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Abstract

Text-guided image editing finds applications in various
creative and practical fields. While recent studies in im-
age generation have advanced the field, they often struggle
with the dual challenges of coherent image transformation
and context preservation. In response, our work introduces
prompt augmentation, a method amplifying a single input
prompt into several target prompts, strengthening textual
context and enabling localised image editing. Specifically,
we use the augmented prompts to delineate the intended ma-
nipulation area. We propose a Contrastive Loss tailored to
driving effective image editing by displacing edited areas
and drawing preserved regions closer. Acknowledging the
continuous nature of image manipulations, we further re-
fine our approach by incorporating the similarity concept,
creating a Soft Contrastive Loss. The new losses are in-
corporated to the diffusion model, demonstrating improved
or competitive image editing results on public datasets and
generated images over state-of-the-art approaches.

1. Introduction

The field of text-guided image generation has made sig-
nificant progress, particularly with the advent of diffusion
models [20, 31, 32, 37], ushering in a new era of content
creation. This progress extends to text-guided image ma-
nipulation, which offers a wide range of applications, span-
ning from artistic expression to the enhancement of image
interpretability. Text-guided image manipulation involves
altering an input image based on a user-provided textual
prompt, such as changing the appearance or shape of ob-
jects, modifying the background, and adding, removing or
replacing features. Some sample manipulations performed
by our method can be seen in Figure 1. In this context,
two intertwined challenges are present: the task of trans-
forming image content in accordance with a provided tex-
tual description, and the need to preserve the salient aspects
of the original visual information that remain contextually
relevant. While recent methodologies [8, 16, 27] have ex-
celled in the domain of image manipulation, they often en-
counter limitations in addressing both of these challenges

“a leopard” “a wedding “a penguin
cake” walking on the beach”

Figure 1. Text-guided image manipulation. Illustrative exam-
ples generated by our method (bottom row) with localised manip-
ulations based on given text prompts and input images (top row).

concurrently.
Many pioneering text-guided image editing methods rely

on text-guided image generation models [11, 16, 18, 27, 30,
41], which tend to be ill-equipped to address the nuanced
challenges of image manipulation. Additionally, methods
tailored specifically for image editing often require domain-
specific training [2, 19]. These methods require training
for each instance or translation domain, limiting their scal-
ability across diverse tasks. Despite excelling within their
trained domains, they often struggle with the broader gener-
alisation needed for accommodating various editing scenar-
ios. Although there exist generic methods, such as Instruct-
Pix2Pix [8], they often struggle to achieve both the faith-
ful transformation of image content and the preservation
of contextual details. Some existing methods incorporate
masks at inference time [1, 11, 31] or during training [40].
Although these methods show a good performance at con-
tent preservation, Dall-E 2 [31] and Imagen Editor [40] fall
short as they treat it as an inpainting task without taking into
consideration the masked content and DiffEdit [11] shows
weaknesses as it relies on a pre-trained image generation
model that is not specifically trained for manipulation pur-
poses and is sensitive to the mask detected at inference time.

Augmentation techniques have proven useful for en-
hancing image translation [5, 6, 9], but their application in
label space remains underexplored [3, 4, 25, 26]. Hence, to
overcome the aforementioned challenges, this paper intro-
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duces the concept of prompt augmentation, which extends
a single input prompt into a multitude of target prompts.
This augmentation provides the model with a broader and
more nuanced understanding of the image editing task at
hand. Taking inspiration from DiffEdit [11], which uses
user given source and target prompts to generate masks at
inference time, we leverage augmented prompts to auto-
matically derive an attention mask that serves as a guide
for image editing at training time. This mask plays a piv-
otal role in distinguishing which regions of the input image
should undergo alterations and which should remain unal-
tered, contributing to the task’s overall precision in localis-
ing the desired edit.

In addition to facilitating attention map computation,
augmented prompts empower us to establish relations be-
tween their respective manipulations. Specifically, areas
falling into the obtained masked for each pair should ex-
hibit dissimilarity, reflecting the diverse edits dictated by
different prompts, while the unmasked regions should main-
tain similarity, preserving aspects unaffected by the prompt.
With this aim we propose to incorporate a Contrastive Loss
(CL) that serves this dual purpose, compelling the model to
simultaneously displace edited areas while drawing closer
the preserved regions. As manipulation is not a discreet
task and the required amount of modification is influenced
by the target prompt’s relation to the source image, we pro-
pose to soften our contrastive loss by considering this rela-
tion. Building upon this foundation, we introduce a novel
loss function, the Soft Contrastive Loss (Soft CL) to incor-
porate the concept of similarity between textual prompts.
This approach results in a more dynamic and nuanced inter-
action between textual prompts and the image, contributing
to a higher level of performance.

• We introduce prompt augmentation, expanding input
prompts into multiple targets, in order to enhance con-
textual understanding for image editing, and compute a
dynamic attention mask to guide editing localisation.

• We introduce CL to encourage effective editing, pulling
preserved regions closer while pushing edited areas to
align with the target prompt. Our novel Soft CL incorpo-
rates similarity for dynamic prompt interaction, improv-
ing adaptability and performance.

• We assess the performance of our method through a com-
parative analysis with state-of-the-art approaches, achiev-
ing competitive results without relying on masks during
inference or utilising a paired dataset.

2. Related Work
Text-guided Image Manipulation. Text-guided image
manipulation using diffusion models is an evolving field
that harnesses diffusion models’ progressive and attention-
based architecture to facilitate fine-grained image adjust-
ments. This research trajectory aims to enhance con-

trollability and flexibility while maintaining the fidelity
of the input image. DiffusionCLIP [19] leverages CLIP-
based losses to guide the diffusion process where they
fine-tune a pretrained diffusion model for a specific do-
main. Imagic [18], Text2Live [2] and Dreambooth [34] in-
volve fine-tuning the entire model for each image, primar-
ily generating variations for objects. Plug-and-Play [39]
explores the injection of spatial features and self-attention
maps to maintain the overall structural integrity of the im-
age. Prompt-to-Prompt (P2P) [16] dispenses with fine-
tuning, instead retaining image structure by assigning cross-
attention maps from the original image to the edited one
based on corresponding text tokens. Another study [15]
uses self-guidance by constraining attention maps or inter-
mediate activations to control the sampling process. Sim-
ilarly, MasaCtrl [10] proposes to exploit innate features to
use mutual attention during inference. InstructPix2Pix [8]
utilises P2P to generate target images by accommodating
human-like instructions for image editing. SDEdit [27]
adopts a two-step approach, where they first introduce noise
into the input image and then employ the SDE prior for de-
noising, ultimately enhancing realism while aligning with
user guidance. BlendedDiffusion [1] follows a similar ap-
proach but introduces manually created masks at inference
time. Similarly, DiffEdit [11] also uses masks at inference
but automatically predicts them by using difference of la-
tent noises obtained by input and target prompts provided
by the user. Imagen Editor [40] incorporates masks dur-
ing training by using an object detector for randomly mask-
ing out objects to propose inpainting masks during training.
In contrast, our method integrates masks during training,
specifically tailored to the target manipulation. We deter-
mine these masks through the generation of multiple aug-
mentations of the source prompt enabling us to employ a
strategy akin to [11] to obtain an attention mask.
Prompt generation and augmentation for image gener-
ation. InstructPix-to-Pix [8] proposes to generate instruc-
tions for image editing by using a GPT model that they
train on manually constructed pairs of captions and instruc-
tion. Specialist Diffusion [26] augments the prompts to
define the same image with multiple captions that convey
the same meaning in order to improve the generalisation of
the image generation network. They retrieve similar cap-
tions, replace words with synonyms or reflect the image
augmentation, e.g. horizontal flip, in the text prompt. An-
other work [24] proposes to generate random sentences in-
cluding source and target domain in order to calculate a
mean difference that will serve as a direction while edit-
ing. iEdit [7] generates target prompts by changing words
in the input caption in order to retrieve pseudo-target im-
ages and guide the model. In [25], the authors propose
to augment the prompts with cultural descriptions in or-
der to reduce the culture bias in generative models. Our
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approach uniquely integrates prompt augmentation during
training, automatically generating multiple augmentations
of the source prompt that define possible target prompts.
We leverage these augmented prompts to determine masks
tailored specifically to the target manipulation, and to en-
able self-supervised learning, which enhance the model’s
ability to learn editing tasks.
Contrastive Loss for image generation. Being a power-
ful self-supersived learning method, contrastive learning en-
sures the consistency of image representations across vari-
ous augmentations by comparing positive pairs against neg-
ative ones. While it has delivered remarkable outcomes in
numerous fields, its application in image generation, and
more specifically, image manipulation, remains relatively
uncharted. In Cntr-GAN[43] the discriminator is trained
with a loss to push different image representations apart,
while drawing augmentations of the same image closer. The
first study to explore contrastive learning in the domain of
image manipulation [29] proposes PatchNCE loss to min-
imise the distance between the feature representations of
patches from a source image and corresponding patches
from generated images while treating randomly sampled
patches from other locations as negative samples. XMC-
GAN [42] proposes to enforce text–image resemblance with
a contrastive discriminator for text-to-image generation.
Soft Contrastive Loss. Most studies utilising contrastive
learning rely on hard assignment of samples [14, 29, 42, 43]
while only a few explore soft assignment. In a study [21]
tested on image retrieving, the authors propose a log ratio
loss to enforce the label and feature representation distances
to be proportional. Another study [38] follows a similar ap-
proach for visual localisation, in which they aim to have the
ordering of euclidean distances between features respect the
ordering of geometric proximity measure between the cor-
responding images. Given the continuous nature of textual
prompts and image manipulation, in our work, we leverage
the similarity between augmented prompts to guide the soft
assignment of image representations.

3. Methodology
In this section, we present a comprehensive description of
our proposed approach. We start by explaining the prompt
augmentation process, followed by how these augmented
prompts contribute to obtaining an attention mask and train-
ing the model using a contrastive loss. We then delve into
the finer refinements of our approach, aiming to accommo-
date the continuous nature of textual prompts through the
integration of Soft-CL and soft prompt augmentation. For a
visual overview of our methodology, refer to Figure 2.

3.1. Prompt Augmentation

We implement prompt augmentation as a critical compo-
nent of our approach, with the primary goal of generat-

ing multiple target prompts to facilitate self-supervision
for localised image editing. We employ a publicly avail-
able large-scale dataset, i.e LAION-5B [35], that contains
image-caption pairs. However, given the inherent noise
in captions from web-derived datasets, manipulating these
captions is challenging. To address this, we employ an im-
age captioning model, i.e. BLIP [22], to generate cleaner
descriptions associated with the source images. This step
is imperative as it enhances the clarity of captions, provid-
ing a structured foundation essential for subsequent modi-
fications. For instance, the original caption for the LAION
image shown in Figure 2 is ‘2004 Jaguar XJ8 Daphne AL’,
which is not descriptive of the image and cannot be eas-
ily manipulated to obtain target prompts. The caption gen-
erated with BLIP, ‘the front-end view of a black car’, is
cleaner, more descriptive and enables easier manipulation.

With the cleaner captions in hand, we proceed to aug-
ment the single input prompt by creating a range of target
prompts. This process begins by masking a random noun or
adjective within the input prompt. Leveraging the capabili-
ties of a masked language model, specifically BERT [13],
we generate potential replacement words for the masked
term. Additionally, we enrich our candidate word pool by
incorporating semantically related words such as synonyms,
antonyms and co-hyponyms, gathered through the NLTK1

library. From this pool, we randomly select a set of words
to generate multiple variations of the input prompt. For in-
stance, for the aforementioned sample in Figure 2, some
generated target prompts are: ‘the front-end view of a blue
car’, ‘the front-end view of a red car’, ‘the front-end view
of a white car’. Please refer to the supplementary material
for more samples. These augmented prompts not only di-
versify the translation capabilities of our network but also
lay the groundwork for localised image manipulation by fa-
cilitating our self-supervised framework.

3.2. On-The-Fly Mask Generation

Diffusion models conditioned on text generate different
noise estimates for each prompt. Drawing inspiration from
the approach used in DiffEdit during inference, we exploit
this characteristic to reveal the intended areas of manipu-
lation within images during training. In our work, we use
Latent Diffusion Model (LDM) [32], which operates in the
latent space to mitigate computational complexities associ-
ated with diffusion models. The loss for conditional LDM
is given in Eqn. 1, where ϵθ represents the noise estimation
network, which is a UNet [33]. τθ is a domain-specific en-
coder projecting the conditioning target prompt to an inter-
mediate representation, and the step t is uniformly sampled
from {1, 2, ..., T}. The network parameters θ are optimised
to predict the noise ϵ1∼N (0, 1) that is used for corrupting
the encoded version of the input image.

1https://www.nltk.org/
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Figure 2. Overview of our method. (a) Prompt Augmentation: In order to augment the prompts to facilitate localised image editing we
start by refining textual descriptions for source images using the BLIP captioning model [22], resulting in cleaner captions suitable for
further processing. Subsequently, we augment this input prompt by generating a range of target prompts using masked language modeling
and exploiting word relations. (b) Soft Contrastive Loss (Soft-CL): The augmented prompts are instrumental in computing an attention
mask based on the differences between the generated images. This attention mask is used to bring the inverse masked areas of the generated
images closer while pushing away masked areas considering their similarity to the prompts.

LLDM = EE(x),y,ϵ∼N (0,1),t[||ϵ− ϵθ(zt, t, τθ(y))||2] (1)

By passing the augmented prompts through the LDM,
the model outputs a set of estimated noises. We use the
differences between these estimations to delineate the areas
of image manipulation. Given the corrupted version of an
encoded input image zt and N augmented target prompts
y1, y2, . . . , yN , the noise estimation network, ϵθ, outputs
N estimated noises during each iteration. We calculate the
average of the differences of these estimation as shown in
Eqn. 2 where Np represents the number of unique pairs, and
it is given by Np = N ·(N−1)

2 .

∆ϵ =
1

Np

∑
i,j

|ϵθ(zt, t, τθ(yi))− ϵθ(zt, t, τθ(yj))| (2)

The outcome, ∆ϵ, provides valuable insights into the
varying degrees of noise introduced by different prompts,
signifying areas in the image that are most susceptible to
modifications. Subsequently, these dissimilarity values are
thresholded to establish a binary mask that distinctly high-
lights regions of alteration within the image. An example
can be seen in Figure 2, where the mask obtained for the
car image outlines only areas that would be manipulated in

case the colour of the car would change. In our particular
implementation, we employ a threshold empirically set at
0.4 of the range of absolute differences in noise estimates.
The resulting binary mask, M , serves as a crucial compo-
nent for defining the areas targeted for image manipulation
within the generated images.

3.3. Contrastive Loss (CL)

Using the mask M derived from augmented prompts, our
goal is to guide the model to encourage the masked areas
of the latent images, z1, z2, . . . , zN , generated with aug-
mented prompts, y1, y2, . . . , yN , to be in alignment with its
respective prompt, while preserving other relevant regions.
To achieve this, we introduce a CL that promotes dissimilar-
ity in the masked areas, while drawing the inverse masked
areas M of the images closer to each other and the source
image. The dissimilarity within the masked regions is ex-
pressed in the first component of the CL as follows:

Ld =
1

Np

∑
i,j

(
1− |(M ⊙ zi)− (M ⊙ zj)|2

)
(3)

where ⊙ represents element-wise multiplication. This
term promotes diversity within the areas of the images that
should undergo edits, ensuring that the edited content aligns
closely with the target prompts. The second component of
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CL is equally significant. It operates in parallel, aiming to
minimise differences within unmasked regions of the im-
ages. These regions are critical for preserving the parts of
the image that should remain unaltered during the editing
process. This part of the loss can be defined as:

Lp =
1

Np

∑
i,j

∣∣(M ⊙ zi)− (M ⊙ zj)
∣∣
2

(4)

The combined CL, unifying both the dissimilarity and
preservation components, can be represented as follows:

LCL = Lp + β · Ld (5)

The overall objective to fine-tune the LDM is:
Lobj = LLDM + α · LCL (6)

3.4. Soft Contrastive Loss (Soft-CL)

In image editing, textual prompts present a spectrum of de-
mands that may vary from subtle modifications to profound
transformations. For instance, let’s consider the difference
between transforming ‘a girl playing in a park’ into ‘a girl
playing in a garden’ or ‘a girl playing in a sandbox’. The
change from a park to a garden, for example, requires fewer
modifications compared to the more extensive transforma-
tion into a sandbox. To cater to this diversity in editing
requirements, we introduce a refinement to our method in
the form of Soft Contrastive Loss (Soft-CL). Soft-CL rep-
resents an enhancement over the conventional Contrastive
Loss, infusing the loss function with the concept of similar-
ity. To accommodate the varying editing demands, we adapt
our loss function by revising Eqn. 3 as follows:

Lsoft
d =

1

Np

∑
i,j

(
1− |(Mi ⊙ zi)− (Mj ⊙ zj)|22 · γ(yi, yj)

)
(7)

where γ() refers to a similarity measure between the
prompts, for which we have used the cosine distance be-
tween the CLIP embeddings of the prompts.

In accordance with the Soft-CL we have also enhanced
our prompt augmentation strategy to mine prompts in a
softer manner rather than selecting them randomly from the
pool we construct. For soft prompt augmentation (Soft-PA),
we choose the prompts based on differing similarity levels.
As we have done in Soft-CL we specifically use the distance
between their CLIP embeddings. This process results in a
diverse set of prompts, further enhancing the Soft-CL, and
consequently the model’s ability to handle a wide range of
textual inputs to produce contextually relevant image edits.

4. Experiments
In this section, we analyse our method’s performance
through experiments, demonstrating its performance with
qualitative and quantitative results, comparing to state-of-
the-art methods. We also conduct an ablation study, a hyper-
parameter study, and discuss limitations.

4.1. Experimental Setup

Datasets. For training, we used Laion-5B images [35] with
aesthetics scores greater than 7. For evaluation, we com-
bined images generated using Stable Diffusion v1.4 [32]
with real images from COCO [23] and ImageNet [12], to-
taling 135 images.
Baselines. Our method is compared against several state-
of-the-art baselines, namely SDEdit [27], DiffEdit [11],
DALL-E 2 [31] and InstructPix2Pix [8]. It should be noted
that DALL-E 2 and DiffEdit use manually created or auto-
matically generated masks at inference time, and Instruct-
Pix2Pix is trained on a paired dataset. Hence, these methods
are not directly comparable to ours.
Evaluation Metrics. To assess the fidelity of our image
translation, we utilise CLIPScore [17], which measures the
faithfulness of the image to the target prompt. Additionally,
SSIM (Structural Similarity Index) is employed to gauge the
faithfulness of the translated image to the input image. We
also compute the FID [36] in order to evaluate the quality
of the generated samples.

4.2. Qualitative Results
In Figure 3, we present a comparison of the results gener-
ated by our method against SDEdit [27], DALL-E 2 [31],
DiffEdit [11] and InstructPixtoPix [8] using both generated
and real images along wtih heatmaps showing the pixel dif-
ferences between input an generated images. We observe
that SDEdit [27] often encounters challenges in preserving
background details, e.g. “a victorian lamp”. Furthermore,
the editing performance of SDEdit may fall short, e.g. “a
strawberry cake”. In some scenarios, it struggles with both
aspects, as seen in “a green and white check pillow”. These
limitations can be attributed to the inherent trade-off within
SDEdit, balancing between editing and preservation. Addi-
tionally, SDEdit is not specifically trained for editing pur-
poses, which contributes to its challenges in maintaining
both background integrity and effective editing.

As an inpainting method requiring manual user-provided
masks for the intended area of manipulation, DALL-E
2 [31] falls short in faithfully reproducing the characteris-
tics of the input image, despite its effective preservation of
the background. Notably, in instances such as “a straw-
berry cake”, the shape of the cake undergoes significant
alterations, compromising the fidelity to the original. Sim-
ilarly, the orientation of the flower in “a yellow rose” is
not adequately preserved. These observed shortcomings
underscore the challenges inherent in maintaining fidelity
to input details in the inpainting-based DALL-E 2 frame-
work. DiffEdit [11] employs masks derived from input and
output prompts during inference. However, DiffEdit’s per-
formance proves to be sensitive to the precision of the ob-
tained masks and, consequently, the prompts given by the
user. While it yields commendable results when the mask
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Figure 3. Qualitative comparison of our method against SDEdit [27], DALL-E 2 [31], DiffEdit [11] and InstructPixtoPix [8] using both
generated and real images.
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Method CLIPScore (%) ↑ FID ↓ SSIM-M(%) ↑ CLIP-R-Precision(%) ↑ Human Study

SDEdit [27] 76.76 174 63.07 75.91 ± 1.5 76.3% - 23.7%
DiffEdit [11] 72.77 85 85.14 67.60 ± 1.7 73.84% - 26.16%
DALL-E 2 [31] 78.47 151 96.74 81.83 ± 1.4 68.3% - 31.7%
InstructPix2Pix [8] 77.66 123 81.71 77.45 ± 1.6 62.15% - 37.85%
Our Method 78.19 133 70.39 80.69 ± 1.45 -

Table 1. Quantitative comparison of baselines and our method. (↑ higher is better, ↓ lower is better).

is accurately detected, e.g. “a yellow rose”, it faces chal-
lenges in other scenarios, such as “a strawberry cake”,
where the change predominantly occurs in the plates due to
inferred mask inaccuracies. It should be noted that DiffEdit,
designed primarily for inference time, can be seamlessly
integrated into our method. InstructPix2Pix [8] under-
goes training with fairly aligned target images generated
by P2P [16]. Despite its ability to preserve the background
and while achieving successful translations in many cases, it
carries a notable caveat associated with the use of generated
images. The outcomes may exhibit non-realistic qualities,
e.g. “a bear”, or manipulations can extend beyond the in-
tended region, impacting the entire image, as evident in the
check patterned background of “a green and white check
pillow”. This limitation stems from weaknesses inherited
from P2P.On the other hand, our method demonstrates pro-
ficient editing capabilities, preserving the background with
minimal undesired changes.

4.3. Quantitative Results
In Table 1, we present a quantitative comparison of our
method with state-of-the-art approaches. The CLIPScore
metric indicates the translation coherency regarding the tar-
get prompt, while SSIM-M scores offer a perspective on
background preservation, providing a comprehensive as-
sessment of diverse methodological approaches. SDEdit,
serving as our baseline, achieves a CLIPScore of 76.76 and
an SSIM-M score of 63.07, aligning with qualitative ob-
servations of challenges in preserving background details.
DiffEdit, relying on automatically generated masks, obtains
a CLIPScore of 72.77 and an SSIM-M score of 85.14,
showing that despite proficiency in background preserva-
tion, it falls short in prompt-based translation. DALL-E
2, as an inpainting method with manual masks, demon-
strated a CLIPScore of 78.47 and an outstanding SSIM-M
score of 96.74, showcasing remarkable background preser-
vation due to its inpainting nature. InstructPix2Pix, trained
with fairly aligned target images, achieved a CLIPScore of
77.66 and an SSIM-M score of 81.71. While competitive,
the SSIM-M score indicates some compromise in back-
ground preservation, aligning with qualitative analysis. Our
method, with a CLIPScore of 78.19 and an SSIM-M score
of 70.39, demonstrates effective editing with a moderate
level of background preservation despite not being trained
on a paired dataset or using masks at inference.
Examining the FID values in Table 1 provides valuable in-

sights into the perceptual quality and realism of generated
images across different methods. SDEdit reveals a higher
FID, indicating a noticeable gap in quality when compared
to source images. DiffEdit, relying on automatically gen-
erated masks, presents a lower FID, suggesting a closer re-
semblance to source images. This lower score may be at-
tributed to its effective use of masks for coherent image gen-
eration. DALL-E 2 exhibits a moderate FID, which could be
attributed to the challenges of seamlessly blending manipu-
lated regions with the rest of the image, impacting the over-
all perceptual quality. InstructPix2Pix showcases a com-
petitive FID, maintaining a balance between translation and
background preservation. Our method maintains a moder-
ate FID, indicating a balance between effective editing and
maintaining a satisfactory level of image quality.
We further evaluated our method using CLIP-R-Precision
score [28] (R=1)(Tab. 1), known for better alignment with
human preferences compared to CLIPScore. We observe
that it aligns more closely with our qualitative results as our
method is outperformed only by DALL-E 2. We argue that,
CLIP-Precision-Score still falls short in capturing the iden-
tified shortcomings of DALL-E, highlighted in our qualita-
tive findings.
Following established protocols [2, 18], we conduct a user
study on Microworkers, where participants were presented
pairs if images and selected the more successful manipula-
tion based on faithfulness to the prompt and input image.
In Tab. 1, blue indicates preference for our method and red
for the counterpart baseline. The results align more closely
with our qualitative observations than the automatic met-
rics. DALL-E, despite achieving the highest ClipScore, is
preferred less than our method and InstructPix2Pix. This is
attributed to its low fidelity to masked content, emphasising
nuances that automatic metrics might overlook. Similarly,
IP2P’s weaknesses, not directly measurable automatically,
contribute to its lag behind our method. Further details of
this study can be found in the supplementary.

4.4. Ablation Study
Table 2 provides insights from our ablation study, inves-
tigating the influence of key components in our proposed
method. The absence of CL, Soft-CL, Soft-PA is indicated
by ✗ in the respective columns. Remarkably, the introduc-
tion of contrastive loss alone leads to a noticeable enhance-
ment in all metrics, indicating improved translation co-
herency and content preservation compared to the baseline,
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Figure 4. Qualitative comparison of ablation study results.

CL Soft-CL Soft-PA CLIPScore (%) ↑ FID ↓ SSIM-M(%) ↑
✗ ✗ ✗ 76.76 174 63.07
✓ ✗ ✗ 77.94 159 68.37
✗ ✓ ✗ 77.53 140 67.21
✗ ✓ ✓ 78.19 133 70.39

Table 2. Ablation study results for the proposed method compo-
nents. CL denotes contrastive loss, Soft-CL is soft contrastive loss,
and Soft-PA is soft prompt augmentation.

which is equivalent to stable diffusion-based SDEdit.While
the introduction of soft contrastive loss also shows a rise
in all metrics, it becomes superior to CL only with the in-
troduction of soft prompt augmentation, which refines the
method’s ability to balance translation coherence and back-
ground preservation. In summary, our ablation study under-
scores the pivotal role of contrastive loss in enhancing trans-
lation quality. The incorporation of soft contrastive loss,
coupled with soft prompt augmentation, contributes to sub-
stantial improvements in overall performance.

In Figure 4, the qualitative ablation study unveils the
nuanced impact of each component in refining the trans-
lation. The samples, generating different variations of a
cake: “an orange cake”, “a mandarin cake”, “a chocolate
cake” and “a marble cake” illustrate the model’s behavior
in the absence of each component. The baseline model pro-
duces results with some difference between ”orange” and
”mandarin,” despite their similar semantics. Additionally,
it struggles to synthesise a “chocolate cake” and “a mar-
ble cake”. The introduction of hard-assigned CL improves
generation outputs but does not establish a clear relation
between the prompts. With the incorporation of Soft-CL
the model becomes adept at discerning fine-grained differ-
ences. In this context, “an orange cake” and “a mandarin
cake” demonstrate the model’s ability to generate seman-
tically related descriptions, reflecting heightened sensitivity
to shared characteristics between these citrus fruits. Soft-PA
amplifies these effects by introducing diversity in the input

Weight (α) CLIPScore (%) ↑ FID ↓ SSIM-M(%) ↑
0.25 76.11 148 70.75
0.5 76.54 146 70.3
1.0 78.20 133 70.39
2.0 72.04 121 73.22

Table 3. Impact of different weight values for α in Eqn. 6 on model
performance metrics.

prompts. In the case of “a chocolate cake” Soft-PA encour-
ages the model to explore a broader spectrum of possibili-
ties, resulting in varied and contextually rich outputs while
showing a clear similarity between ‘orange’ and ‘mandarin’
results. The qualitative examples underscore the role of
Soft-CL in enhancing the model’s capacity to capture se-
mantic similarities, fostering more coherent and contextu-
ally relevant image manipulations. The interplay between
Soft-CL and Soft-PA contributes to the generation of di-
verse and nuanced outputs, showcasing the effectiveness of
these components in refining the editing capabilities of our
method.

4.5. Hyper-parameter Study

In Table 3, the impact of the weight hyperparameter (α in
Eqn. 6) on our model’s performance metrics is shown. In-
creasing α correlates positively with CLIPScore, indicating
improved translation coherency. However, a sharp decrease
in CLIPScore is observed with a high value of α = 2.0.
Concurrently, the FID metric decreases with higher α val-
ues, reflecting enhanced image quality. The SSIM-M score,
emphasising fidelity to input images, peaks at α = 2.0. Our
analysis suggests that α = 1.0 strikes a favorable equilib-
rium, yielding strong performance across CLIPScore, FID,
and SSIM-M , making it a judicious choice for our method.

5. Conclusion
We introduced a novel method using prompt augmentation
for dynamic mask generation and self-supervised learning
in image manipulation. Our soft-contrastive loss achieves
effective translations in delineated areas while preserving
the rest with minimal undesired changes. Addressing chal-
lenges in existing methods, our approach provides a promis-
ing solution for localised image manipulations. Experimen-
tal evaluations, including comparisons with state-of-the-art
techniques and ablation studies, were conducted both qual-
itatively and quantitatively. Our proposed image editing
method stands as a significant contribution, paving the way
for prompt augmentation and striking a nuanced balance be-
tween successful translations and background preservation.
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