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Abstract

Unlike color photography images, which are consistently
encoded into RGB channels, biological images encompass
various modalities, where the type of microscopy and the
meaning of each channel varies with each experiment. Im-
portantly, the number of channels can range from one to
a dozen and their correlation is often comparatively much
lower than RGB, as each of them brings specific informa-
tion content. This aspect is largely overlooked by methods
designed out of the bioimage field, and current solutions
mostly focus on intra-channel spatial attention, often ignor-
ing the relationship between channels, yet crucial in most
biological applications. Importantly, the variable channel
type and count prevent the projection of several experiments
to a unified representation for large scale pre-training. In
this study, we propose ChAda-ViT, a novel Channel Adap-
tive Vision Transformer architecture employing an Inter-
Channel Attention mechanism on images with an arbitrary
number, order and type of channels. We also introduce IDR-
Cell100k, a bioimage dataset with a rich set of 79 experi-
ments covering 7 microscope modalities, with a multitude of
channel types, and counts varying from 1 to 10 per exper-
iment. Our architecture, trained in a self-supervised man-
ner, outperforms existing approaches in several biologically
relevant downstream tasks. Additionally, it can be used to
bridge the gap for the first time between assays with differ-
ent microscopes, channel numbers or types by embedding
various image and experimental modalities into a unified
biological image representation. The latter should facilitate
interdisciplinary studies and pave the way for better adop-
tion of deep learning in biological image-based analyses.

‡Code, Data & Model weights : https://github.com/nicoboou/chadavit

Figure 1. Performance comparison on downstream tasks, show-
casing ChAda-ViT’s superiority in 6 out of 8 tasks compared to
existing approaches[47] using CLS token only. R2 scores, normal-
ized to 0-100, are presented for BBBC021 Channel Reconstruc-
tion and Nuclear Translocation prediction tasks. This success is
attributed to the combined use of Intra-Channel and Inter-Channel
Attention. Evaluation on all tokens is detailled in Appendix.

1. Introduction
Revolutionizing the field of image processing, Convolu-
tional Neural Networks (CNNs) set the stage for unprece-
dented advancements [24, 30, 32]. Meanwhile, originally
designed for Natural Language Processing (NLP), trans-
formers emerged [43] later in computer vision as Vision
Transformers (ViTs) [16]. ViTs excel in handling large
datasets, detecting long-range dependencies [38] and cap-
turing spatial correlations, often surpassing the capabilities
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of their CNN counterparts [7, 15, 36, 42, 46, 50]. The adop-
tion of ViTs has spurred important applications in many
tasks[11, 14, 40, 49], as well as the creation of foundation
models that have significantly improved performance across
a variety of domains[18, 19], marking a new era of versatil-
ity and robustness in the application of these transformative
technologies.

Bioimaging is however distinct, marked by its sparsity
and lack of standardization, a contrast to the rapid advance-
ments seen in general computer vision. Unlike conventional
pictures in RGB color format, microscopy images span a
plethora of specialized types of image across various chan-
nels [21, 27, 44]. Each channel, marked by a different stain-
ing or microscopy imaging technique, discloses unique bi-
ological information that, in many case, is specific to the
very assay being imaged. This multimodality of images in
term of channel numbers and types is pivotal as it underpins
the heterogeneity inherent in bioimaging data. The capa-
bility to discern and leverage inter-channel relationships is
paramount in this case as it necessarily lead to a richer cap-
ture of biological phenomena, thereby holding significant
promise in advancing biological observation. [10].

However, due to the prominent use of RGB pictures in
computer vision literature, transfer of current methodolo-
gies to biological images predominantly advocate for in-
dividual channel encoding [17, 29, 47]. A stance that,
albeit practical for certain tasks, overlooks the potential
insights harbored in the interplay between channels and
the information they represent. Importantly, this approach
thwarts the re-usability of pre-trained models across di-
verse studies[12, 13, 22, 34]. Models tailored to a specific
microscopy configuration may yield compromised perfor-
mance due to data scarcity, possibly driving spurious cor-
relations over valuable biological features [39]. These ap-
proaches also overlook the opportunity to exploit the vast
heterogeneous biological data available [23, 45]. A unified
architecture accommodating the diverse nature of bioimag-
ing data would not only facilitates the establishment of
a common biological embedding space for various vision
tasks but also heralds the potential of crafting a single pre-
trained model. Such a model could serve as a linchpin
for broader studies across different biological tasks, en-
abling comparative analyses, and studying correlations in
a streamlined and unified analytical space. This consolida-
tion could significantly accelerate and streamline analysis,
fostering a quicker adoption of deep learning within the bi-
ological community for image-based studies.

Through attempting to resolve these issues, the main
contributions of this paper are threefold:

• The introduction of a heterogeneous bioimage dataset en-
compassing various channel types and numbers, as well
as a variety of microscopy imaging techniques used to
acquire these channels.

• The introduction of a backbone architecture of Vision
Transformers capable of handling bioimage datasets with
different numbers and types of channels through a mask-
ing strategy coupled with intra and inter-channel atten-
tion, while achieving state-of-the-art results in a number
of biologically relevant tasks compared to the usual ViT
based approach for biological images.

• For the first time, to the best of our knowledge, we present
a unified embedding space for any microscopy image
dataset, bridging the gap between different heterogeneous
datasets and opening the door to cross-modal imaging
studies.

2. Related Works
Microscopy Image analysis. Advancements in image pro-
cessing for biological applications have significantly con-
tributed to high-throughput assays analyses and functional
genomics. Open tools such as CellProfiler [35] have been
integral, facilitating cell analysis with simple and efficient
approaches, as well as modular image analysis pipelines
for 3D image stacks and cloud-based processing to han-
dle the surge in biological big data. The introduction of
CNNs has further augmented bio-imaging, providing rapid
and efficient solutions to tasks such as phase unwrapping,
subtle phenotype analysis and multi-parametric cell classi-
fication and analysis. [1, 4, 26, 31]. Vision Transformers
have leveraged their ability to effectively learn long-range
dependencies in biological data, presenting new opportuni-
ties and addressing remaining challenges in bioimage anal-
ysis [33]. Moreover, recent studies [3] highlight the signif-
icant influence of transformation design on feature learn-
ing in microscopy images, an aspect that underscores the
need for biology-specific considerations in self-supervised
learning (SSL). Additionally, SSL methods employing vi-
sion transformers, such as DINO [8], have outshined tradi-
tional tools and achieved superior performance in numerous
biological tasks, offering better classification of chemical
perturbations and clustering gene families [29], and advanc-
ing morphological profiling, with enhanced capabilities in
encoding complex cellular morphology without manual su-
pervision [17]. These developments mark a shift toward
more automated and sophisticated frameworks in bioimage
analysis, crucial for navigating the increasing complexity
and volume of biological data.

Unified Microscopy Image Representation. In com-
putational biology, achieving a unified representation space
suitable for diverse microscopy techniques remains an on-
going challenge. While cell painting methods [9] offer a
data-rich environment for in-depth analysis within their spe-
cific domain [20, 37, 51], the scarcity of data in other ex-
perimental types creates a bottleneck for wider application.
Approaches like Microsnoop [47] address this by operating
in a one channel encoding regime, encoding each channel
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independently and subsequently concatenating these into
a final representation. However, this approach leads to
variable-sized embeddings depending on channel configu-
rations, which impedes the integration of data for cross-
experiment studies. CytoImageNet’s strategy [28] to aver-
age channel information into a single-channel dataset re-
solves the representation space inconsistency but at the cost
of losing detailed multi-channel information. To the best
of our knowledge, no method offers a joint representation
inclusive of all types of microscopy and channel configura-
tions.

3. Dataset
We introduce the IDRCell100K image dataset, a collection
of biological images, purposefully curated from the exten-
sive and varied Image Data Resource platform [45]. This
section outlines the process for selecting and refining these
images and provide details on these biological assays, with
the explicit goal of encompassing a heterogeneous distri-
bution of data. Our selection, based on metadata provided
with these experiments, covered various microscopy tech-
niques to encapsulate a diverse array of imaging modalities,
ensuring the dataset’s breadth in representing biological in-
formation. Efforts were made to minimize experimental and
imaging biases, striving for a balanced representation up to
a feasible extent, thereby reducing dependency on each im-
age modality or experiment. Further details on the equitable
distribution of images across different microscopy modali-
ties within the dataset are available in the Appendix.

Data Source Heterogeneity. To create a well-rounded
dataset, we focused on cell culture experiments from the
Image Data Resource. We picked 79 distinct experiments
conducted under different conditions and for different sci-
entific purposes. These experiments employed 7 types of
microscopy techniques and fell into 6 categories of study.

Data Selection. As the number of images differ from
one experiment to the other, we carefully chose 1,300 im-
ages from each selected experiment, in order to keep the
final dataset balanced. These images come from experi-
ments using different methods and include a wide range of
channels monitoring for various components of the cells.
Altogether, we end up with 308,898 single channel im-
ages, which we resized to 224x224 pixels from a variety
of original sizes. When combined, it resulted to 104,093
multiplexed microscopy images containing cells at various
scales, with each image made from one to up to 10 different
channels.

Implementation details. Due to the lack of a dedi-
cated Application Platform Interface (API), the retrieval of
these images was performed through automated authorized
webscraping of the Image Data Ressource platform. This
process was performed on a distributed High-Performance-
Computing CPUs cluster, using HTCondor cluster manager

software [41] with 10 processes per node. In this settings,
creation of the IDRCell100k Dataset took two weeks.

4. Methodology
4.1. Problem Formulation

Let I denote a single image from the dataset, extracted from
a union of spaces

⋃
RH×W×ni , where ni represents the

number of channels in image Ii, and 1 ≤ ni ≤ Nmax, with
Nmax being the maximum number of channels across all im-
ages.

The objective is to find a projection function Φ that maps
an image Ii to a latent space RK , formalized as:

Φ :
⋃

RH×W×ni → RK (1)

li = Φ(Ii) (2)

where K is the dimensionality of the latent space for the
image Ii.

4.2. Gold Standard Approach

Existing works in literature [28, 47] such as Microsnoop
adopt a One Channel Encoding approach, which results for
Image Ii with ni channels into a generalized function map-
ping Φ′ defined as :

Φ′ :
⋃

RH×W×ni →
⋃

RK′×ni (3)

where K ′ is the dimensionality of the latent space for a sin-
gle channel.

This overarching function is effectively realized by pro-
cessing each channel j of an image Ii independently. A
function Ψ is trained to project these individual channels
into a latent space RK′

:

Ψ : RH×W → RK′
(4)

lij = Ψ(Iij) (5)

where lij represents the latent feature of the j-th channel of
the i-th image.

For images with disparate channel counts ni, the indi-
vidual latent features lij are concatenated to form a repre-
sentation li for each image:

li =

ni⊕
j=1

lij (6)

The dimensionality of this representation li aligns with the
shape K ′×ni. Therefore it depends on the original number
of channels ni in the image ( li ∈

⋃
RK′×ni ) which makes

it impossible to train a single such a model on a large hetero-
geneous bioimage dataset as the one we assembled. Also it
does not provide a way to encode various dataset into a sin-
gle representation.
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Figure 2. The ChAda-ViT model architecture, displaying the proposed channel-adaptive embedding process. This figure illustrates the
token padding and masking approach for image data with an arbitrary number of channels, the split of channels into patches, and the
integration of positional and channel-specific embeddings to reach a fixed size input. We use the same positional emedding for patches in
the same position accross channels, and the same channel embedding for all patches of each channel.

4.3. Our Proposed Approach

We introduce ChAda-ViT, the Channel Adaptive Vision
Transformer, a unified architecture for a model Φ as de-
fined in Eq. 1, capable of encoding images with heteroge-
neous channel dimensions ni into a single fixed size em-
bedding space, through the introduction of Inter-Channel
Attention, on top of the regular intra-channel or spatial at-
tention. This is a consequence of leveraging the principles
of token padding and masking – a technique originally es-
tablished in NLP transformers [43] and partially adapted to
Self Supervised learning in ViTs [2, 25] –, and introducing
the concept of channel embeddings, as shown in Figure 2,
to accommodate the variable number of channels present in
different images.

The proposed approach patchifies each channel sepa-
rately instead of considering them altogether. Each channel
j of an image I with dimensions H × W × n is split into
non-overlapping patches Pj,x,y . Each patch at spatial loca-
tion (x, y) and channel j is of size p × p, where p = 16
is the preferred ViT configuration. These patches are then
projected into a lower dimension with a shared 2D convolu-
tional layer.

To standardize the input of the Transformer, we employ a
padding strategy that compensates for images I with fewer
channels than Nmax, the maximum number of channel over
the dataset. Padding tokens extend the patch sequence of

each image to match the length of Nmax × m, where m is
the number of patches per channel. Thus, the padded se-
quence, Seqpad(I), ensures any image is transformed into
a fixed vector size to feed the the model. To maintain the
integrity of the self-attention mechanism within the Trans-
former, we apply a binary masking strategy during attention
computation. A mask is created for each image in the batch,
marking the locations of padding tokens to ensure these
are excluded from contributing to the self-attention mech-
anism. This method allows ChAda-ViT to focus solely on
the meaningful data patches and preserve the inter-channel
and intra-channel attention accuracy.

We also introduce the concept of channel embeddings,
which focus on preserving channel information. Each patch
Pj,x,y is enriched with both positional and channel-specific
embeddings to preserve its spatial context and channel iden-
tity. Positional embeddings posx,y ensure spatial informa-
tion is maintained across all channels, while channel em-
beddings chanj mark each patch with its respective chan-
nel origin. The dual embedding strategy allows the model
to distinguish between patches of different channels located
at the same spatial position. Both types of embeddings are
learnable parameters, fine-tuned during the training process
to optimize the representation of spatial and channel infor-
mation within the unified embedding space.
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Dataset Downstream Task(s) Granularity Biological Application Dataset size Shape Metric
BloodMNIST[48] Clustering + Classification Single-Cell Cellular types 17092 28*28*3 Accuracy

CyclOPS† Clustering + Classification Single-Cell Protein Localization labelling 28166 64*64*2 Accuracy
BBBC048‡ Clustering + Classification Single-Cell Cell Cycle Stages 32266 66*66*3 Accuracy

NF-kB Nuclear Transloc[31] Regression Single-cell Nuclear Translocation 1000 256*256*3 R2
BBBC021[6] Generation Whole Slide Imaging 13200 1024*1280*3 R2,MSE,MAE

Table 1. Overview of biological datasets used to compare the ChAda-ViT and One Channel ViT models across clustering, classification,
regression, and generative tasks, highlighting the diversity in biological applications, dataset sizes, and complexity. Performance metrics
include Top1 accuracy, R2, MSE and MAE, corresponding to the task-specific objectives.

4.4. Model Architecture

We use Vision Transformer (ViT) models to examine
whether incorporating Inter-Channel attention – achieved
by channel-specific patchification and token padding and
masking – in addition to Intra-Channel attention enhances
model performance on biological image tasks. We employ
a ViT-Tiny architecture as the backbone. The model, em-
ploys a shared 2D convolutional layer to embed each token
with an embedding dimension of 192. Due to the dataset’s
maximum channel count (Cmax) being 10 and the image
size being 224x224, the ChAda-ViT model processes a sig-
nificantly high number of input tokens–10 times more than
a standard ViT-Tiny and 50% more than a ViT-Large. To
avoid confusion with traditional ViT size nomenclature, we
adopt a distinct model name, dubbed ChAda-ViT Moyen
(French for Average), reflecting its expanded width. Exper-
iments with different ChAda-ViT architecture sizes (Grand
and Petit) to confirm the scaling laws of our method are
available in the Appendix. The proposed approach is com-
pared to Microsnoop One Channel approach [47], using a
standard ViT for a fair comparison, modelling the func-
tion Ψ as defined in Eq. 4, to serve as the baseline, using
similar backbone, embedding size, and token per channel
count to evaluate the effects of our channel-adaptive con-
tribution. This baseline encodes each channel separately
with Intra-Channel attention, and then combines the result-
ing CLS token representations into a ni × 192-dimensional
image representation. Furthermore, we introduce an Inter-
Channel only ViT variant as an ablation study of the inter-
channel attention only, where each channel is treated as a
distinct single patch of size 224x224, as opposed to the
16x16 patch size used in the one-channel ViT and ChAda
ViT. Each of these full-sized channel patches is tokenized
into a 192-dimensional vector, compelling the model to fo-
cus its attention solely on the features derived from the re-
lationships between the individual channels by eschewing
Intra-Channel considerations.

5. Experiments
Model Training. Given the heterogeneous nature of the
data, with its assortment of unrelated experiments, diverse

†The dataset can be accessed on Kaggle: CYCLoPs Dataset.
‡More details on the dataset are found here : BBBC048.

image types, channel configurations, cell lines, and labels,
usage of standard supervised approaches presents a unique
challenge due to the strong label variability and occasional
label absence.. Therefore, we aim to obtain broad represen-
tations through self-supervised learning (SSL), assessing
these models on specialized downstream tasks on biologi-
cal images. The three models are thus trained on the IDR-
Cell100k dataset we created with DINO [8] as the SSL strat-
egy for 400 epochs. ChAda-ViT Moyen and Inter-Channel
only ViT Moyen are set with a base learning rate of 0.0001,
while the one-channel ViT-Tiny is trained with a base learn-
ing rate of 0.005 for the sake of stability during training.
A batch size of 256 multiplexed images per GPU is main-
tained for both models. Training employs a cosine anneal-
ing scheduler to optimize the learning rate over time. The
ChAda-ViT Moyen undergoes training on 32 A100 80GB
GPUs distributed across four nodes, for a total training time
of 2080 GPU hours.

Evaluation. We assess our models, trained on IDR-
Cell100k, to gauge their capacity to generate versatile rep-
resentations ideal for a range of biologically relevant tasks
based on known benchmarking datasets unrelated to the
training set, using linear probing, embedding direct eval-
uation (KNN), as well as image generation for evaluation
with 5 different random seeds per run. Classification tasks
involved differentiating cell types, protein localizations, and
cell cycle stages within the BloodMNIST[48], CyclOPS,
and BBBC048 datasets, respectively, each of which have
varying sizes and complexities. For regression, the NF-kB
Nuclear Translocation Assay dataset[31] tested the mod-
els’ ability to quantify protein displacement between cancer
cells compartments. The generative task with the BBBC021
dataset[6] challenged the models to reconstruct cell imaging
channels from the encoded CLS representations. We froze
the encoder and trained a simple convolutional decoder to
predict the Actin channel based on other channels for this
task. Table 1 presents a comprehensive view of the evalu-
ation tasks and dataset details. The One Channel model’s
evaluation involved using concatenated CLS token repre-
sentations from each channel for a comprehensive repre-
sentation. Performance metrics, accuracy for classification
and R2 for regression and generation, in addition to Mean
Squared Error (MSE) and Mean Absolute Error (MAE) for
generation, were selected to measure the models’ efficacy
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Figure 3. Comparison of the last layer self-attention maps between One Channel ViT and ChAda-ViT on IDRCell100k image channels.
ChAda-ViT, utilizing Inter-Channel Attention, effectively discerns significant cross-channel correlations (red arrow), focusing on spatially
relevant areas in each channel (yellow arrows). This mechanism enables ChAda-ViT to identify critical biological features that might be
overlooked with a single-channel focus.

Dataset One Channel ViT/16 Tiny ChAda ViT/16 Moy
BloodMNIST 576 192
CyclOPS 384 192
BBBC048 576 192
NF-kB Nuclear Transloc 576 192
BBBC021 384 192

Table 2. Comparison of representation dimensions across down-
stream task datasets for One Channel ViT/16 Tiny and ChAda
ViT/16 Moyen using CLS token only. The One Channel ViT,
influenced by its dependence on the input channel counts, offers
larger and more varied embedding dimensions, theorically leading
to more extensive but less channel-interrelated image representa-
tions.

precisely. Detailed dataset information and biological con-
text are provided in the appendix.

6. Results

Biologically Relevant tasks. Our experimental outcomes,
as detailed in Figure 1, indicate that the proposed ChAda-
ViT model, with its dual focus on Inter-Channel and Intra-
Channel Attention, surpasses the standard one-channel ap-
proach in 6 out of the 8 tasks evaluated. This is notable
considering the one-channel approach employs a larger rep-
resentation space when using the CLS token only, as shown
in Table 2. Evaluation on all output tokens in Appendix
showcases a similar pattern. These results underline the ef-
fectiveness of introducing an inter-channel attention mech-
anism while training on microscopy images and suggest it
leads to a more subtle and efficient biological image repre-
sentation. Additional comparisons on Standard ViT trained
on the 3 channel subset of IDRCell100K in the Appendix
further validates the added value of training with Inter-
channel attention.

Moreover, the experiments suggest that solely employ-
ing Inter-Channel attention, as shown by the Inter-Channel
only ViT, might be insufficient for capturing the complex-
ities of biological imaging. Instead, the amalgamation of
both Inter-Channel and Intra-Channel Attention, as imple-
mented in ChAda-ViT, yields superior representation qual-
ity compared to the application of each method in isolation.
This integrative approach harnesses the strengths of both at-
tention mechanisms to enhance the model’s performance.

However, in the classification and clustering tasks within
the BBBC048 dataset, the One Channel ViT approach, fo-
cusing primarily on Intra-Channel Attention, demonstrates
a better performance over ChAda-ViT. This outcome could
be attributed to the characteristics of the BBBC048 dataset
(illustrated in Appendix). The images in this dataset reveal
that certain features, crucial for classifying cell cycle stages,
are already predominantly present within each single chan-
nel. With the representation power of One Channel ViT
being bigger than ChAda-ViT Moyen (see Table 2), for the
same input size, it performs better at this classification task,
diminishing the need for Inter-Channel relationship analysis
for accurate classification.

Inter-Channel Attention. The comparative analysis of the
last-layer self-attention maps between One Channel ViT
and ChAda-ViT on the IDRCell100k image channels, as
depicted in Figure 3, reveals significant insights into the
models’ focus and interpretability. ChAda-ViT’s use of
Inter-Channel Attention is a pivotal aspect that distinguishes
its performance from the One Channel ViT. Specifically,
ChAda-ViT demonstrates a heightened ability to establish
meaningful correlations across different channels, as indi-
cated by the red arrow. This capability allows it to asso-
ciate biological information from various channels, effec-
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Figure 4. Evaluation of ChAda-ViT’s performance in linear prob-
ing low-data regimes, utilizing 100%, 10%, and 1% of the train-
ing data for linear probing. The results consistently demonstrate
ChAda-ViT’s relative performance across tasks, maintaining the
performance trends in the same tasks, regardless of the data vol-
ume.

tively enhancing focus on spatial locations in a channel that
might otherwise appear information-scarce. Similarly, yel-
low arrows highlight the ChAda-ViT’s strategic focus on
spatially relevant areas, such as intra-nuclei features in the
yellow-framed images, even in channels with limited infor-
mation—contrasting with the One Channel ViT’s approach.
This targeted approach allows ChAda-ViT to unveil key bi-
ological features, which could potentially be missed in a
single-channel analysis. Such capability is especially valu-
able in complex biological imaging where multiple chan-
nels convey different but interconnected information.

While qualitative, the implications of these findings are
substantial in the context of biological image analysis. Ev-
idences in ChAda-ViT’s proficiency to recognize and em-
phasize spatially relevant areas across channels underscores
its utility in deciphering complex biological structures and
functions. This multi-channel attention helps the model to
construct a more holistic and nuanced understanding of the
cellular components and their interactions. This intricate
understanding could lead to more accurate and comprehen-
sive interpretations of biological data, particularly in sce-
narios where multiple channels contribute to the overall pic-
ture. The attention maps are thus consistent with the effec-
tiveness of ChAda-ViT’s design but also offer a window into
the model’s operational dynamics, highlighting its potential

to significantly enhance the analysis of multi-channel bio-
logical imaging.
Low Data Regime. We then delved into how the perfor-
mance of ChAda-ViT models compares to one-channel ViT
models under constrained data conditions. Specifically, we
conducted linear probing using 100%, 10%, and 1% of the
available training data for each downstream task. This as-
pect of the study is crucial for evaluating model behavior in
real world laboratory context, where data related to a spe-
cific experiment is often limited. Such situations commonly
involve either fine-tuning a pre-trained model with the avail-
able data or employing the model directly as is.

As illustrated in Figure 4, our findings reveal that
the ChAda-ViT model maintains a consistent performance
trend across various data regimes. This persistence in per-
formance, regardless of the amount of data used, is par-
ticularly significant. It indicates that once pre-trained, our
ChAda-ViT model is robust and capable of achieving high-
quality results, even in low-data regime scenarios com-
monly encountered in biological research. This consistency
underscores the practical applicability and reliability of our
models in diverse real-world biological research settings.
Single Joint Embedding Space. In addition, a pivotal
contribution of the ChAda-ViT model lies in its ability to
unify different datasets, each with distinct channel types
and counts, into a consistent embedding space. This fea-
ture could end up being particularly advantageous for cross-
experimental studies in biology, where diverse experiments
often produce sparse data with varying imaging techniques
and channels. Such a unified approach would highly ben-
efit fields such as drug discovery, where integrating varied
experimental results can provide deeper insights.

For instance, the BBBC021 dataset, composed of 3 chan-
nels per image, showcases whole-slide images of cells re-
sponding to specific chemical compounds, captured using
the Cell Painting technique. Similarly, the Bray dataset[5],
composed of 5 channels per image, as well as different
experimental conditions, displays cells affected by various
compounds, but imaged with a higher channel counts en-
coding distinct biological information than the first dataset.
Notably, these datasets share at least 22 common compound
treatments that could benefit from cross-dataset compar-
isons. By examining these shared compound treatments, it
might be possible shed light on the interconnection of dif-
ferent mechanisms of action and understand the broader im-
pact of these chemical compounds. However, existing ap-
proaches are unable to properly compare these different ex-
perimental settings, due different learnt embedding spaces
caused by differences in channel count. This common rep-
resentation space, uniquely facilitated by ChAda-ViT archi-
tecture, allows us to leverage data from other compounds
or experiments, providing a bridge between numerous but
disconnected biological datasets currently available. This
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Figure 5. UMAP & PCA projections of the BBBC021 (3 channels) and Bray (5 channels) datasets in a unified representation space, derived
from ChAda-ViT Moyen. The left UMAP projection highlights the possibility of projecting structurally different experiments into the same
space. The right PCA projection and components are labeled by dataset, with a linear separation of the structural differences of different
experiments (PC1) and different compounds (PC2) using only the two datasets’ common compounds.

approach could potentially enhance our understanding of a
wider range of compounds, serving as a preliminary step
that capitalizes on the variety of open experiments in this
domain, and laying the groundwork for more extensive fu-
ture research.

Figure 5 presents a UMAP projection of these two
datasets, highlighting their common compounds, within the
same representation (left), achieved through ChAda-ViT
Moyen, while similarly highlighting that the model, trained
on only 100k images before projecting the representatons of
the two datasets’ common compound using a PCA, can lin-
early separate the two datasets through only the PCA first
Principal Component (PC1), while differentiating the dif-
ferent compounds from each other in the PCA second com-
ponent (PC2) (right). While aligning various labels (such
as compound and cell types) in the representation is neces-
sary for some cross-dataset tasks, this shared representation
space is a significant initial step. It serves as a foundation
for further exploration and potential breakthroughs in cross-
experimental biological research.

7. Conclusion

In this study, we introduced ChAda-ViT, a Channel-
Adaptive Vision Transformer designed specifically for mul-
tichannel image data. ChAda-ViT integrates token padding,
masking as well as channel and positional embeddings
within a patch-based framework, making it highly effec-
tive for handling diverse types of imaging data. On top
of the added inter-channel attention, the standout feature of
ChAda-ViT is the ability to bring disparate microscopy im-
ages into a single, joint embedding space, facilitating com-
prehensive comparisons across varied datasets with distinct
types, channel counts, and imaging techniques.

Our model demonstrates superior performance over ex-
isting methods in the literature across most tasks, including
normal and low data regime linear probing. It also provides

more insightful attention maps at the channel level, paving
the way for new explorations into cellular components and
their interactions. The potential of ChAda-ViT extends to
aligning various biological datasets within its embedding
space, offering novel avenues for cross-experimental stud-
ies and new biological insights. This capability offers a sig-
nificant potential to the field of biological image analysis,
e.g. leading to augment datasets with additional channels
based on learnings from other datasets, thereby reducing ex-
perimental costs.

Another key contribution of our work is the introduc-
tion of the IDRCell100k dataset, a first-of-its-kind collec-
tion featuring heterogeneous biological image sources and a
range of multi-channel configurations. This dataset not only
demonstrates the adaptability and robustness of ChAda-ViT
but also serves as a critical asset for ongoing and future re-
search in representation learning for biological images.

Nevertheless, our research is not without limitations. Al-
though ChAda-ViT excels in many tasks, it falls short in
tasks heavily reliant on intra-channel information. Address-
ing this shortfall could position our approach as the go-
to method for encoding biological images, encapsulating
both inter- and intra-channel dynamics. Furthermore, ex-
ploring ChAda-ViT as basis for a foundation model, poten-
tially leveraging massive datasets, could unveil new capa-
bilities and applications. Bridging this gap and expanding
its dataset foundation remain key objectives for future en-
hancements, with the aim of solidifying ChAda-ViT’s role
as a cornerstone technology in biological imaging analysis.
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