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Figure 1. Matching under large in-plane rotations. Two challenging pairs from AIMS [49]. The left images in each pair were taken by
astronauts on the ISS and are geo-referenced by matching them with the satellite images on the right. We plot estimated inlier correspon-
dences after homography estimation with RANSAC. Further qualitative examples are shown in the appendix.

Abstract

Image keypoint descriptions that are discriminative and
matchable over large changes in viewpoint are vital for 3D
reconstruction. However, descriptions output by learned
descriptors are typically not robust to camera rotation.
While they can be made more robust by, e.g., data aug-
mentation, this degrades performance on upright images.
Another approach is test-time augmentation, which incurs
a significant increase in runtime. Instead, we learn a lin-
ear transform in description space that encodes rotations
of the input image. We call this linear transform a steerer
since it allows us to transform the descriptions as if the im-
age was rotated. From representation theory, we know all
possible steerers for the rotation group. Steerers can be
optimized (A) given a fixed descriptor, (B) jointly with a de-
scriptor or (C) we can optimize a descriptor given a fixed
steerer. We perform experiments in these three settings and
obtain state-of-the-art results on the rotation invariant im-
age matching benchmarks AIMS and Roto-360. We publish
code and model weights at this https url.

1. Introduction

Discriminative local descriptions are vital for multiple 3D
vision tasks, and learned descriptors have recently been
shown to outperform traditional handcrafted local fea-
tures [17, 19, 23, 43]. One major weakness of learned
descriptors compared to handcrafted features such as

SIFT [35] is the relative lack of robustness to non-upright
images [55]. While images taken from ground level can
sometimes be made upright by aligning with gravity as the
canonical orientation, this is not always possible. For exam-
ple, descriptors robust to rotation are vital in space applica-
tions [49], as well as medical applications [42], where no
such canonical orientation exists. Even when a canonical
orientation exists, it may be difficult or impossible to esti-
mate. Rotation invariant matching is thus a key challenge.

The most straightforward manner to get rotation invari-
ant matching is to train or design a descriptor to be rotation
invariant [17, 35]. However, this sacrifices distinctiveness
in matching images with small relative rotations [41]. An
alternative approach is to train a rotation-sensitive descrip-
tor and perform test-time-augmentation, selecting the pair
that produces the most matches. The obvious downside of
TTA is computational cost. For example, testing all 45◦ ro-
tations requires running the model eight times.

In this paper, we present an approach that maintains dis-
tinctiveness for small rotations and allows for rotation in-
variant matching when we have images with large rota-
tions. We do this while adding only negligible additional
runtime, running the descriptor only a single time. The
main idea is to learn a linear transform in description space
that corresponds to a rotation of the input image; see Fig-
ure 2. We call this linear transform a steerer as it allows
us to modify keypoint descriptions as if they were describ-
ing rotated images—we can steer the descriptions without
having to rerun the descriptor network. We show empiri-
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Figure 2. Overview of approach. A steerer (Definition 4.4) is a
linear map that transforms the description of a keypoint into the de-
scription of the corresponding keypoint in a rotated image. Thus,
a steerer makes the keypoint descriptor rotation equivariant, and
we can obtain the descriptions of keypoints in arbitrarily rotated
images while only running the descriptor once.

cally that approximate steerers can be obtained for existing
descriptors and motivate this theoretically. We also inves-
tigate jointly optimizing steerers and descriptors and show
how this enables nearly exact steering while not sacrificing
performance on upright images. Using mathematical repre-
sentation theory, we can describe all possible steerers—they
are representations of the rotation group. This enables the
choice of a fixed steerer and training a descriptor for it, and
in turn, the investigation of which steerers give the best per-
formance.

Using our framework, we set a new state-of-the-art on
the rotation invariant matching benchmarks AIMS [49]
(Figure 1) and Roto-360 [31]. At the same time, we are with
the same models able to perform on par with or even out-
perform existing non-invariant methods on upright images
on the competitive MegaDepth-1500 benchmark [33, 50].

In summary, our main contributions are as follows.
1. We introduce a new framework of steerers for equiv-

ariant keypoint descriptors (Section 4) and theoretically
motivate why steerers emerge in practice (Section 5).

2. We develop several settings for investigating steerers
(Section 5.1) and ways to apply them for rotation invari-
ant matching (Section 5.2).

3. We conduct a large set of experiments, culminating in
state-of-the-art on AIMS and Roto-360 (Section 6).

2. Related work
Classical keypoint descriptions are typically made rotation
invariant by using keypoints with associated local rotation
frames and computing the descriptions in these frames. Ex-
amples include SIFT [35], SURF [8], and ORB [45]. A
canonical rotation frame can be used for patch-based neu-
ral network descriptors as well [53, 54]. Further, neu-
ral network-based approaches have been proposed for es-

timating the keypoint rotation frame [29, 30, 37] and for
both computing the rotation frame and the descriptions in
that frame [31, 61]. Notably, [30, 31] use rotation equiv-
ariant ConvNets [15, 56, 59]. Equivariant ConvNets have
also been used for rotation-robust keypoint detection with-
out estimating the rotation frame [2, 46], keypoint descrip-
tion [2, 34] and end-to-end image matching [9]. In the-
ory1, equivariant ConvNets guarantee that the predictions
are consistent when rotating the image. They are one exam-
ple of hard-coding equivariance into network layers using
mathematical group theory, an idea that goes back to the
1990’s [58] and has seen large recent interest [11, 20, 22].

Neural networks can also be encouraged to learn equiv-
ariance rather than having it hard-coded in the layers. This
can be done by enforcing group-specific invariants in the
network output space [25, 48] (see also Section 5). Another
approach is to specify a group representation on the output
of the network and train the network to satisfy equivariance
wrt. that representation [16, 28, 36, 60]. We will use this
approach for keypoint descriptions in our Setting C. The
benefits of not hard-coding equivariance are that arbitrary
network architectures can be used (particularly pre-trained
non-equivariant networks) and that one does not need to
specify the group representations acting on each layer of the
network. A special case of learning equivariance is rotation
invariant descriptors through data augmentation [38, 52].

A recent line of work [10, 12, 24, 32] investigates to what
extent neural networks exhibit equivariance without having
been trained or hard-coded to do so. They find that many
networks are approximately equivariant. One major limita-
tion is that they only consider networks trained for image
classification. We will empirically demonstrate a high level
of equivariance in keypoint descriptors that were not explic-
itly trained to be equivariant and theoretically motivate why
this happens (our Setting A).

3. Preliminaries

In this work, we are interested in finding linear mappings
between keypoint descriptions where the images may have
been rotated independently. We will, in particular, consider
the group of quarter rotations C4 and the group of continu-
ous rotations SO(2).

Ordinary typeset g will denote an arbitrary group ele-
ment, boldface g will always mean the generator of C4 for
the remainder of the text so that the elements of C4 are g,
g2, g3 and the identity element id = g4. Boldface i will
denote the imaginary unit such that i2 = −1. Given ma-
trices X1, X2, . . . , XJ , the notation ⊕J

j=1Xj will mean the
block-diagonal matrix with blocks X1, X2, . . . , XJ .

1It has been demonstrated that equivariant ConvNets can learn to break
equivariance [18] when this benefits the task at hand. E.g., the end-to-end
matcher SE2-LoFTR [9] is not perfectly consistent over rotations [9, 49].
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3.1. Preliminaries on keypoint matching

The underlying task is to take two images of the same scene
and detect 2D points that correspond to the same 3D point.
A pair of such points that depict the same 3D point is called
a correspondence. The approach for finding correspon-
dences that will be explored is a three-stage approach:
1. Detection. Detect N keypoint locations in each image.
2. Description. Describe the keypoint locations with de-

scriptors, i.e., feature vectors in RD.
3. Matching. Match the descriptors, typically by using mu-

tual nearest neighbours in cosine distance.
This classical setup includes SIFT [35] but also more recent
deep learning-based approaches. In particular, we follow
the method in DeDoDe [19], where the keypoint detector
is first optimized to find good point tracks from SfM re-
constructions and the keypoint descriptor is optimized by
maximizing the matching likelihood obtained by a frozen
keypoint detector as follows. If the N descriptors (each nor-
malized to unit length) in the two images are y1 ∈ RD×N

and y2 ∈ RD×N we first form the N ×N matching matrix
Y = yT1 y2, and obtain a matrix of pairwise likelihoods by
using the dual softmax [44, 50, 55]:

p(y1, y2) =
exp(ιY )∑

columns exp(ιY )
· exp(ιY )∑

rows exp(ιY )
. (1)

Here ι = 20 is the inverse temperature. The negative log-
arithm of the likelihood (1) is minimized for those pairs in
the N ×N matrix that correspond to ground truth inliers.

3.2. Preliminaries on group representations

Definition 3.1. (Group representation) Given a group G, a
representation of G on RD is a mapping ρ : G → GL(R, D)
that preserves the group multiplication, i.e., ρ(gg′) =
ρ(g)ρ(g′) for every g, g′ ∈ G.

Simply stated, ρ maps every element in the group to an
invertible D × D matrix. The point of using representa-
tions is that groups such as C4 act differently on different
quantities as we will illustrate in the following examples.

Example 3.1. For Rn×n (a square image grid), C4 can be
represented by permutations of the pixels in the obvious
way so that the image is rotated anticlockwise by multiples
of 90◦. We denote this group representation by P90 so that
applying P k

90 rotates the image by k · 90◦ anticlockwise.

Example 3.2. For R2 (image coordinates), one possible
representation of C4 is ρ(gk) = Rk

90 =
(
0 −1
1 0

)k
. Multi-

plication by Rk
90 corresponds to rotating image coordinates

by k · 90◦ if the center of the image is taken as (0, 0).

Figure 3. Equivariance of Upright SIFT. Left: A keypoint with
its Upright SIFT description in an upright image and a rotated
version. The small yellow squares are the subregions where his-
tograms of gradient orientations are computed. Right: The Upright
SIFT descriptions unravelled into the 128 bin histograms that con-
stitute them. When we rotate the image, the subregions are per-
muted, and the histogram bins within each subregion are further
permuted cyclically. Hence, Upright SIFT is rotation equivariant.

4. Equivariance and steerability
In this section, we will analyze the close connection be-
tween equivariance and steerability. We start with an exam-
ple to introduce the former concept.

Example 4.1. SIFT descriptions [35] are 128 dim. vectors
designed to be invariant to rotation, scale and illumination
and highly distinctive for leveraging feature matching. For
an input image I ∈ Rn×n and N keypoints with scale and
orientation x ∈ R4×N 2, we get descriptions y ∈ R128×N .
If f is the SIFT descriptor, we write f(I, x) = y. The
descriptions consist of histograms of image gradients over
patches around the keypoints x. The patches are oriented
by the keypoint orientations so that the descriptions are in-
variant to joint rotations of the image and keypoints:

f
(
P k
90I, (⊕2

b=1R90)
kx
)
= f(I, x).

If we discard the keypoint orientations, i.e., set the angle of
each keypoint to 0, we get the Upright SIFT (UPSIFT) de-
scriptor [1, 7], which is often used for upright images as it
is more discriminative than SIFT. When we rotate an image
90◦, then the gradient histograms, i.e., the UPSIFT descrip-
tions are permuted by a specific permutation PUPSIFT, so if
f is the UPSIFT descripor, we have

f
(
P k
90I, (⊕2

b=1R90)
kx
)
= P k

UPSIFTf(I, x).

We illustrate the permutation PUPSIFT in Figure 3. UPSIFT
is not rotation invariant, but it is rotation equivariant—
when we rotate the input, the output changes predictably.
Explicitly, the representation is ρ(gk) = P k

UPSIFT.
2The first two coordinates of each keypoint in x are its location and the

last two a vector for its orientation and scale, so x is rotated by ⊕2
b=1R90.
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Definition 4.1 (Equivariance). We say that a function f :
V → W is equivariant with respect to a group G if

ρ(g)f(v) = f(ρin(g)v),∀v ∈ V, g ∈ G, (2)

for some group representations ρin, ρ.

This work will mainly be concerned with the equivari-
ance of learned keypoint descriptors of ordinary keypoints
(without scale and orientation).

Definition 4.2 (Equivariance of keypoint descriptor). We
say that a keypoint descriptor f is equivariant with respect
to a group G transforming the input image by ρimage and the
input keypoint locations by ρkeypoint if there exists ρ such
that

ρ(g)f(I, x) = f(ρimage(g)I, ρkeypoint(g)x) (3)

for all images, keypoints and group elements. We call the
descriptor invariant if ρ(g) is the identity matrix for all g.
Invariance is a special type of equivariance.

Example 4.2. A keypoint descriptor f is equivariant under
90◦ rotations if there exists ρ of C4 such that

ρ(gk)f(I, x) = f(P k
90I,R

k
90x) (4)

for k ∈ {0, 1, 2, 3}, where P90 and R90 are the represen-
tations from Examples 3.1 and 3.2 that rotate images and
coordinates in the ordinary manner.

Both SIFT and Upright SIFT are equivariant. For SIFT,
ρ(gk) is the identity, so SIFT is invariant. For Upright SIFT,
ρ(gk) is P k

UPSIFT as explained in Example 4.1.

One aim of this work is to argue and demonstrate that
learned keypoint descriptors, which are trained on upright
data, will behave more like Upright SIFT than SIFT, i.e.,
they will be rotation equivariant but not invariant.

Definition 4.3 (Steerability, adapted from [21]). A real-
valued function ϕ : V → R is said to be steerable under
a representation ρin of G on V , if there exist D functions
(for some D) ϕj : V → R and D functions κj : G → R
such that ϕ(ρin(g)v) =

∑D
j=1 κj(g)ϕj(v).

Note that an equivariant function f : V → RD

satisfies in each component fd that fd(ρin(g)v) =∑D
j=1 ρ(g)djfj(v), so each component of f is steerable, in

the notation of Definition 4.3, ϕ = fd, ϕj = fj , κj(g) =
ρ(g)dj . This motivates the definition of a steerer.

Definition 4.4 (Steerer). Given a function f : V → W be-
tween vector spaces, and a representation ρin of G on V , a
steerer is a representation ρ of G on W that makes f equiv-
ariant, i.e. such that

f(ρin(g)v) = ρ(g)f(v). (5)

Even if (5) only holds approximately or ρ is only approxi-
mately a representation, we will refer to ρ as a steerer.

We will use the verb steer for multiplying a fea-
ture/description by a steerer; see Figure 2 for the broad idea.

Example 4.3. As explained in Example 4.1, PUPSIFT is a
steerer for Upright SIFT under 90◦ rotations. This has prac-
tical consequences. If we want to obtain the Upright SIFT
descriptions for an image I and the same image rotated
k · 90◦, we only need to compute the descriptions for the
original image. We can obtain the rotated ones by multiply-
ing the descriptions by P k

UPSIFT. That is, we can steer the
Upright SIFT descriptions with PUPSIFT.

It is known from representation theory [47] what all pos-
sible representations of C4 are, and hence what all possible
steerers for rotation equivariant descriptors are. As this re-
sult will be necessary for the remainder of the text, we col-
lect it in a theorem. Similar results are also known for other
groups e.g. the continuous rotation group SO(2), which we
discuss in the next section.

Theorem 4.1 (Representations of C4). Let ρ be a represen-
tation of C4 on RD. Then, there exists an invertible matrix
Q and jd ∈ {0, 1, 2, 3} such that

ρ(gk) = Q−1diag(ikj1 , ikj2 , . . . , ikjD )Q. (6)

The diagonal in (6) contains the eigenvalues of ρ(gk).

Example 4.4. The Upright SIFT steerer PUPSIFT is diago-
nalizable with an equal amount of each eigenvalue ±1, ±i.

The complex eigenvalues must appear in conjugate pairs
as we take ρ(g) to be real-valued. It is then possible to do
a change of basis so that each pair i,−i on the diagonal in
(6) is replaced by a block

(
0 −1
1 0

)
. In this way, ρ(g) can

always be block-diagonalized: ρ(g) = Q−1BQ where Q
and B are real valued and B is block-diagonal with blocks
of sizes 1 and 2.

4.1. Representation theory of SO(2)

SO(2) is a one-parameter Lie group, i.e. a continuous group
with one degree of freedom α—the rotation angle. A D-
dimensional representation of SO(2) is a map ς : [0, 2π) →
GL(R, D) such that addition modulo 2π on the input is en-
coded as matrix multiplication on the output—we will con-
sistently use ς for SO(2) representations to separate them
from C4 representations ρ (ρ will also be used for repre-
sentations of general groups). The most familiar is the two-
dimensional representation ς(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
which

rotates 2D coordinates. Similar to the C4 case in Theo-
rem 4.1, we can write down a general representation for
SO(2) as follows [57].

Theorem 4.2 (Representations of SO(2)). Let ς be a repre-
sentation of SO(2) on RD. Then there exists an invertible
Q and jd ∈ Z such that

ς(α) = Q−1diag
(
eij1α, eij2α, . . . , eijDα

)
Q. (7)
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The jd’s are the frequencies of the eigenspaces of ς .
Complex eigenvalues appear in conjugate pairs so (7) can
be rewritten as a block diagonal decomposition ς(α) =
Q−1BQ where Q and B are real valued and B is block-
diagonal with minimal blocks. The admissible blocks (=
real-valued irreducible representations) in B are then the
1× 1 block

(
1
)

and the 2× 2 blocks(
cos(jα) − sin(jα)
sin(jα) cos(jα)

)
for j ∈ Z \ {0}. (8)

We can write ς(α) = expm
(
αQ−1diag(ij1, . . . , ijD)Q

)
where expm is the matrix exponential. The quantity dς :=
Q−1diag(ij1, . . . , ijD)Q is called a Lie algebra representa-
tion of SO(2), here in its most general form. When training
a steerer for SO(2) it is practical to train a D×D matrix dς
and steer using ς(α) = expm(αdς).

4.2. Disentangling description space

When we have a steerer, we get a description space on
which rotations act—up to a change of basis—by a block-
diagonal matrix ⊕J

j=1Bj . The description space can then
be thought of as being disentangled into different subspaces
where rotations act in different ways Bj [14, 60]. We detail
what this means for keypoint descriptors in Appendix A.

5. Descriptors and steerers
This work’s crucial observation and assumption is that
learned descriptors, while not invariant, are approximately
equivariant so that they have a steerer. Or, as a weaker as-
sumption, they can be trained to be equivariant. It may seem
that this is a strong assumption. However, a seemingly less
strong assumption turns out to be equivalent.

Theorem 5.1. [Adapted from Shakerinava et al. [48],
Gupta et al. [25]] Assume that we have a function f : V →
SD−1 and a group G with representation ρin on V such that,
for all v, v′ ∈ V and g ∈ G

⟨f(ρin(g)v), f(ρin(g)v
′)⟩ = ⟨f(v), f(v′)⟩. (9)

Then there exists an orthogonal representation ρ(g), such
that f is equivariant w.r.t. G with representations ρin and ρ.

We provide a proof in Appendix A. Since we match
normalized keypoint descriptions by their cosine similar-
ity, Theorem 5.1 is highly applicable to the image matching
problem. If a keypoint descriptor f is perfectly consistent
in the matching scores when simultaneously rotating the im-
ages, then the scalar products in (9) will be equal so that the
theorem tells us that f has a steerer ρ. Furthermore, we can
expect many local image features to appear in all orienta-
tions even over a dataset of upright images, thus encourag-
ing (9) to hold for f trained on large datasets.

5.1. Three settings for investigating steerers

As C4 is cyclic, all its representations are defined by ρ(g),
where g is the generator of C4. To find a steerer for a key-
point descriptor under C4 hence comes down to finding a
single matrix ρ(g) that represents rotations by 90◦ in the
description space. Similarly, for SO(2) we find the single
matrix dς that defines the representation ς .

We will consider three settings. In each case we will op-
timize ρ(g) and/or f over the MegaDepth training set [33]
with rotation augmentation and maximize

p
(
f(P k1

90 I1, R
k1
90x1), ρ(g)

kf(P k2
90 I2, R

k2
90x2)

)
(10)

where p is the matching probability (1). The number of ro-
tations k1 and k2 for each image are sampled independently
during training, and k = k1 − k2 mod 4 is the number
of rotations that aligns image I2 to image I1. Thus, ρ(g)k

aligns the relative rotation between descriptions in I2 and
I1. We optimize continuous steerers ς analogously to (10).
Setting A: Fixed descriptor, optimized steerer. If a de-
scriptor works equally well for upright images as well as
images rotated the same amount from upright, then accord-
ing to Theorem 5.1, we should expect that there exists a
steerer ρ(g) such that (4) holds. To find ρ(g) we optimize
it as a single D ×D linear layer by maximizing (10).
Setting B: Joint optimization of descriptor and steerer.
The aim is to find a steerer that is as good as possible for
the given data. We will see in the experiments, by looking
at the evolution of the eigenvalues of ρ(g) during training,
that this joint optimization has many local optima and is
highly dependent on the initialization of ρ(g). However,
looking at the eigenvalues of ρ(g) does give knowledge
about which descriptor dimensions are most important, as
will be explained in Section 6.5.
Setting C: Fixed steerer, optimized descriptor. To get
the most precise control over the rotation behaviour of
a descriptor, we can fix the steerer and optimize only
the descriptor. This enables us to investigate how much
influence the choice of steerer has on the descriptor. For
instance, choosing the steerer as the identity leads to a
rotation invariant descriptor. We will see in the experiments
that this choice leads to suboptimal performance on upright
images compared to other steerers.

5.2. Matching with equivariant descriptions

This section presents several approaches to rotation invari-
ant matching using equivariant descriptors. Throughout, we
will denote the D-dimensional descriptions of N keypoints
in two images I1, I2 by y1, y2 ∈ RD×N and will assume
that we know the C4-steerer ρ(g) that rotates descriptions
90◦ or the SO(2)-steerer ς(α) through the Lie algebra gen-
erator dς . For matching we follow DeDoDe [19], as de-
scribed in Section 3.1. The base similarity used is the cosine
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Table 1. Evaluation on Roto-360 [31]. We report the percent-
age of correct matches at three thresholds. We use the DeDoDe-
SO2 detector with 5, 000 keypoints in the last two rows. Matching
strategies are Max Matches for the C4-descriptor and Max Sim.
over C8 for the SO(2)-descriptor. See Section 6.1 for the short-
hands for our models.

Detector Descriptor 3px 5px 10px

SIFT [35] SIFT [35] 78 78 79
ORB [45] ORB [45] 79 85 87
SuperPoint [17] RELF, single [31] 90 91 93
SuperPoint [17] RELF, multiple [31] 92 93 94
SuperPoint [17] C4-B (ours) 82 82 83
SuperPoint [17] SO2-Spread-B (ours) 96 97 97

DeDoDe [19] C4-B (ours) 82 84 86
DeDoDe [19] SO2-Spread-B (ours) 95 97 98

similarity, so we compute yT1 y2 for normalized descriptions
to get an N × N matrix of pairwise scores on which dual
softmax (1) is applied. Matches are mutual most similar
descriptions with similarity above 0.01.

Max matches over steered descriptions. The first way of
obtaining invariant matches is to match y1 with ρ(g)ky2 for
k = 0, 1, 2, 3 and keep the matches from the k that has
the most matches. This is similar to matching the image I1
with four different rotations of I2 but alleviates the need for
rerunning the descriptor network for each rotation.
Max similarity over steered descriptions. A computa-
tionally cheaper version is to select the matching matrix
not as yT1 y2 but as maxk y

T
1 ρ(g)

ky2, where the max is
elementwise over the matrix.
SO(2)-steerers. To apply the above matching strategies
to SO(2)-steerers ς(α) = expm(αdς) we discretize ς .
A Cℓ-steerer is obtained through ρ(gℓ) = expm

(
2π
ℓ dς

)
,

where gℓ generates Cℓ. We will use C8 in the experiments.
Procrustes matcher. If all eigenvalues of ρ(g) are ±i,
the steerer can be block-diagonalized with only the block(
0 −1
1 0

)
3. The descriptions consist of D/2 two-dimensional

quantities that all rotate with the same frequency as the im-
age. We will refer to them as frequency 1 descriptions and
view them reshaped as y ∈ R2×(D/2)×N . A 2D rotation
matrix acts on these descriptions from the left when the
image rotates, and we can find the optimal rotation matrix
Rm,n that aligns each pair y1,m, y2,n ∈ R2×(D/2) by solv-
ing the Procrustes problem via SVD. The matching matrix
is obtained by computing ⟨Rm,ny1,m, y2,n⟩ for each pair.
Rm,n gives the relative rotation between each pair of key-
points, which can be useful e.g. for minimal relative pose
solvers [4, 6] or for outlier filtering [13]. We leave explor-
ing this per-correspondence geometry to future work.

3This also holds for SO(2) steerers, referring to eigenvalues and blocks
of the Lie algebra generator dς .

Table 2. Evaluation on AIMS [49]. We report the average pre-
cision (AP) in percent on different splits of AIMS: “North Up”
(N. Up) contains images with small rotations, “All Others” (A. O.)
contains images with larger rotations and “All” contains all im-
ages. We use the DeDoDe-SO2 detector and 10, 000 keypoints
throughout. See Section 6.1 for the shorthands for our models.

Method N. Up A. O. All

SE2-LoFTR [9] 58 51 52
C4-B, Max Matches (ours) 52 51 51
SO2-Spread-B, Max Sim. C8 (ours) 60 57 58
SO2-Freq1-B, Procrustes (ours) 64 59 60

6. Experiments
We train and evaluate a variety of descriptors and steerers.
Experimental details are covered in Appendix C. We pro-
vide comparisons to TTA in performance and runtime in
Appendix B, as well as experiments with more matching
strategies and an explicit experiment to test the connection
between Theorem 5.1 and rotation equivariance.

We start by reporting results on two public benchmarks
for rotation invariant image matching. Then, we will
present ablation results for the MegaDepth benchmark, both
for the standard version with upright images and a version
where we have rotated the input images.

6.1. Models considered

Our base models are the DeDoDe-B and DeDoDe-G de-
scriptors introduced in [19]. These are both D = 256 di-
mensional descriptors. The focus will be on the smaller
model DeDoDe-B, as this gives us the chance to do large-
scale ablations. We train all models on MegaDepth [33].
To obtain rotation-consistent detections, we retrain two ver-
sions of the DeDoDe-detector, with data augmentation over
C4 and SO(2) respectively, denoted DeDoDe-{C4, SO2}.

For Setting B (Section 5.1), we will see that the ini-
tialization of the steerer matters. Similarly, for Setting C,
we can fix the steerer with different eigenvalue structures.
Here, we introduce shorthand, which is used in the re-
sult tables. We will refer to the case of all eigenvalues
1 as Inv for invariant. This case corresponds to the ordi-
nary notion of data augmentation, where the descriptions
for rotated images should be the same as for non-rotated
images. The case when all eigenvalues are ±i is denoted
Freq1 for frequency 1 as explained in Section 5.2. For C4-
steerers, the case with an equal distribution of all eigenval-
ues ±1,±i will be denoted Perm, as this is the eigenvalue
signature of a cyclic permutation of order 4. For SO(2)-
steerers, the case with an equal distribution of eigenvalues
0,±i,±2i, . . . ± 6i will be denoted Spread (the cutoff 6
was arbitrarily chosen). The Perm and Spread steerers cor-
respond to a broad range of frequencies in the description
space. When none of the above labels (Inv, Freq1, Perm or
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Table 3. Evaluation on MegaDepth [33, 50]. The first section shows Setting A where we only optimize the steerer, the second section
shows Setting B where we jointly optimize the descriptor and steerer and the third section shows the Setting C where we predefine the
steerer and optimize only the descriptor. For MegaDepth-1500 we always use dual softmax matcher to evaluate the descriptors on upright
images. We use 20, 000 keypoints throughout. The best values for B- and G-models are highlighed in each column. See Section 6.1 for
shorthand explanations for our models. A larger version of this table with more methods is available in Appendix B.

Detector Descriptor MegaDepth-1500 MegaDepth-C4 MegaDepth-SO2
DeDoDe DeDoDe Matching strategy AUC @ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦

Original B Dual softmax 49 65 77 12 17 20 12 16 20
Original B Max matches C4-steered 43 60 73 30 44 56
SO2 B Max matches C8-steered 50 66 78 40 57 70 34 51 65
Original G Dual softmax 52 69 81 13 17 21 16 22 28
Original G Max matches C4-steered 31 45 57 26 39 50

C4 C4-B Max matches C4-steered 51 67 79 50 67 79 39 55 68
SO2 SO2-B Max matches C8-steered 47 63 76 47 63 76 44 61 74
SO2 SO2-Spread-B Max matches C8-steered 50 66 79 49 66 78 46 63 76
SO2 SO2-Spread-B Max similarity C8-steered 49 66 78 47 64 77 43 61 74

C4 C4-Inv-B Dual softmax 48 64 76 47 63 76 39 55 69
C4 C4-Perm-B Max matches C4-steered 50 67 79 50 66 79 39 54 67
SO2 SO2-Inv-B Dual softmax 46 62 75 45 61 74 43 60 73
SO2 SO2-Freq1-B Max matches C8-steered 47 64 77 47 64 76 45 62 75
SO2 SO2-Freq1-B Procrustes 47 64 76 46 62 75 45 61 74
C4 C4-Perm-G Max matches C4-steered 52 69 81 53 69 82 44 61 74

Spread) is attached to a descriptor and steerer trained jointly
in Setting B, then we initialize the steerer with values uni-
formly in (−D−1/2, D−1/2)4, the eigenvalues are then ap-
proximately uniformly distributed in the disk with radius
3−1/2 [51]. When a descriptor is trained with k · 90◦ ro-
tations, we append C4 to its name and when trained with
continuous augmentations, we append SO2 to its name.

6.2. Roto-360

We evaluate on the Roto-360 benchmark [31], which con-
sists of ten image pairs from HPatches [3] where the sec-
ond image in each image pair is rotated by all multiplies
of 10◦ to obtain 360 image pairs in total. We report the
average precision of the obtained matches and compare it
to the current state-of-the-art RELF [31]. The results are
shown in Table 1. We see that we outperform RELF when
using methods trained for continuous rotations. Our match-
ing runs around three times faster than RELF on Roto-360.

6.3. AIMS

The Astronaut Image Matching Subset (AIMS) [49] con-
sists of images taken by astronauts from the ISS and satel-
lite images covering the broad regions that the astronaut im-
ages could depict. The task consists of finding the pairs of
astronaut images and satellite images that show the same lo-
cations on Earth. Pairs are found by setting a threshold for
the number of matches between images after homography
estimation with RANSAC.

4This is the standard initialization of a linear layer in Pytorch [26, 40].

The relative rotations of the astronaut and satellite im-
ages are unknown, making the task suitable for rotation-
invariant matchers. Indeed, in [49], the best performing
method is the rotation invariant SE2-LoFTR [9], which we
compare to. The AIMS can be split into “North Up” astro-
naut images, consisting of images with small rotations (be-
tween 0◦ and 90◦) and “All Others”, consisting of images
with large rotations. This split further enables the evalu-
ation of rotation invariant matchers. We report the average
precision over the whole dataset, as opposed to the approach
in [49], where the score is computed over at most 100 true
negatives per astronaut image. Results are shown in Table 2.
Further, we plot precision-recall curves in Appendix B. We
generally outperform SE2-LoFTR, particularly on the heav-
ily rotated images in “All Others”.

6.4. MegaDepth-1500

We evaluate on a held-out part of MegaDepth (MegaDepth-
1500 following [50]). Here, the task is to take two input
images and output the relative pose between the cameras.
The performance is measured by the AUC of the pose error.
Additionally, we create two versions of MegaDepth with
rotated images to evaluate the rotational robustness of our
models. For MegaDepth-C4, the second image in every im-
age pair is rotated (i mod 4) · 90◦ where i is the index of
the image pair. We visualize a pair in MegaDepth-C4 in
Appendix B, illustrating the improvement from DeDoDe-
B to DeDoDe-B with a steerer optimized in Setting A. For
MegaDepth-SO2, the second image in every image pair is
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Figure 4. Training evolution of eigenvalue distributions of
steerers. We plot the eigenvalue distribution of C4-steerers ρ(g)
(first three columns) and Lie algebra generators dς for SO(2)-
steerers (last two columns) in the complex plane, with different
initializations when trained jointly with a descriptor. The top row
depicts the eigenvalues at the start, and the bottom row at the end
of training. There are D = 256 eigenvalues in every plot—many
congregate at the “admissible” eigenvalues as described in Sec-
tion 4—but some do not, see the discussion in Section 6.5. These
visualizations highlight the initialization sensitivity of the steerer.
We show gif movies of the training evolution at this https url.

instead rotated (i mod 36) · 10◦, thus requiring robustness
under continuous rotations.

The results are presented in Table 3; for more methods,
see Appendix B. We summarize the main takeaways:
1. It is possible to find steerers for the original DeDoDe

models (e.g. the second row of the table), even though
they were not trained with any rotation augmentation.

2. The trained C4 steerers perform very well as their scores
on MegaDepth-1500 and MegaDepth-C4 are the same.

3. Training DeDoDe-B jointly with a C4 steerer (C4-B) or
with a fixed steerer (C4-Perm-B) improves results on up-
right images—this can be attributed to the fact that train-
ing with a steerer enables using rotation augmentation.

4. The right equivariance for the task at hand is crucial—
SO(2)-steerers outperform others on MegaDepth-SO2.

5. The eigenvalue distribution of the steerer is important—
invariant models are worse than others, and SO2-B and
SO2-Freq1-B are worse than SO2-Spread-B.

6. DeDoDe-G can be made equivariant (C4-Perm-G), even
though it has a frozen DINOv2 [39] ViT backbone.

6.5. Training dynamics of steerer eigenvalues

This section aims to demonstrate that joint optimization of
the steerer and descriptor does not necessarily lead to a good
eigenvalue structure for the steerer. We plot the evolution
of the eigenvalues of the steerer over the training epochs in
Figure 4. For C4-steerers we plot the eigenvalues of ρ(g) it-
self, while for SO(2)-steerers we plot the eigenvalues λd of
the Lie algebra generator dς , so that the eigenvalues of the
steerer ς(α) are eαλd . It is clear from Figure 4 that the ini-
tialization of the steerer influences the final distribution of
eigenvalues a lot and we saw in Table 3 that the eigenvalue

distribution of the steerer matters for performance. Thus,
we think it is an important direction for future work to fig-
ure out how to get around this initialization sensitivity. The
choice of eigenvalue structure is related to the problem of
specifying which group representations to use in the layers
of equivariant neural networks in general.

As a side effect of plotting the eigenvalues, we find that
some of the steerer’s eigenvalues have much lower absolute
values than others5. The steerer is applied to descriptions
before they are normalized, so the absolute value of the
maximum eigenvalue is unimportant, but the relative size
of the eigenvalues tells us something about feature impor-
tance. Eigenvectors with small eigenvalues cannot be too
important for matching, since they will be relatively down-
scaled when applying the steerer in the optimization of (10).
Indeed, small eigenvalues seem to correspond to unimpor-
tant dimensions of the descriptor—we maintain matching
performance when projecting the descriptions to the span
of the eigenvectors with large eigenvalues. This is related to
PCA for dimensionality reduction, which has successfully
been used for classical keypoint descriptors [27].

7. Conclusion
We developed a new framework for rotation equivariant
keypoint descriptors using steerers—linear maps that en-
code image rotations in description space. After outlining
the general theory of steerers using representation theory,
we designed a large set of experiments with steerers in three
settings: (A) optimizing a steerer for a fixed descriptor, (B)
optimizing a steerer and a descriptor jointly and (C) opti-
mizing a descriptor for a fixed steerer. Our best models ob-
tained new state-of-the-art results on the rotation invariant
matching benchmarks Roto-360 and AIMS.
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