4. Training Feature Editor (Phase 2)

The goal of this phase is to train the Feature Editor H to
edit Fk. The training pipeline of this phase is available in
Fig. 3. In this phase, we assume that I is already trained, so
we froze its weights and train only H weights.

For this purpose it is necessary to have a dataset con-
sisting of pairs (X , X ′), where X ′ is the edited version of
the image X , but it is difficult to collect such data manu-
ally. Therefore, we propose to use a pre-trained encoder E
in W+ space suitable for editing to generate such data. E
takes input image X and predicts wE , it is edited with speci-
fied editing direction d to w′

E = wE+d, after which images
XE and X ′

E are synthesized from wE and w′
E respectively.

During this phase, we fix a set of 13 editing directions D
used in training (more details in Appendix 7). The pipeline
of training H using synthetic data is:
1. Pass X to E to obtain wE and w′

E = wE + d for the
editing direction d randomly sampled from D.

2. Synthesize images XE , X ′
E and feature tensors

FwE
, Fw′

E
from wE and w′

E respectively.
3. Calculate ∆ = FwE

− Fw′
E

.
4. Compute (w,Fk) = I(XE).
5. Obtain the edited tensor F ′

k = H(Fk,∆).
6. Synthesize X̂ ′

E = G(F ′
k, w

′
k+1:N) – the edited recon-

struction.
7. Calculate the loss between X̂ ′

E and X ′
E .

However, if H is trained only on synthetic images, the re-
construction quality for real images may degrade. To solve
this problem, we propose to train H not only on editing, but
also on the classical inversion task. The training pipeline is
the same, but for inversion we use a real image X as input
and assume ∆ = 0. X is passed to I , which predicts Fk and
w (Eq. 3), ∆ = 0 and Fk goes to the Feature editor which
predicts F ′

k and reconstruction X̂ is synthesised assuming
w′ = w (Eq. 7). The loss is calculated between X and its
reconstruction X̂ .

For this phase we used L2, Llpips and Lid for both in-
version and editing tasks with coefficients from phase 1.
For inversion task we additionally use adversarial loss Ladv:

Ledit = L2 + λlpipsLlpips + λidLid, (10)
Linv = L2 + λlpipsLlpips + λidLid + λadvLadv. (11)

The general loss Lphase2 for phase 2 is calculated as:

Lphase2 = Ledit(X
′
0, X̂

′
0) + Linv(X, X̂) (12)

During training we fixed a set of 13 editing directions D,
however SFE is capable of generalising to new directions
without any retraining. Furthermore, D can be restricted
while SFE’s editing abilities remain good on both: seen and
unseen directions (see Ablation Study 4.4, Appendix 10).
This can be explained by the fact that ∆ (which contains
almost all editing information) of even one direction will be
very different for different images. Therefore, during train-
ing, H does not learn specific directions, but generalizes to
gather information from ∆. Since ∆ depends only on the
edited w-latents obtained from E (e4e), our method is able
to apply any editing applicable to E (e4e).

More training and architecture detail available in the Ap-
pendix 7, 8.

4. Experiments
4.1. Experiment set-up

In our experiments for face domain, we used FFHQ [21]
image dataset for training and official test part of Celeba

9341

In
ve

rs
io

n
G

la
ss

es
B

la
ck

ha
ir

B
ob

cu
t

Input e4e Hyperinverter HFGI FS StyleRes SFE (ours)

Figure 4. Visual comparison of our method with previous encoder-based approaches on face domain. Row 1 represents the inversion, row
2 – the addition of glasses, row 3 – the darkening of the hair colour, row 4 – the changing of the hairstyle.

HQ dataset [20] for inference. For the car domain, we used
train part of Stanford Cars [25] for training and test part for
evaluation. For test editings we used InterfaceGAN[35] and
Stylespace[42] for both face and car domains, StyleClip[27]
and GANSpace[16] for face domain. To extract ∆ and sam-
ple images for editing loss calculation during training phase
2, we used pre-trained e4e [38] as E. For the inversion cal-
culation, we used our full pipeline including both I and H ,
assuming ∆ = 0 as in Fig. 3.

We compare our method with state-of-the-art encoder
approaches such as e4e[38], psp[32], StyleTransformer[18],
ReStyle[4], PaddingInverter[6], HyperInverter[12],
Hyperstyle[5], HFGI[40], Feature-Style[44], StyleRes[28]
and optimisation-based PTI[33]. We used author’s orig-
inal checkpoints, but in car domain, some of them are
not public. We train Feature-Style on Stanford Cars by
using authors code and omitting models without official
checkpoints.

4.2. Qualitative evaluation

To demonstrate the performance of our method, in Figure
4 we compare it with previous approaches on several hard
out-of-domain examples. Our approach not only recon-
structs more detail than previous ones, but also preserves
it during editing. For example, in the first row, our method

accurately reconstructs woman’s hat while others smooth it
out. In the second row, our method preserves the yellow
eye colour while editing the eye zone. In rows 3 and 4, it is
evident that our approach is better at reconstructing difficult
make-up and preserving the colours of the source image.

Additionally, in Figure 5 we show comparison of our
method on car domain. In the first row, our method even
manages to reconstruct the original shape of a car when the
others do not. Moving on to the second row, our method
most accurately reconstructs the outline and white lines of
the original car, while FS Encoder distorts them. Apart from
our approach in the third row, FS Encoder is the only one
that can reconstruct the shadow on the car, but it fails in
changing car colour.

4.3. Quantitative evaluation

To evaluate the effectiveness of the inversion technique,
two key aspects can be examined. Firstly, the accuracy
of the inversion, which refers to the degree to which the
method is able to reconstruct the details of the original im-
age. Second, the editability – how well the inverted image
can be edited.The comparison in both aspects on CelebA-
HQ dataset is presented in Table 1.

To measure quality of the inversion details, we used
LPIPS [45], L2 and MS-SSIM [41]. Additionally, we de-

9342

In
ve

rs
io

n
G

ra
ss

C
ol

or

Input e4e ReStyle StyleTrans HyperStyle FS SFE (ours)

Figure 5. Additional visual comparison of our method with previous encoder-based approaches in the car domain. Row 1 represents the
inversion, Row 2 – the addition of grass, Row 3 – the change in car colour.

Table 1. Quantitative comparison results for inversion quality and editing abilities on face domain. To measure inversion we report LPIPS,
L2, MS-SSIM and FID calculated on Celeba HQ test set. To measure editing abilities, we used FID as described in 4.3.We also measured
the time required to edit a single image on a single TeslaV100.

Inversion quality Editing quality
Model LPIPS ↓ L2 ↓ FID ↓ MS-SSIM ↑ Smile (-) Glasses (+) Old (+) Time (s)

e4e[38] 0.199 0.047 28.971 0.625 51.245 119.437 68.463 0.034
pSp[32] 0.161 0.034 25.163 0.651 46.220 105.740 67.505 0.034
StyleTransformer[18] 0.158 0.034 22.811 0.656 32.936 81.031 67.250 0.032
ReStyle[4] 0.130 0.028 20.664 0.669 36.365 87.410 56.025 0.138
Padding Inverter[6] 0.124 0.023 25.753 0.672 42.305 98.719 62.283 0.034

HyperInverter[12] 0.105 0.024 16.822 0.673 41.201 93.723 65.282 0.105
HyperStyle[5] 0.098 0.022 20.725 0.700 34.578 86.764 49.267 0.275

HFGI[40] 0.117 0.021 15.692 0.721 27.151 77.213 51.489 0.072
Feature-Style[44] 0.067 0.012 10.861 0.758 26.034 85.686 56.050 0.038
StyleRes[28] 0.076 0.013 8.505 0.797 24.465 73.089 43.698 0.063

PTI[33] 0.085 0.008 14.466 0.781 28.302 78.058 44.856 124

SFE (ours) 0.019 0.002 3.535 0.922 24.388 73.098 41.677 0.070

termined realism of the synthesized images by measuring
distance between distributions of real and inverted images
using FID [17]. Our method outperformed all previous ap-
proaches. The most notable difference was seen in LPIPS
and L2, indicating that our method is capable of extremely
fine detail reconstruction. We also tested our method in the
domain of cars on the Stanford Cars dataset presented in
Table 2, which confirms the results described above.

It is challenging to accurately estimate the quality of the
editing numerically in the absence of target images. To per-
form these calculations, we use the technique proposed in
[28]. We determine the attribute to be edited, then, based

on the Celeba HQ markup, we divide the test dataset into
images A with and B without this attribute. Next, we ap-
ply the method to B to add this attribute and synthesize B′.
The FID between B and B′ demonstrates the effectiveness
of the technique for editing this attribute. We provide ex-
periments with 3 attributes: removing smile, adding glasses
and increasing age.

The results show that our method not only inverts
well, but is also comparable to the current state-of-the-art
StyleRes in terms of editing capabilities. Furthermore, our
method requires only 0.066 seconds to edit a single image
on the TeslaV100, far outperforming optimisation-based

9343

Input W/o H F9 → F5 W/o E Dsmall Final

Figure 6. Ablation study. Visual representation of outputs of different ablations (described in 4.4) during pose rotation.

Table 2. Additional quantitative comparisons on the Stanford Cars
dataset. We do not provide a calculation of editing ability, as the
test set does not have the required markup.

Model LPIPS ↓ L2 ↓ FID ↓

e4e[38] 0.325 0.122 13.397
ReStyle[4] 0.306 0.102 13.008
StyleTransformer[18] 0.276 0.092 10.644
HyperStyle[5] 0.287 0.080 8.044
Feature-Style[44] 0.147 0.045 7.180
SFE (ours) 0.039 0.004 4.035

Table 3. Ablation study. Quantitative comparison of different ab-
lations (described in 4.4). We calculated all metrics on the test
part of Celeba HQ. To measure editing quality, we calculated FID
as described in 4.3.

Inversion Editing

Model LPIPS ↓ L2 ↓ FID ↓ Smile (-) Old (+)

Final model 0.019 0.0017 3.535 24.388 41.677

W/o H 0.016 0.0013 2.975 28.149 54.621
W/o Fuser 0.023 0.0019 4.239 26.410 42.121
W/o inv loss 0.037 0.0027 5.101 26.179 42.361
W/o E (e4e) 0.021 0.0024 3.829 24.941 44.398
F9 → F5 0.064 0.0089 7.915 25.933 43.317
Dsmall 0.021 0.0019 3.842 24.548 42.317

PTI and matching previous encoder-based methods in terms
of inference speed.

4.4. Ablation Study
To ensure the importance of each component in the pro-
posed pipeline, we conducted several ablation experiments.
We present the quantitative results of these experiments in
Table 3 and visual representations in Figure 6.

First, we tried to discard H and use only I as in train-
ing phase 1. Despite a small increase in the inversion met-
rics, the edits stopped working, proving the significance of
H . We also tried an architecture without Fuser Ifus (which
refers to the case where Fk = Fpred) and an experiment
where the inversion loss is omitted during the second train-

ing phase. Both of these experiments resulted in a drop in
reconstruction quality that is difficult to detect at low reso-
lution and only visible at high resolution. The fourth exper-
iment was related to omitting E and predicting features for
∆ from w obtained from I . The predicted w is much less
editable than wE from e4e, leading to artefacts during edit-
ing (Figure 6) and showing that E should be well editable.

We also attempted to train our pipeline with a lower pre-
dicted feature dimensionality. We reduced the predicted Fk

from k = 9 to k = 5, which is the dimensionality of the
Feature Space Encoder. Despite the significant decrease in
inversion quality, this approach is still capable of good edit-
ing, unlike Feature-Style. During the last ablation, we re-
duced the number of editing directions in D from 13 to 6
in the second training phase. The reduced Dsmall consists
of Age, Afro, Angry, Face Roundness, Bowlcut Hairstyle
and Blonde Hair. Despite a slight decrease in metrics, our
method is still able to edit directions that were not used dur-
ing training, as shown in Figure 6.

5. Conclusion
In this paper, we have demonstrated StyleFeatureEditor –
a novel approach to image editing via StyleGAN inversion
and introduced a new technique for training it. Even for
challenging out-of-domain images, we have achieved a re-
construction quality that makes it almost impossible to tell
the difference between the real and synthetic images with
the naked eye. Thanks to Feature Editor, our method is
not only able to reconstruct finer facial details, but also pre-
serves most of them during editing.

6. Acknowledgments
The analysis of related work in sections 1 and 2 were ob-
tained by Aibek Alanov with the support of the grant for
research centres in the field of AI provided by the An-
alytical Center for the Government of the Russian Fed-
eration (ACRF) in accordance with the agreement on
the provision of subsidies (identifier of the agreement
000000D730321P5Q0002) and the agreement with HSE
University No. 70-2021-00139. This research was sup-
ported in part through computational resources of HPC fa-
cilities at HSE University.

9344

References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent
space? In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 4432–4441, 2019. 1, 2

[2] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-
age2stylegan++: How to edit the embedded images? In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 8296–8305, 2020. 1, 2

[3] Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Wonka.
Styleflow: Attribute-conditioned exploration of stylegan-
generated images using conditional continuous normalizing
flows. ACM Transactions on Graphics (ToG), 40(3):1–21,
2021. 2

[4] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle:
A residual-based stylegan encoder via iterative refinement.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6711–6720, 2021. 2, 3, 6, 7, 8

[5] Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and
Amit Bermano. Hyperstyle: Stylegan inversion with hy-
pernetworks for real image editing. In Proceedings of
the IEEE/CVF conference on computer Vision and pattern
recognition, pages 18511–18521, 2022. 1, 3, 6, 7, 8

[6] Qingyan Bai, Yinghao Xu, Jiapeng Zhu, Weihao Xia, Yu-
jiu Yang, and Yujun Shen. High-fidelity gan inversion with
padding space. In European Conference on Computer Vision,
pages 36–53. Springer, 2022. 2, 6, 7

[7] Anand Bhattad, Viraj Shah, Derek Hoiem, and DA Forsyth.
Make it so: Steering stylegan for any image inversion and
editing. arXiv preprint arXiv:2304.14403, 2023. 2

[8] Pu Cao, Lu Yang, Dongxu Liu, Zhiwei Liu, Shan Li, and
Qing Song. What decreases editing capability? domain-
specific hybrid refinement for improved gan inversion. arXiv
preprint arXiv:2301.12141, 2023. 2

[9] Anton Cherepkov, Andrey Voynov, and Artem Babenko.
Navigating the gan parameter space for semantic image
editing. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3671–3680,
2021. 2

[10] Antonia Creswell and Anil Anthony Bharath. Inverting the
generator of a generative adversarial network. IEEE transac-
tions on neural networks and learning systems, 30(7):1967–
1974, 2018. 2

[11] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
4690–4699, 2019. 5

[12] Tan M Dinh, Anh Tuan Tran, Rang Nguyen, and Binh-Son
Hua. Hyperinverter: Improving stylegan inversion via hy-
pernetwork. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 11389–
11398, 2022. 1, 2, 3, 6, 7

[13] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans-
actions on Graphics (TOG), 41(4):1–13, 2022. 2

[14] Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip
Isola. Ganalyze: Toward visual definitions of cognitive im-
age properties. In Proceedings of the ieee/cvf international
conference on computer vision, pages 5744–5753, 2019. 2

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 1

[16] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and
Sylvain Paris. Ganspace: Discovering interpretable gan con-
trols. Advances in neural information processing systems,
33:9841–9850, 2020. 2, 6, 1

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Neural Information Processing Systems, 2017. 7

[18] Xueqi Hu, Qiusheng Huang, Zhengyi Shi, Siyuan Li,
Changxin Gao, Li Sun, and Qingli Li. Style transformer
for image inversion and editing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11337–11346, 2022. 2, 6, 7, 8

[19] Ali Jahanian, Lucy Chai, and Phillip Isola. On the” steer-
ability” of generative adversarial networks. arXiv preprint
arXiv:1907.07171, 2019. 2

[20] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation, 2018. 6

[21] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 1, 2,
5

[22] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative ad-
versarial networks with limited data. Advances in Neural
Information Processing Systems, 33:12104–12114, 2020.

[23] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119, 2020.

[24] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. Advances in Neural Infor-
mation Processing Systems, 34, 2021. 1, 2

[25] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
2013 IEEE International Conference on Computer Vision
Workshops, pages 554–561, 2013. 6

[26] Hongyu Liu, Yibing Song, and Qifeng Chen. Delving style-
gan inversion for image editing: A foundation latent space
viewpoint. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10072–
10082, 2023. 2

[27] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. In Proceedings of the IEEE/CVF Inter-

9345

national Conference on Computer Vision, pages 2085–2094,
2021. 2, 6, 1

[28] Hamza Pehlivan, Yusuf Dalva, and Aysegul Dundar.
Styleres: Transforming the residuals for real image editing
with stylegan. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1828–
1837, 2023. 1, 2, 3, 6, 7

[29] Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco
Doretto. Adversarial latent autoencoders. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14104–14113, 2020. 2

[30] Antoine Plumerault, Hervé Le Borgne, and Céline Hude-
lot. Controlling generative models with continuous factors
of variations. arXiv preprint arXiv:2001.10238, 2020. 2

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 2

[32] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
in style: a stylegan encoder for image-to-image translation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 2287–2296, 2021. 1, 2,
5, 6, 7

[33] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel
Cohen-Or. Pivotal tuning for latent-based editing of real im-
ages. ACM Transactions on graphics (TOG), 42(1):1–13,
2022. 1, 2, 6, 7

[34] Yujun Shen and Bolei Zhou. Closed-form factorization of la-
tent semantics in gans. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
1532–1540, 2021. 2

[35] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. In-
terpreting the latent space of gans for semantic face editing.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 9243–9252, 2020. 2, 6,
1

[36] Nurit Spingarn-Eliezer, Ron Banner, and Tomer Michaeli.
Gan” steerability” without optimization. arXiv preprint
arXiv:2012.05328, 2020. 2

[37] Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian
Bernard, Hans-Peter Seidel, Patrick Pérez, Michael Zoll-
hofer, and Christian Theobalt. Stylerig: Rigging style-
gan for 3d control over portrait images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6142–6151, 2020. 2

[38] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and
Daniel Cohen-Or. Designing an encoder for stylegan image
manipulation. ACM Transactions on Graphics (TOG), 40(4):
1–14, 2021. 1, 2, 4, 5, 6, 7, 8

[39] Andrey Voynov and Artem Babenko. Unsupervised discov-
ery of interpretable directions in the gan latent space. In
International conference on machine learning, pages 9786–
9796. PMLR, 2020. 2

[40] Tengfei Wang, Yong Zhang, Yanbo Fan, Jue Wang, and
Qifeng Chen. High-fidelity gan inversion for image attribute

editing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11379–
11388, 2022. 2, 3, 6, 7

[41] Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale struc-
tural similarity for image quality assessment. In The Thrity-
Seventh Asilomar Conference on Signals, Systems & Com-
puters, 2003, pages 1398–1402 Vol.2, 2003. 6

[42] Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace
analysis: Disentangled controls for stylegan image genera-
tion. 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 12858–12867, 2020. 6,
1

[43] Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu.
Tedigan: Text-guided diverse face image generation and ma-
nipulation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2256–2265,
2021. 2

[44] Xu Yao, Alasdair Newson, Yann Gousseau, and Pierre Hel-
lier. Feature-style encoder for style-based gan inversion.
arXiv preprint arXiv:2202.02183, 2022. 1, 2, 3, 6, 7, 8

[45] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 5, 6

[46] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-
domain gan inversion for real image editing. In European
conference on computer vision, pages 592–608. Springer,
2020. 1, 2

[47] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and
Alexei A Efros. Generative visual manipulation on the natu-
ral image manifold. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, Octo-
ber 11-14, 2016, Proceedings, Part V 14, pages 597–613.
Springer, 2016. 1, 2

[48] Peihao Zhu, Rameen Abdal, John Femiani, and Peter Wonka.
Barbershop: Gan-based image compositing using segmenta-
tion masks. arXiv preprint arXiv:2106.01505, 2021. 2

9346

