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Figure 1. Gaussian Shadow Casting (GSC): Our method is able to reconstruct 3D neural characters from a sparse set of videos in settings
with strong directional illumination. GSC uses a sum of Gaussians density model to cast secondary shadow rays efficiently with an analytic
formula. Our method learns to remove shadows from the neural color field, allowing us to relight in novel illuminations. All faces are
blurred for anonymity.

Abstract

Neural character models can now reconstruct detailed
geometry and texture from video, but they lack explicit shad-
ows and shading, leading to artifacts when generating novel
views and poses or during relighting. It is particularly dif-
ficult to include shadows as they are a global effect and the
required casting of secondary rays is costly. We propose
a new shadow model using a Gaussian density proxy that
replaces sampling with a simple analytic formula. It sup-
ports dynamic motion and is tailored for shadow computa-
tion, thereby avoiding the affine projection approximation
and sorting required by the closely related Gaussian splat-
ting. Combined with a deferred neural rendering model, our
Gaussian shadows enable Lambertian shading and shadow
casting with minimal overhead. We demonstrate improved
reconstructions, with better separation of albedo, shading,
and shadows in challenging outdoor scenes with direct sun
light and hard shadows. Our method is able to optimize
the light direction without any input from the user. As a
result, novel poses have fewer shadow artifacts, and re-
lighting in novel scenes is more realistic compared to the
state-of-the-art methods, providing new ways to pose neu-
ral characters in novel environments, increasing their ap-
plicability. Code available at: https://github.com/
LuisBolanos17/GaussianShadowCasting

1. Introduction
It is now possible to reconstruct animatable 3D neural

avatars from video but methods do not account for accurate
lighting and shadows. They have to rely on recordings that
have soft uniform lighting, which precludes recording out-
doors in direct sun light and on film sets with spotlights, and
most are unable to relight characters in novel environments,
limiting their applicability in content creation.

The most recent body models [17,20,28,36,37,40] which
are based on neural radiance fields (NeRFs) [26], approxi-
mate the light transport by casting primary rays between the
camera and the scene, sampling the underlying neural net-
work dozens of times along each ray to obtain the density
and color. As they do not include an illumination model, the
color that the NeRF learns includes lighting, shadow, and
view-dependent effects. Learning a body model in a chal-
lenging scene with a strong directional light source, such as
the sun, leads to the neural field overfitting to the observed
shadows. It does not generalize to novel poses, as the cast
shadows are global effects where movement of a joint could
affect the appearance of other distant areas of the body. Fig-
ure 1 shows such setting. This is in contrast to local shad-
ing effects such as wrinkles in clothing which current body
models can successfully reconstruct.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20997



To cast shadows within NeRF, secondary ray tracing
from the reconstructed body model to the light source is an
option. Although the predominant NeRF formulation en-
ables casting secondary rays without change, it comes with
a massive computational cost. For each sample along the
primary ray, an equal number of secondary rays would have
to be computed, each with multiple samples, leading to a
quadratic, instead of linear, complexity in the number of
samples per pixel. As a result, current re-lighting models
only support diffuse reflection [16], hard shadows that do
not generalize to novel poses [7], and soft dynamic shadow
maps by approximate sphere tracing [43].

Our core contribution is introducing an additional vol-
umetric density field that is approximate but significantly
speeds up dynamic shadow casting while still maintain-
ing differentiability and smoothness for gradient-based op-
timization. We introduce an anisotropic Gaussian density
model and associated rendering functions that approximate
the fine-grained density of the NeRF. The Gaussians have
the beneficial property that we can integrate their density
along a ray in closed form, thereby avoiding any sam-
pling steps. Our derivation and implementation differs sig-
nificantly from existing work using Gaussians for render-
ing. Compared to Gaussian Splatting [18, 31, 33], we nei-
ther require an affine approximation nor back-to-front or-
dering. Compared to Gaussian density models we alle-
viate their sampling [31] with an analytic integration and
extend the existing analytic integration [30] to apply to
anisotropic Gaussians. Notably, the Gaussian density is op-
timized alongside the NeRF without requiring a reference
mesh such as SMPL [25]; it is template-free.

To further reduce runtime, we use a deferred shading
approach [7] in which the first rendering pass computes
the albedo, depth, and normal for each pixel. The second
pass casts only one secondary ray per pixel from the esti-
mated surface point to the light source. This makes shadow
computations independent of the number of samples in the
NeRF, avoiding the mentioned quadratic complexity.

Our experiments with strong directional light and cast
shadows demonstrate that our explicit lighting reduces the
occurrence of artifacts in novel-view and novel-pose syn-
thesis tasks. Figure 1 shows how our method is able to
disentangle lighting and shadows from the avatar’s albedo
given sparse-view data from only a single illumination. We
take advantage of the dynamic aspect of the data where we
can observe the same body part in multiple illuminations
as the subject moves. We further demonstrate the ability
to optimize the unknown light directions without any user
input or careful initialization. Moreover, relighting of the
neural character enables us to composite recorded motions
into novel scenes realistically, making them directly appli-
cable in computer graphics and entertainment industries, as
demonstrated by the HDRi re-lighting in Figure 1-right.

2. Related Work
We build on neural body models using NeRF [26], which

we introduce briefly. The subsequent discussion focuses on
relighting methods for 3D scenes and body models as well
as how Gaussians are used in rendering and reconstruction.
Neural avatars model dynamic performances by condi-
tioning the neural rendering model on a template mesh
driven by skeleton motion [4, 16, 20, 23, 24, 40, 49, 50] or
template-free by linking neural fields directly to a skele-
ton [22,27,36–38]. Our implementation uses the more flex-
ible template-free approach but it is general enough to ex-
tend to any NeRF-based model.
Static NeRF scene relighting approaches can be catego-
rized by either implicit [6, 9, 32, 34, 48] or explicit [13, 42]
implementations. In implicit methods, the NeRF’s MLP
is extended to further output illumination data such as
shadow, direct and indirect illumination or occlusion maps
[9, 32, 34], or decompose the scene into material proper-
ties such as metallicity and roughness which can be used in
a Bidirectional Reflectance Distribution Function (BRDF)
lighting model [6, 48]. These extended MLPs are condi-
tioned at training and test time on lighting information such
as spherical harmonics coefficients [32], or light direction
[9]. Implicit methods require large amounts of data in both
multi-view and multiple illuminations with lighting infor-
mation known or estimated [9, 32]. Explicit methods sim-
ulate how real light interacts with the environment which
improves the generalizability to novel illuminations but are
difficult to extend to dynamic scenes or objects. These
methods either utilize a secondary data structure such as
proxy geometries where lighting computations can be done
using established methods [42], or attempt to cast the neces-
sary secondary rays within the neural field’s volume which
comes with a significant computational burden [13].
Dynamic neural character relighting has been built on
top of volume rendering methods [5, 7, 21, 29, 43, 44, 51] as
well as 2D CNN based models [16]. Implicit methods again
require large amounts of data which can only be captured
using light stages with known illumination [5, 21, 44, 51]
or, across multiple subjects for faces that are self-similar,
each captured in a different setting with in-the-wild illu-
mination [29]. Our model provides dynamic and explicit
shading and is most closely related to the following three
methods.

RANA [16] uses SMPL+D [3] to estimate the coarse ge-
ometry of a person and extract an albedo texture map using
TextureNet [15]. Given a target pose, they render person-
specific neural features alongside coarse albedo and nor-
mals from the SMPL-D model. These are passed through
two CNNs to refine the albedo and normal maps. Finally,
they generate a light map using spherical harmonics and the
normal map which is multiplied by the albedo map to obtain
the final lit image. While spherical harmonics allow a wide
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array of lighting conditions to be simulated, cast shadows
are not present, e.g., an arm casting a shadow on the body.
Our work implements a Gaussian density model [30, 31] to
facilitate fast and efficient secondary ray tracing to compute
these cast shadows.

Likewise, Relighting4D [7] uses SMPL [25] to condi-
tion a 4D neural field of latent features which are trilinearly
interpolated based on the nearby vertices to the query loca-
tion. The latent features are passed through an MLP to ob-
tain geometry, occlusion, and reflectance properties which
are fed through a BRDF to get the final lit image. It is able
to estimate the light probe, and at inference time, be able
to switch the light probe to a new illumination. However,
Relighting4D was not designed to work with hard shadows
in novel poses, which is the focus point of our work.

Finally, Xu et al. [43] utilize a signed distance field
(SDF) based approach to learn a neural human avatar
which utilizes SMPL-based inverse Linear Blender Skin-
ning (LBS) and a displacement field to obtain canonical fea-
tures. They utilize Hierarchical Distance Queries (HDQ)
to compute minimum distances from world space to sur-
face locations and perform sphere tracing to obtain material
and surface properties for each camera ray. They further
take advantage of HDQ through the SDF by computing soft
visibility maps towards a learned light probe. While HDQ
allows for fast occlusion checks, their solution focuses on
soft approximate shadows whereas our work enables hard
shadow casting.
Gaussians have been used in rendering applications as
differentiable methods for computing visibility and occlu-
sions [30,31,35], as components of environment maps [46],
or as a means to improve rendering efficiency for neural
scenes [18]. Most methods are limited to spherical Gaus-
sians [30, 31], while Gaussian Splatting uses an affine ap-
proximation that is only accurate when many small Gaus-
sians are used [18], and Sridhar et al. use an approximation
by perspective projection of ellipsoids [33]. Our work ex-
tends Rhodin et al. [30, 31] to use anisotropic Gaussians,
without introducing any approximation, and tailors the ana-
lytic formulas and implementation towards shadow casting.

3. Method
Our method reconstructs a neural character from a set of

N images of width W and height H , {It ∈ RH×W×3}Nt=1,
and corresponding character poses θt ∈ RJ×4×4. The pose
is represented as a skeleton with one 4 × 4 local-to-world
transformation matrix for each of the J joints. Figure 2
gives an overview of our method. A key element of our
design is a deferred illumination model [39] that separates
the rendering into computing albedo, a ∈ R3, surface nor-
mal, n̂ ∈ R3, and depth, d ∈ R, in a first pass and subse-
quently adding shading and shadow, s ∈ [0, 1], in a second

pass. Our key contribution is the closed form formula for
the shadow s.

3.1. Deferred Neural Illumination

Our volumetric body model is optimized on a recon-
struction objective, LRGB that minimizes the squared differ-
ence between the input images It and the rendering of the
model. We test our method using DANBO [36]. It outputs
a color and density for samples x along the primary view
rays. These are subsequently integrated to compute a color,
which we interpret as the albedo, a. The illuminated color
for a given pixel of the reconstructed image, ĉ, is computed
by a Lambertian reflectance model,

ĉ = a(θt)
(
L̂amb + s(θt)Lcol(L̂dir · n̂(θt))

)
. (1)

This diffuse shading model illuminates the entire body with
an ambient light L̂amb and a directional light with color Lcol.
The directional light intensity is attenuated by the cast shad-
ows s and the cosine angle between the surface normal n̂
and light direction L̂dir.

Shading extensions. The benefit of the deferred render-
ing approach is that it lets us compute lighting information
only once for each pixel, as opposed to at every sample lo-
cation of the volumetric ray tracing leading to significantly
faster computation. To be applicable, we extend DANBO
to yield surface normals n̂ and depth d for a given view
ray. The former we attain by switching the density formula-
tion to a signed distance function with an Eikonal loss. The
normal is then readily estimated by differentiating the dis-
tance with respect to the original query location x as in [45].
We compute d likewise to albedo a by integrating the sam-
ple’s x positions along the ray, weighted by their density
and transmittance. Furthermore, we fix the intensity of the
directional light to white with a magnitude of 1.5. Without
fixing the directional light intensity, the equation would be
over parametrized and lead to ambiguities. Our model is in-
variant to light intensities between 1.0 and 2.0, as shown by
Table 1.

Table 1. Light intensity modulation: Our method is invariant to
moderate light intensity values.

Novel View & Pose
Light Intensity: 1.0 1.25 1.50 2.0 5.0

PSNR ↑ 24.46 24.52 24.37 24.00 18.98
LPIPS ↓ 0.165 0.164 0.165 0.163 0.185

3.2. Gaussian Shadow Casting

For modeling shadows more efficiently, we represent the
body shape with a set of Gaussians rigidly attached to the
skeleton model. The relative positions, orientation, and size
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Figure 2. Method Overview. Our method takes as input images and poses of a person. Using a neural radiance field as a backbone [36]1,
density, normals, and albedo values are volumetrically reconstructed and rendered. We fit a sum of 3D anisotropic Gaussian density model
to approximate the neural density field and compute shadow maps using our novel anisotropic Gaussian ray occlusion equations. The
shadow map is combined with a diffuse shading pass to produce the lit image. The whole model is optimized with a photometric loss
against the training images. Our method is able to optimize the light direction and ambient intensity without any initialization. It also
separates albedo from shading and shadow, allowing us to relight the model.

of the Gaussians are optimized to approximate the density
of the neural field and to allow for a fast, efficient, and
closed-form solution for integration along a ray (occlusion
checking). Our model extends previous work [30,31] by us-
ing anisotropic Gaussians (variable scale and rotation along
each axis) and avoids the need for sampling during integra-
tion as in NeRF.

Anisotropic Gaussian body model. We define the
anisotropic Gaussian density model as the matrix G ∈
RJ×K×13, with K being the number of Gaussians per
joint, typically ∼ 8, and the columns representing the
3D mean (µx, µy, µz), the axis aligned standard deviations
(σx, σy, σz), the rotation defined using the 6 DOF repre-
sentation (R0,0, R0,1, R0,2, R1,0, R1,1, R1,2) [52], and den-
sity (C). Figure 3 gives examples with varying numbers of
Gaussians.

The 3D density function, G(x), defines the density of
the Gaussian model at the query location x in world space.
We define the density function of a single 3D anisotropic
Gaussian as

Gi(x) = C exp
[
−0.5

(
(µ− x)T )Σ−1(µ− x)

)]
, (2)

where the precision matrix Σ−1 = RTDR and R is the
rotation matrix computed from the 6 DOF representation
and D = diagonal(1/σ2

x, 1/σ
2
y, 1/σ

2
z).

The density of the entire Gaussian model is the sum of

Figure 3. Gaussian Density Model. The approximation to the
NeRF’s density field using a sum of 3D anisotropic Gaussians us-
ing: a) 2 Gaussians per bone, b) 4 Gaussian per bone, and c) 8
Gaussian per bone; d) is the groundtruth mesh. Note: ellipses are
scaled to 2.5 STD of the Gaussians (99th percentile)

the density of each. The query location is transformed to
the local space of the given Gaussian’s joint j at time-step t
using the world-to-local transformation matrix θ−1

t,j , rigidly
attaching the Gaussians to the underlying skeleton and fa-
cilitating animation,

G(x) =

J×K∑
i=0

Gi(θ
−1
t,j x). (3)

We jointly fit the parameters of the Gaussian density model
to the neural field by minimizing LgDensity, the L2 error be-
tween the density function G(x) and the target neural den-
sity field at query location x. We detach the gradients of the
neural density field to optimize the Gaussians, fitting the
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Figure 4. 3D Anisotropic Gaussian Raytracing. a) A cross-
section of a 3D anisotropic Gaussian with rays passing through
the Gaussian. b) The computed 1D Gaussians resulting from our
derivation in Section 3.2 (colored solid), compared to sampling the
3D Gaussian directly (dashed), with their exact match validating
the correctness. c) The transmittance along each ray which is used
as the shadow map value.

Gaussians to the neural field and not the other way around.

Gaussian Ray Tracing. Figure 4 shows how casting a
ray, r, with ray origin ro ∈ R3×1 and direction rd ∈ R3×1,
through a 3D anisotropic Gaussian results in a 1D Gaussian
density along the ray. Through the Gaussian body model,
this equates to a sum of 1D Gaussians for which analytic
integrals can be computed. The amount of occlusion these
rays experience is equal to the sum of the integrals of each
of the 1D Gaussians across the rays. The transmittance
value, T , used as the shadow map value, s, is the exponen-
tial of the negative integral from the start of the ray, t = 0,
to the length of the ray, t = l,

s = Tr = exp

[
−

J×K∑
i=0

∫ l

0

Gr
i

]
. (4)

Gr
i is the 1D Gaussian created by the ray, r, going through

the 3D anisotropic Gaussian, Gi with mean µ ∈ R3×1 and
precision matrix Σ−1 ∈ R3×3. We derive in the supplemen-
tal how the 1D Gaussian’s density function takes the form

Grs

i = C̄ · exp
(
− (µ̄− x)2

2σ̄2

)
, (5)

where

C̄ = C exp

(
−0.5

(
(µ− ro)

TΣ−1(µ− ro)−
µ̄2

σ̄2

))
,

µ̄ =
rTd Σ

−1(µ− ro)

rTd Σ
−1rd

, and

σ̄ =

√
1

rTd Σ
−1rd

. (6)

This formula is more complex than in [30], as it now ac-
counts for anisotropic Gaussians with an arbitrary covari-
ance instead of isotropic Gaussians. The comparison to

sampling the 3D Gaussian in Figure 4 validates their cor-
rectness. It also lets us compute the cumulative density
function (CDF) analytically, thereby avoiding the sampling
in classical NeRFs,∫ x

0

Grs

i = C̄ · 0.5 ·
(
1 + erf

(
x− µ̄

σ̄
√
2

))
. (7)

Together with Equation 4, this integral computes the
shadow s when applied to the secondary ray with origin
rso, as the point on the subject’s surface computed from the
depth map d, and direction rsd towards the light.

3.3. Optimization

In addition to the introduced reconstruction loss LRGB,
LEikonal for SDF regularization as in [12], and Gaussian fit-
ting LgDensity, we regularize the training with i) a Lmask =
|ρ̂−ρ| that regularizes density by minimizing the difference
between integrated accumulation, ρ̂, and the foreground
mask, ρ, ii) Lamb = ||L̂amb − 0.1||2 preferring small am-
bient light values, iii) LgSigma that prevent too large or small
Gaussians, and iv) LgMean that pulls Gaussians closer to the
center of the bones.

Training proceeds in three stages. In stage I, the recon-
struction loss is replaced with one that encourages predict-
ing gray inside the silhouette, to learn a rough body shape
without illumination effects. In stage II, LgDensity and its
regularizers are introduced, allowing the Gaussian density
model to fit. Finally, in stage III, the LRGB takes over to op-
timize the light direction and learn the albedo. Additional
training details are provided in the supplemental.

4. Results
We evaluate our method on synthetic sequences, as done

in prior work [16]. However, this does not test performance
in real world conditions. Hence, we captured a new dataset
in direct sunlight and compare to the most closely related
baselines, showing significantly improved relightable body
models. The supplemental video and supplemental docu-
ment provide additional qualitative comparisons, including
relighting with HDRi environment maps.

Synthetic datasets. We test our model on the RANA
dataset [16], and further create our own synthetic sequence
by obtaining a textured mesh of a subject with a 3D full
body scanner (VITUS 3D Body Scanner). A Blender [8]
cloth simulation was applied to a shirt over the scan and
the character was automatically rigged and animated using
Mixamo [2]. We use the ‘swing-dance’ animation as the
driving motion as it contains a variety of poses from all body
angles. Four (3 train, 1 test) cameras are placed around the
subject at 90 degrees from each other. A directional light
source illuminates the scene with a slight ambient contribu-
tion such that the shadowed areas were not fully black. The
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animations are rendered using the Cycles render engine. In
addition, ground-truth pose and segmentation masks are ex-
ported. We split the dataset into 600/114 images for the
train/test sets, with the test set including 57 novel view im-
ages and 57 novel poses, out of which 15 have a strong hard
cast shadows that we test separately.

Outdoor sunlight dataset. We recorded two sequences
of real human motion in an outdoor scene during a sunny
day. This setting has largely been unexplored in neural
body models and few publicly available datasets are avail-
able. We capture the data using 3 cameras (Canon EOS
R8, Canon EOS 70D, iPhone12) and obtain SMPL esti-
mates using EasyMocap [1,10,11]. Segmentation masks are
obtained using the Segment Anything Model (SAM) [19].
We divide the frames into 600/200 images for the train/test
splits, using all three cameras for training.

Baselines We evaluate our method using the hard illumi-
nation dataset against Relighting4D [7]. Due to code being
unavailable, we were not able to compare against RANA
[16] and Xu et al. [43] using our datasets. We instead
quantitatively compare albedo estimates between our model
and RANA on their dataset as these results were kindly
made available. We further compare our work with other
template-less neural body models [36, 37], highlighting the
drawback when not explicitly modeling lighting. DANBO
[36] is our neural field backbone. NPC [37] forms the cur-
rent state-of-the-art template-less neural character model.

4.1. Albedo Estimates (training poses)

We ran the official implementation of Relighting4D
(R4D) [7] on our outdoor dataset, providing the same seg-
mentation masks and SMPL body model as to our method
(our method only uses the skeleton, not the surface). As
the first stage of R4D is NeuralBody [28] which does not
take shadowing into account, it produces dark floaters in
the space to approximate the hard shadow, hindering their
subsequent relighting module from estimating shadow and
shading correctly as seen in Figure 5a.

To compare against RANA [16], we run our method on
subject 1 of their synthetic dataset. Even with the dataset
being monocular (light comes from the same direction rel-
ative to the camera), our method was able to accurately es-
timate the light direction (error of 9.9 degrees) and obtain
albedo estimates with fewer lighting artifacts compared to
RANA, see the back of the left leg in Figure 5b.

4.2. Novel-Pose Rendering with Shadows

In this setting, the camera and illumination are un-
changed and only novel-poses are tested. These poses cre-
ated new shadow casts that resulted in large appearance

Figure 5. Albedo Estimation. Our method can better separate
shadows and lighting from training images to obtain better albedo
estimates without lighting artifacts compared to a) Relighting4D
[7] and b) RANA [16].

changes distant to the changed body part. As expected, ex-
isting methods (NPC, DANBO) overfit the training poses
and the shadows created in the novel poses are highly in-
accurate. Figure 6 shows how for frames that had body
parts casting shadows on other regions, our method pro-
duced more accurate shadows. Table 2 quantifies the gains
across novel poses and Table 3 across the subset of the novel
poses that has a shadow cast across the body.

Table 2. Novel-pose synthesis (all test frames). Our Gaussian
Shadow Casting model achieves consistently better PSNR scores
for novel pose renderings as it properly models the hard shadows
cast by the limbs in novel positions. Existing methods only shine
in perceptual metrics (SSIM and LPIPS) as these normalize con-
trast and hence lessen the impact of proper shadows and shading.

Synthetic (N = 57) Real S1 (N = 200) Real S2 (N = 200) Average

PSNR↑SSIM↑LPIPS↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DANBO [36] 17.52 0.756 0.195 16.57 0.599 0.328 17.69 0.588 0.325 17.26 0.648 0.283
NPC [37] 17.57 0.758 0.188 16.33 0.590 0.334 17.47 0.575 0.328 17.12 0.641 0.283
Ours 22.04 0.829 0.166 17.57 0.592 0.356 18.29 0.577 0.351 19.30 0.666 0.291

Table 3. Novel-pose synthesis (subset of test set with observed
self-casting shadows). Our Gaussian Shadow Casting renders
novel poses with strong hard shadows well. Our scores drop
marginally on these hard frames compared to all frames in Tab. 2,
while the baselines drop significantly.

Synthetic (N = 15) Real S1 (N = 41) Real S2 (N = 36) Average

PSNR↑SSIM↑LPIPS↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DANBO [36] 17.78 0.740 0.209 15.11 0.559 0.354 16.55 0.547 0.353 16.48 0.615 0.305
NPC [37] 17.81 0.741 0.201 14.88 0.553 0.357 16.51 0.538 0.355 16.40 0.611 0.304
Ours 22.13 0.821 0.175 16.88 0.572 0.365 17.40 0.544 0.371 18.81 0.646 0.303

For the synthetic sequence, improvements were consis-
tent across all three metrics. In the real outdoor sequence,
all methods attain a lower quality as the cameras are spaced
further apart and the segmentation masks and 3D input
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Figure 6. Novel Pose Rendering. Our method can more accurately reproduce the shadow in novel poses compared to the baselines.

pose, estimated with off-the-shelf 2D pose detection and
lifting methods, are less reliable. Nevertheless, Figure 6
shows how our model can accurately optimize the light
direction and predict realistic shadows, including on the
ground. To map shadows to the ground, we estimate the
ground plane from the reconstructed foot positions and cast
the Gaussian shadow on it by modulating the static back-
ground with the ground shadow map.

Table 2 and Table 3 show that our method consistently
improves the PSNR while the perceptual metrics SSIM [41]
improves only in one and the baselines perform better for
LPIPS [47]. This lower performance in perceptual metrics
is expected because these metrics normalize for brightness
and contrast differences, thereby lessening the importance
of producing proper shading and shadowing. In addition,
the texture and geometry detail of our method is slightly
lower, which we attribute to the separation into shading and
albedo imposing additional constrains, thereby leading to
slightly less detailed reconstructions.

4.3. Render Time Comparison

Table 4 lists the render time of our baseline compared
to our full model. Casting shadows with GSC has mini-
mal overhead (0.3s for one ray, only 2% of the entire render
time), enabling efficient training alongside NeRF optimiza-
tion. Casting a shadow with the NeRF baseline requires pro-
cessing twice the number of samples by the NeRF. The de-
ferred shading model creates one occlusion ray and each of
these secondary rays requires a similar number of samples
as for the primary ray. Already with a single light source,
this increases runtime by 25%, a ten-fold difference to GSC.

4.4. Relighting with Environment Maps

The shadow computation not only benefits training time
but also enables computing irradiance maps for environ-
ment maps. Figure 1 shows relighting with two different

Method render time [s]
DANBO + DS 17.13
DANBO + DS + GSC 17.47
DANBO + DS + NeRFSC 21.4
DANBO + DS + GSC-HDRi-8 20.70
DANBO + DS + GSC-HDRi-16 23.57
DANBO + DS + GSC-HDRi-32 29.49
DANBO + DS + GSC-HDRi-64 41.22

Table 4. Render time. The overhead of Gaussian Shadow Casting
(GSC) is minimal on DANBO with diffuse shading (DANBO +
DS) and enables casting many rays (64 for GSC-HDRi-64). By
contrast, NeRF shadow casting (NeRFSC) doubles the runtime
with every light source, making training prohibitively slow and
HDRi relighting impractical.

HDRi maps (obtained from Poly Haven [14]) by casting
64 secondary light rays towards the environment map for
each pixel through importance sampling. In both cases,
the bright sun casts a strong shadow while the colored light
from the environment leads to natural shading that matches
the character with the environment. This enables placing
the reconstructed characters into new environments and giv-
ing them a natural and consistent look with respect to the
rest of the scene while still containing cast shadows.

Our method is plug-and-play with other neural body
models due to the deferred rendering approach. It can be
used with higher quality volumetric neural models without
degraded quality when training on uniformly lit data and
using GSC for relighting as shown in Figure 7.

4.5. Ablation Study

We test a variety of implementation details in our model,
including using only diffuse shading on top of DANBO
(DANBO + Diff. Shading), only using the Gaussians to
cast shadows (Ours w/o Diff. Shading), providing ground
truth lighting (Ours-GT Light), and detaching the normals
prior to the diffuse shading (Ours-Detached Normals). The
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Figure 7. HDRi Relighting on MonoPerfCap using NPC [37]
as the backbone. Our Gaussian relighting method can be utilized
at inference with higher quality models on data that is uniformly
lit.

results of which can be seen in Table 5, which shows that
each of our contributions improves reconstruction quality at
test time.

Table 5. Ablation on Synthetic Sequence.

Training Novel Pose Novel View

PSNR↑SSIM↑LPIPS↓ PSNR SSIM LPIPS PSNR SSIM LPIPS

DANBO 27.66 0.913 0.133 17.52 0.756 0.195 18.85 0.773 0.179
DANBO + Diff. Shading 24.82 0.860 0.187 18.60 0.785 0.208 24.40 0.875 0.167
Ours w/o Diff. Shading 27.17 0.879 0.161 21.22 0.802 0.178 25.08 0.867 0.163
Ours-Detached Normals 25.90 0.863 0.182 20.43 0.814 0.192 26.18 0.893 0.158
Ours-GT Light 25.22 0.861 0.180 21.23 0.830 0.184 26.68 0.895 0.155
Ours 26.60 0.876 0.165 22.30 0.827 0.176 27.32 0.882 0.154

Diffuse Shading. Shadowing alone does not account for
accurate shading based on how incident the light hits the
surface. Moreover, the Gaussians cast long-range shadows,
but their smooth and low-resolution approximation to the
NeRF’s density prevents them from representing finer de-
tails such as small extremities (nose, fingers). As a result,
finer shading details are missed as seen in Figure 8c. On the
other hand, using only shading (DANBO + Diff. Shading)
already reduces texture detail quality as seen by the training
scores, but achieves improved performance in novel pose
and novel view conditions. However, the missing cast shad-
ows play the most significant role in improving test scores.
Detached Normals. We compare results between a model
where network gradients could, Figure 8d, and could not,
Figure 8b, backpropagate through the surface normals used
in the diffuse shading to see whether or not artifacts in the
shading would smoothen out the geometry. We find that the
surface is indeed affected by the gradients backpropagating
through the diffuse computation and observe a smoother ge-
ometry reconstruction.
GT Light. Our method is able to fit the direction of the light
source and the ambient intensity with little user input. We
observe accurate light recovery when the light is initialized
randomly, e.g. when coming from the back the angle error
is only 1.36 degrees on our synthetic sequence. We found
providing the ground truth light direction did not improve
results and may have hindered the model due to the added
constraints, Figure 8a.

Figure 8. Ablation Comparisons (novel-pose). a) The model
trained with the groundtruth light direction. b) The model trained
while detaching the gradients from the surface normals during dif-
fuse shading. c) The model trained without diffuse shading. d)
Our full model.

4.6. Limitations

The Gaussian cast shadows model long-range effects,
such as the arm casting a shadow on the leg but the smooth
Gaussians lack high frequency details. This is a minor
drawback since the diffuse shading already faithfully repro-
duces the light intensity fall-off as the light direction be-
comes more incident with the surface and therefore shades
the back side of small extremities (i.e. nose and fingers)
well. A future extension could be to integrate mid-scale ef-
fects with screen-space ambient occlusion and shading.

Moreover, we noticed that disentangling color into shad-
ing and albedo, compared to the original DANBO back-
bone, leads to slightly lower image reconstruction metrics
when shading effects are minimal. We attribute this to the
additional constraints that are imposed on the model. How-
ever, the overall performance in novel light conditions is
still improved significantly by our model.

5. Conclusion

We enabled the 3D reconstruction of human motions in
uncontrolled environments with a Gaussian-based shadow
model that applies to dynamic scenes and is differentiable
for iterative refinement. The reconstructed characters sup-
port reposing and relighting in novel environments. They
are equipped with global shadow computation, diffuse shad-
ing, geometric reconstruction, and a consistent albedo,
much like hand-crafted computer graphics models would
provide. The deferred lighting approach allows our method
to be combined with other neural body models with efficient
shadow computations.
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