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Abstract

Vision-language foundation models have shown remark-
able performance in various zero-shot settings such as im-
age retrieval, classification, or captioning. But so far, those
models seem to fall behind when it comes to zero-shot lo-
calization of referential expressions and objects in images.
As a result, they need to be fine-tuned for this task. In
this paper, we show that pretrained vision-language (VL)
models allow for zero-shot open-vocabulary object local-
ization without any fine-tuning. To leverage those capabil-
ities, we propose a Grounding Everything Module (GEM)
that generalizes the idea of value-value attention introduced
by CLIPSurgery [17] to a self-self attention path. We show
that the concept of self-self attention corresponds to cluster-
ing, thus enforcing groups of tokens arising from the same
object to be similar while preserving the alignment with
the language space. To further guide the group formation,
we propose a set of regularizations that allows the model
to finally generalize across datasets and backbones. We
evaluate the proposed GEM framework on various bench-
mark tasks and datasets for semantic segmentation. GEM
not only outperforms other training-free open-vocabulary
localization methods, but also achieves state-of-the-art re-
sults on the recently proposed OpenlmagesV7 large-scale
segmentation benchmark. '

1. Introduction

Vision-Language models, trained on large-scale web-based
datasets such as WIT-400M [29], LAION400M [30], or
metaclip-400M [35] with image-text supervision only, have
so far shown a remarkable set of capabilities. These mod-
els such as CLIP [29], OpenCLIP [30], BLIP [15], or re-
cently MetaCLIP [35] exhibit the ability to generalize to a
broad range of downstream tasks like zero-shot image clas-
sification [6, 12, 29], visual question answering [13], action
recognition [38, 40], image captioning [15, 16], and view
synthesis [11]. However, models trained with image-level
objectives such as contrastive loss, image-text matching, or

ICode is available at ht tps: //github.com/WalBouss/GEM.

Hamburger

Figure 1. Qualitative results of training-free methods: given a text
prompt, the similarity of each image token with the prompt is cal-
culated (red:high, blue:low). The proposed GEM method provides
improved grouping and alignment compared to other approaches.

image captioning struggle to maintain their zero-shot ca-
pabilities for tasks related to visual localization [17, 42].
Even worse, when prompting such models, e.g., for spe-
cific objects, they often exhibit an inverse vision-language
relation: the prompt embedding has a larger distance from
image patches containing the object compared to patches of
the background, as shown in Figure 1.

In order to leverage vision-language models (VLMs)
to localize objects in an open-vocabulary setting, different
sets of approaches have been proposed. The first line of
work trains models to detect or segment regions in an im-
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Figure 2. Grounding Everything Module architecture: Left: overview of the proposed generalized self-self attention block including

The output of the q-q, k-k, and v-v projection is ensembled before applying the skip

connection®. Right: the output of self-self attention blocks is aggregated in parallel to the vision transformer in an alternative pathway.
The localization is obtained by the dot product between the patch token output of the GEM and the CLS embedding of the text encoder.

age and then uses the vision-language information to label
those regions, e.g., OVSeg [18] or OpenSeg [10]. A sec-
ond line of work starts from a pretrained vision-language
backbone and fine-tunes the model to improve localization,
e.g., PACL [26] or SegCLIP [24]. Contrastingly, a third
line of work recently emerged that focuses on leveraging
the inherent localization capabilities of models trained on
image-level objectives without requiring annotations or re-
training, namely MaskCLIP [42], CLIPSurgery [17] and
very recently SCLIP [33]. These training-free approaches
try to process visual patches of the original model in a way
that keeps them aligned to the language space. MaskCLIP
showed that removing the MLP of the last layer avoids the
vision-language inversion (see Figure 1). CLIPSurgery ex-
tends the pretrained ViT backbone of the CLIP model by a
so-called “surgery pathway” which accumulates the value-
value attentions of the original backbone over several lay-
ers. While adding the surgery pathway leads to significant
performance improvements, it has been an open question
how this mechanism improves the overall processing.

In this paper, we extend CLIPSurgery by analyzing the
properties that result in the observed characteristics, con-
necting them to clustering algorithms, and eventually en-
forcing them within a new, generalized self-self attention
architecture. While there are CNN-based VLMs, the focus
in this work is given to VLMs using ViTs as image encoder.

First, we show that the value-value attention can be gen-
eralized to any self-self attention as key-key, query-query,
or value-value representations show similar characteristics.
Practically, we show that any form of self-self attention in-
creases similarity among groups of similar tokens, com-
pared to the standard g-k attention. To control the group
formation, we propose a set of regularizations: first, we
L2 normalize the projected vectors; second, we combine
this with an adaptive temperature 7 for the proposed self-
self attention operation, showing that the combination of
those two elements results in good performance across all

setups without the need for hyperparameter tuning. Third,
we show that repeating the self-self attention several times
further increases the group formation. Finally, we ensemble
over all self-self attention types to allow for an integration
of all cues. An overview of the resulting Grounding Every-
thing Module (GEM) architecture is shown in Figure 2.

We evaluate the proposed method on two challeng-
ing tasks, open-vocabulary zero-shot semantic segmenta-
tion and zero-shot point prediction. For the first task, we
leverage PascalVOC [9], PascalContext [25], as well as the
ADE20K [41] dataset. For the second task, we employ the
large-scale Openlmages V7 [1] dataset with almost 6K an-
notated classes. In all cases, we show improved results over
all current training-free methods [17, 42] and competitive
results in comparison to other approaches that require some
form of fine-tuning [24, 36, 37]. We show that training-free
methods in general and the proposed approach in particular
are superior to all other approaches on the zero-shot point
prediction on the Openlmages V7 dataset, reporting state-
of-the-art results on this challenging task.

We summarize our contributions as follows: (1) Inspired
by Li et al. [17], we show that self-self attention can be
used as a technique for training-free open-vocabulary ref-
erential expression localization and segmentation based on
pretrained vision-language models. (2) We propose the
Grounding Everything Module (GEM) as a combination of
self-self attention together with a set of regularizations that
allows to generalize over a range of VL models and datasets.
(3) We provide an in-depth evaluation of our model and
training-free methods in general, showing that they keep up
or even outperform fine-tuned methods on large-scale open-
vocabulary localization tasks.

2. Related Works

The success of large-scale vision-language models like
CLIP has sparked interest in leveraging their abilities for
tasks like open-vocabulary object localization.
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Given the lack of ad-hoc localization properties of
VLMs, one line of approaches focuses on localization first,
e.g., by training a region-proposal detector or a segmenta-
tion network [14]. They then use the respective VLMs as a
form of post-process labeling by computing the correlation
of the respective regions with the text prompt. A represen-
tative example is OpenSeg [10], which fine-tunes a model
using class-agnostic masks and image-text pair data based
on ALIGN [12]. Similarly, OVSeg [18] consists of one seg-
mentation model trained to generate class-agnostic masks in
an open-vocabulary fashion, and one CLIP model adapted
to classify these masks. MaskCLIP(®) [7] adopts a similar
strategy by using a Class-Agnostic Mask Proposal Network
followed by a visual encoder based on CLIP to both refine
the mask prediction and classify it. By relying on a localiza-
tion model with a closed set vocabulary, i.e., not trained on a
web-scale dataset with a large vocabulary, the classification
performance is focused on the vocabulary of that model.
Recently, GroundingSAM was proposed as a combination
of GroundingDINO [22] and SAM [14]: GroundingDINO
is a model that leverages various sources of region-level su-
pervision, such as masks and bounding boxes available for
different vision tasks to train a general-purpose localizer,
and SAM generates segmentation masks from the bounding
boxes generated by GroundingDINO. Combining the super-
vision from various tasks allows these models to be trained
on millions of samples with fine-grained supervision, thus,
achieving good performance for a large set of tasks.

Alternatively, some works propose to adapt the VLM ar-
chitecture and training process to favor the emergence of
localization. SegCLIP [24] and GroupViT [36] modify the
VIiT architecture by interleaving regular transformer blocks
with grouping blocks that allow the grouping of seman-
tically similar tokens into learnable group tokens used to
compute the contrastive loss with the text. Similarly, ViL-
Seg [20] and OVSegmentor [37] use online clustering and
Slot Attention [23], respectively, for grouping visual fea-
tures into semantically coherent clusters and, in addition,
exploit self-supervision [4, 5, 31] for refinement. ReCo [21]
leverages a retrieval process to obtain finer supervision and
PACL [26] trains a decoder on top of CLIP with a ground-
ing loss. While these methods use image-caption pairs as
supervision, they require heavy filtering of the dataset, like
extracting common nouns, which makes the dataset lose its
free-form text characteristic. Thus, such approaches do not
fully benefit from the VLM’s large-scale characteristics.

Some methods refrain from training and instead adapt
pretrained VLMs to make them work on fine-grained lo-
calization tasks. MaskCLIP [42] proposes discarding the
Multi-Layer Perceptron (MLP) of the last layer of the vision
transformer and utilizing the final value projection to ex-
tract dense patch-level features. Building upon this concept,
CLIPSurgery [17] introduces a novel pathway called the

“surgery pathway” that operates in parallel with the origi-
nal vision transformer (ViT) backbone of the CLIP model.
It employs value-value instead of query-key attention and
aggregates the output of multiple layers via residual connec-
tion. Following [42], here, the value-value attention is di-
rectly used without a subsequent MLP. To localize an object
based on an input label or referential expression, the dis-
tance is computed between the token output of the last layer
and the respective text embedding. This work builds upon
this line of work and not only extends the value-value at-
tention to a normalized self-self attention but also provides
an in-depth analysis of the inner workings of the self-self
attention mechanism.

3. Grounding with Self-Self Attention

In the following, we introduce the Grounding Everything
Module (GEM) by first generalizing the concept of value-
value attention [17] to a broader set of projections as self-
self-attention and introduce an iterative extension that, to-
gether with a temperature regularizer, allows to control the
formation of groups of visual features. Second, we consider
the connection of the proposed self-self attention (and also
CLIPSurgery’s value-value attention) to clustering, show-
ing in simulations that it acts as a form of soft clustering.

3.1. GEM: Grounding Everything Module

Self-Self Attention. We first review the concept of value-
value attention, showing that, while it allows connecting
features from the same semantic region, the same proper-
ties can be observed for key-key or query-query projections.
CLIPSurgery [17] defines value-value attention as:

Attng, = softmax(V - V1), O, = Attng, -V (1)

with V = 2W,, € R**?_ where z are the n patch/token out-
puts by a ViT layer, each of dimension d, W, is the learned
value weight matrix of the original ViT backbone, and O,
is the output of the value-value surgery block.

As a first step, we replace the value projection by ei-
ther the query or the key projection taken from the original
pathway. We, therefore, introduce a generalized self-self at-
tention Attng, as extension of the value-value attention as:

Attngs = softmax(zWpro, - (prmj)T) ?)

with z € R"*? again representing the patch/token outputs
by a ViT layer, and W,,,.,; being any projection matrix of the
respective ViT layer Wy, € {W,, Wy, W, }. We evaluate
the performance for each projection in Table 1 on the Pas-
cal VOC and Pascal Context datasets (for evaluation details
see Section 4.1 and see Section 6 evaluation on more back-
bones). The query-query and key-key attentions both lead
to the same or improved performance compared to value-
value attention. Compared to regular self-attention (query-
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key attention) as used in the CLIP baseline, any self-self at-
tention improves performances significantly. In Section 3.2,
we discuss that this can be attributed to self-self attention in-
creasing the similarity of already similar patch tokens, thus
leading to cluster formation.

Normalization and Adaptive Temperature. In the self-
self attention setting, projected tokens with larger norms
disproportionately influence other tokens, regardless of
their similarity with other visual tokens. We therefore pro-
pose an L?-normalization for each projected token before
computing self-self attention. We can further guide the clus-
ter formation by introducing a temperature 7 in the softmax
formulation of the self-self attention Attng, as:

exp (a; - af /7)

>yexp (ai - af /7)

where, - is the dot product operation. Assuming a zero-shot
setting without access to labeled training or validation data,
we aim to fix the temperature 7 for the self-self attention
so that it performs well without requiring hyperparameter
tuning. Therefore, we propose an adaptive temperature us-
ing the average norm of the visual tokens before projection
times the temperature originally used to train ViT as

 n-Vd
RIEAIPY

where n is the number of visual tokens and d the dimension
of tokens, respectively. This combination of normalization
and adaptive temperature improves the group formation and
thus the localization as shown in Table 1. Further details on
temperature ablation are available in Section 4.3.

softmax(a, ) =

3)

T

“)

Iterative Self-Self Attention. We propose to iteratively
apply the proposed normalized self-self attention to facil-
itate the gradual refinement of the cluster formation of se-
mantically related visual tokens. More formally, given input
visual tokens denoted as x € R"*¢ and a projection matrix
Wyroj € R4, the k-th iteration of our iterative self-self
attention is described as:

0 TWproj

2 e T
[ Wopros]l2
p* = softmax(p" =" (pFTH)T, 1) P (5)

k pr

1512

p

where p is the is the normalized projection input to the
self-self attention operation, p* is the output of the k-st ap-
plication of the self-self attention as described in Eq. 5, mul-
tiplied with the output of the k—1th iteration and divided by
its norm. After K iterations of self-self attention, the out-
put (for the W,,,,; projection), denoted Oy, is obtained by

Projection Norm.+Temp. VOC Context
CLIP - 10.4 7.7
V-v 41.9 30.5
k-k 439 31.0
q-q 43.8 30.8
gkv 43.1 30.7
V-V v 444 31.9
k-k v 44.8 32.0
a9 Ve 447 31.5
gkv v 45.1 323

Table 1. mloU for v-v, k-k, and g-q attention and gkv ensemble
on Pascal VOC and PascalContext with and without L2-Norm and
adaptive temperature (see Table 6 in the SM for more backbones).

applying the assignment to the values since they are trained
to carry semantic information:

Ogs = softmax(pK . (pK)T, TV (6)

Practically, we found that one additional iteration, (i.e., ap-
plying the self-self attentions once to the projected tokens
as in Eq. 5 and once on the values V' as in Eq. 6) is suffi-
cient for most cases. We therefore, fix the iterations to one
throughout the paper and provide an ablation in Section 4.3.

gkv-Ensemble. We finally ensemble the iterative self-self
attention applied to the query, key, and value projections to
integrate the information brought by the different projec-
tions. The output of the gkv-ensemble attention is:

qu + Okk: + Ov'u

quv = 3 (7)

where Oyq, Ok, Oy, are the outputs based on the projec-
tion matrices Wy, Wy, W,,. Table 1 shows the improvement
by ensembling over the three normalized projections.

3.2. Self-Self Attention for Clustering

Practically, self-self attention calculates the similarity be-
tween every pair of visual tokens. These similarities are
then employed in the transformer as weights in a weighted
sum operation used to update the tokens. As a result, to-
kens are updated with a weighted sum of tokens, with more
weight on more similar tokens, converging to a respective
mean representation corresponding to a cluster center. To
illustrate this effect, we conducted a simulation based on
a set of 20 d-dimensional random Gaussian vectors rep-
resenting the input tokens x and a random linear projec-
tion as Wp,,;. We iteratively apply the proposed self-self-
attention including normalization and with different tem-
perature parameters on the 20 vectors. As shown in Fig-
ure 3, this process leads to a clustering of the 20 vectors us-
ing self-self attention. Moreover, with higher temperature,
as well as with more iterations, there are fewer and larger
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7=0.07

7=0.10 7=0.13

Figure 3. Evaluation of self-self attention for different numbers of
iterations and temperature on a set of 20 random vectors (dim=5).
As the number of iterations / temperature 7 increase, self-self at-
tention forms larger clusters.

7=0.18

clusters, while fewer iterations and a lower temperatures
enforce more and smaller clusters. In practical scenarios,
complex datasets with many classes per image might benefit
from a less clustered feature space, consequently requiring
fewer iterations. While we do not need to backpropagate
through the clustering, as we perform no training, we want
to remark that it is indeed differentiable, paving the way for
research on fine-tuning GEM models. Moreover, the illus-
trated random-projection based clustering process (Eq. 5) is
relevant for the field of differentiable relaxations [2, 27, 28],
where other differentiable clustering algorithms, e.g., based
on spanning-forests [32], have been proposed.

We can further connect this behavior to the Lipschitz
constant of the used projections to the self-self attention’s
grouping effect. More formally, in finite dimension, any lin-
ear operator is Lipschitz continuous and, under the /5 norm,
its Lipschitz constant is given by the spectral norm of the
weight matrix—i.e., the largest singular value of the weight
matrix. Let Wp,,; € R%*92 denote the weight matrix of
the linear projection and C' its Lipschitz constant, we have:

Yy, 29 € RM, |29 Wiy — 21 Wprojl|2 < C|lza — 21]]2

o LWl -
llzll0  [|2]|2
For the self-self attention to reinforce the similarity of to-
kens already close to each other (i.e., representing the same
object), we need the self-self attention projection to pull
these tokens closer to each other. In other words, the linear
projection must be a contraction, i.e., C' < 1. Conversely, a
Lipschitz constant that is too small will result in unrelated
tokens being mixed together. For the here analyzed models,
we validated the Lipschitz constant across all projections as
follows: Clyqiue = 0.51 £0.073, Ciey = 0.63 £ 0.091 and

Cguery = 0.66 £ 0.104. Moreover, the similarity between
tokens (i.e., grouping) in the self-self attention is further en-
forced by doing multiple (per head) parallel projections, all
with a Lipschitz constant < 1, as seen in value-value, query-
query, or key-key projections. Hence, tokens that are similar
under all the projections will share information.

For a comparison of the proposed self-self attention to
Kmeans, we refer to Table 8 in the SM.

4. Evaluation
4.1. Setup

Datasets. PascalVOC [9] provides segmentation masks
for 20 classes in natural images, focusing on common ob-
jects like cats, dogs, cars, and airplanes. An image con-
tains 1.5 classes on average. Following previous works [17],
[42], we evaluate on the validation set. Pascal Context [25]
extends PascalVOC to 59 classes, supplemented by a back-
ground class. Compared to PascalVOC, it provides dense
annotations for the whole scene. We evaluate on the test
set, comprising 5 104 images with an average of 4.8 classes
per image. ADE20K [41] is a scene parsing dataset with
150 fine-grained classes. We use its validation set compris-
ing 2000 images with an average of 9.9 classes per image.
Openlmages-V7 [ 1] provides annotations for a large set of
images with a widely diverse spectrum of objects and real-
world scenarios. For the following evaluation, we leverage
the point-wise annotations of the validation set, with 36 702
images featuring 5 827 distinct class labels. For each ob-
ject, a set of positive and negative point annotations is pro-
vided. For this evaluation, for each image, we consider only
classes present in the image.

Implementation. For all experiments, we use the orig-
inal pretrained weights of the respective vision-language
models as provided by their authors, namely CLIP [29],
OpenCLIP [6], an open-source replication of CLIP, and
BLIP [15] and MetaCLIP [35]. We apply the GEM archi-
tecture with the proposed normalization and adaptive tem-
perature and one iteration for all datasets and models. We
compute a dense semantic segmentation prediction for each
image as follows: For each patch we compute the cosine
similarity between the patch tokens of the vision encoder
and the text embedding of each dataset class name. We use
the following prompt as input for the text encoder: “a photo
of a {class name}”. Finally, we upsample the segmentation
predictions to the input image size via bilinear interpola-
tion. If the input image is larger than the one used during
the model training, we adapt the learned positional embed-
dings via bicubic interpolation. Note that we do not per-
Jorm any retraining nor fine-tuning of the vision-language
model, showing the possibility to localize queries with mod-
els trained on image-level only and without the need for any
localization information during training or fine-tuning.
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Training Dataset Loc. | Loc. mloU
Method Encoder Model Pretraining iy Annotation | anno. | FT | VOC Context ADE
SPNet [34] ResNet101 scratch COCO, VOC, Context SM v v 15.67 4.07 -
ZS3Net [3] ResNet101 scratch VOC, Context SM v Vo177t Tt -
MaskCLIP®) [7] ViT-B/16 CLIP COCO SM v v - 45.9 23.7
OpenSeg [10] ENet-B7+FPN ALIGN COCO, Loc. Narr IT, UM v v 72.2 48.2 24.8
CLIP-ES [19] ResNet101 CLIP COCO-Stuff-171 1C v v 75.0 - -
OVSeg [18] ViT-B/16 CLIP COCO-Stuff-171 UM v v 94.5 55.7 29.6
ViL-Seg [20] ViT-B/16 scratch GCC IT X v | 3447 163 -
GroupViT [36] ViT-S/16 scratch GCC+YFCC IT X v 52.3 22.4 9.2
SegCLIP [24] ViT-B/16 CLIP CC, COCOcap IT, ICap X v 52.6 24.7 8.7
OVSegmentor [37] ViT-B/16 DINO GCC 1T X v 53.8 20.4 5.6
. WIT-400M

PACL [26] ViT-B/16 CLIP +CCI2M., YECC 1T X v 72.3 50.1 314
CLIP [29] ViT-B/16 CLIP WIT-400M IT X X 10.4 7.7 1.7
MaskCLIP(?) [8] ViT-B/16 scratch YFCC IT X X - 17.2 10.2
MaskCLIP [42] ViT-B/16 CLIP WIT-400M IT X X - 25.5 -
MaskCLIP* [42] ViT-B/16 CLIP WIT-400M IT X X 28.6 23.8 10.2
CLIP Surgery [17] ViT-B/16 CLIP WIT-400M IT X X - 29.3 -
CLIP Surgery* [17] ViT-B/16 CLIP WIT-400M IT X X 41.2 30.5 129
GEM (our) ViT-B/16 CLIP WIT-400M IT X X 46.2 32.6 15.7
GEM (our) ViT-B/16 MetaCLIP metaclip-400M IT X X 46.8 34.5 17.1

Table 2. Comparison on zero-shot semantic segmentation: Models marked with ' are evaluated under relaxed constraints, specifically on
a subset of unseen classes. * indicates our evaluation. We use the following abbreviations: COCO: COC02017, GCC: Google Conceptual
Captions 12M, YFCC: YFCC15M, CC: Conceptual Captions, COCOCap: COCO Captions. SM: segmentation mask, IT: image-text, ICap:

image caption, UM: unlabeled mask, IC: image classes.

Evaluation. Zero-shot segmentation entails the ability of
a model to segment objects in an image without prior train-
ing on the evaluated classes. Following common prac-
tice [24, 36, 37], we evaluate zero-shot semantic segmen-
tation by the mean Intersection over Union (mloU) for
PascalVOC, PascalContext and ADE20K. Following [36],
we resize each input image to have a shorter-side length
of 448. For PascalVOC we predict only the foreground
classes and get the background by thresholding the softmax-
normalized-similarity between the patch tokens and the text
embedding of each class name (using a fixed threshold of
0.85). For Pascal Context, we follow common practice and
evaluate only on the 59 foreground classes. ADE20K pro-
vides a dense annotation and therefore does not consider
background. For zero-shot point prediction, we leverage
the Openlmages-V7 dataset. For each positive class in the
image, we scale the prediction between 0 and 1 and use a
fixed threshold of 0.5 to obtain the predicted mask. We fol-
low the dataset guidelines [1] and compute the IoU over
the sets of positive and negative ground-truth points for
all classes in the respective image and average across the
dataset, denoted p-mloU.

4.2. Comparison to State-of-the-Art

Zero-Shot Semantic Segmentation. We first compare
the proposed approach for the task of zero-shot semantic
segmentation. We consider three groups of state-of-the-art
methods in open-vocabulary segmentation: First, we con-

sider methods trained or fine-tuned with some form of label-
ing information, e.g., hand-annotated segmentation masks,
such as OpenSeg [10], CLIP-RIS [39], MaskCLIP®) [7],
and OVSeg [18]. Note that most of those methods are
trained on similar domains and vocabulary as the test
datasets. Second, we report the performance of models
trained explicitly for segmentation on image-caption pair
annotations, i.e., GroupViT [36], OVSegmentor [37], Seg-
CLIP [24], and ViL-Seg [20]. While those methods do
not use location annotation, they still fine-tune existing
backbones for the task of localization. We also consider
PACL [26] in this group, which trains a decoder on top of
CLIP using a loss designed for patch grouping. Finally, we
directly compare against methods that perform training-free
zero-shot segmentation, namely MaskCLIP, MaskCLIP(®),
and CLIPSurgery. We report the mloU in Table 2. The
proposed method consistently outperforms all training-free
approaches. Further, training-free methods are able to out-
perform vision-language models fine-tuned specifically for
localization on the more complex dataset PascalContext and
ADE20K surpassing all other models except PACL.

Zero-Shot Point Prediction. To evaluate the true open-
vocabulary qualities of the proposed method, we compare
our method on the OpenlmageV7 dataset with a vocabu-
lary of almost 6k label classes to the strongest available
trained or fine-tuned semantic segmentation models from
Table 2, namely OVSeg, SegCLIP, and GroupViT, as well
as to all training-free methods. Table 3 reports the p-mloU
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Method Loc. anno. Loc. FT p-mIoU | fps

OVSeg* [18] v v 22.5 1.41

SegCLIP* [24] v X 32.1 21.39
GroupViT* [36] v X 36.5 24.61
CLIP [29] X X 27.6 42.10
MaskCLIP* [42] X X 42.0 42.43
CLIPSurgery* [17] X X 47.8 38.47
GEM-CLIP (our) x x 509 | 37.24
GEM-MetaCLIP (our) X X 51.9 37.24
GroundingSAM* [14, 22] v v 533 0.59
GEM-SAM-CLIP (our) 4 X 534 0.45
GEM-SAM-MetaCLIP (our) v X 55.2 0.45

Table 3. Comparison on zero-shot point prediction: We choose
the best performing available approaches for ADE20K from Ta-
ble 2 and apply them on the OpenlmagesV7 dataset. We further
report inference speed as fps for each model on one Nvidia A6000.

and the inference speed for all methods. First, we ob-
serve that training-free methods, i.e., GEM, CLIPSurgery,
and MaskCLIP, provide a substantially better performance
than trained or fine-tuned methods supporting the intuition
that fine-tuning on a smaller, but cleaner dataset reduces
the vocabulary leading to lower performance on datasets
with large vocabulary like OpenlmagesV7 (see the SM for
qualitative comparisons). For completeness, we also report
numbers for the recently released GroundingSAM architec-
ture [14, 22], which uses labeled bounding boxes and class-
agnostic masks during training. To directly compare, we
use the output of GEM to label masks generated by prompt-
ing SAM with a grid of points. Even in this case, the our
proposed training-free method outperforms the fine-tuned
GroundingSAM architecture.

4.3. Ablation

Temperature. To assess the performance of the proposed
components, we first regard the impact of normalization
and adaptive temperature. To this end, we compute the
proposed adaptive temperature following in Section 3, i.e.,
T = % and report the segmentation performance for
multiples of this temperature for ViT-B/16 on two datasets,
Pascal VOC and PascalContext in Figure 4. We observe that,
the combination of normalization and temperature achieves
the highest mloU consistently across both datasets More-
over, it achieved this performance consistently with the pro-
posed temperature (multiplication factor equal to 1), indi-
cating the effectiveness of our proposed heuristic as well as
the robustness and generalizability as it allows to adapt to
the specific characteristics of the input vector.

Iterations. Second we consider the impact of the num-
ber of iterations on the performance of the system. To
this end, we evaluate PascalVOC and PascalContext for
K = {0,1,2,3} iterations and also compare to the per-
formance of CLIPSurgery in Table 4. Overall, we observe
that more iterations, namely two, slightly improve perfor-
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o % Norm 2 Adaptive Temp.
10 X Norm X Adaptive Temp.

o % Norm [ Adaptive Temp.
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0,001 0,01 0,1 1 10 100
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Figure 4. Evaluation of localization performance for CLIP ViT-
B/16 (left) for the PascalVOC and PascalContext dataset with and
without normalization and adaptive temperature. The proposed
temperature provides best results in both settings.

CS GEM
iter 0 0 1 2 3
vOoC 412 | 451 455 462 456

Context | 30.5 | 315 326 319 31.1

Table 4. Influence of iterations for the self-self-attention in the
GEM architecture. More iterations are better for fewer classes per
image, less iterations work better for more classes.

mance for VOC, a dataset with few classes per image, and
that fewer iterations work better for Context, a dataset with
more classes per image. While the number of iterations can
be used as a tunable hyperparameter, we fixed it throughout
the paper to one to allow for a real zero-shot scenario.

4.4. Architecture and Model Size

To explore the generalization abilities of GEM, we ex-
tend our analysis beyond the ViT-B/16 model to ViT-B/32
and ViT-L/14 as well as to other vision-language back-
bones, namely OpenCLIP [30], an open-source replication
of CLIP. We further investigate the generality on architec-
tures similar to CLIP, vi7., BLIP [15], which is trained with
a multi-task objective, and MetaCLIP [35], the currently
best-performing zero-shot classification model. Table 5
shows the results for the different models and backbones.
It shows that the GEM method consistently improves local-
ization performance across all model sizes. As expected, for
a fixed ViT-B size, increasing the patch size from 16 to 32
reduces the performance slightly. We further observe that
larger ViT-L encoders do not yield better localization per-
formance. Specifically, GEM-ViT-B/16 consistently out-
performs its larger counterparts GEM-ViT-L/14. Finally,
BLIP, as the only model trained with multi-objectives, tends
to perform worse in localization than models trained solely
with an image-text contrastive loss.

3834



0,15

1

0,00

0,15

0,10
0,05
0,00
-0,05
-0,10

CLIP cs GEM GEM GEM
(1iter.) (2iter)  (3iter.)

CLIP cs

(a) Patch-patch similarity

GEM

(1iter.)

(b) Object-Background Contrast

GEM
(2iter.)

GEM
(3iter.)

CLIP cs GEM

(1iter.)

GEM
(2iter.)

GEM
(3iter.)

(c) Text-Object Contrast

Figure 5. Analysis of localization properties of CLIP, CLIPSurgery, and GEM. Each metric is computed on the training set of PascalVOC.

Backbone Model VOC  Context V7
CLIP 46.2 32.6 50.9
ViT-B/16 | OpenCLIP | 43.1 31.7 499
BLIP 42.8 23.5 45.2
MetaCLIP | 46.8 34.5 51.9
CLIP 40.5 27.0 46.6

ViT-B/32 | OpenCLIP | 39.3 23.9 45.5
MetaCLIP | 38.2 28.2 46.7
CLIP 44.6 28.6 46.3
. OpenCLIP | 40.0 27.5 42.4
VIT-L/14 BLIP 32.1 214 449
MetaCLIP | 45.7 26.9 40.9

Table 5. Evaluation of the GEM architecture on various pre-
trained vision-language backbones showing better performance
for smaller patch size (ViT-B/16 compared to ViT-B/32) and ar-
chitecture (ViT-B compared to ViT-L).

4.5. Analysis of Localization Properties

In Figure 5, we assess the factors contributing to the local-
ization performance of the proposed method. We assume
that for good localization in vision-language models, two
essential properties must be fulfilled: visual distinctiveness
as the meaningful grouping of visual feature representa-
tions, and vision-language alignment as the alignment of
these groups with the textual descriptions encoded by the
language model. To capture the visual distinctiveness, we
consider two metrics: first, (a) patch-patch similarity, the
similarity among patches within each layer, as well as, sec-
ond, (b) object-background contrast, the contrast between
foreground and background patch tokens. For this metric,
we leverage the segmentation masks of the training set of
the Pascal VOC dataset [9]. For vision-language alignment,
(c), we measure the contrast between the similarity of the
text embedding, the text-[EOS] token, and the foreground
patch embeddings, and the similarity of the text-[EOS] to-
ken and the background patches.

We see an increase in patch-patch similarity (a) from
CLIP to CLIPSurgery most likely due to the clustering
induced by the self-self attention and the slight decrease
from CLIPSurgery to GEM due to the added normalization
and temperature. This is recovered by the higher object-
background contrast (b) of GEM over CLIPSurgery and
CLIP, pointing to the effective clustering of visual tokens
and their ability to distinguish between distinct objects. Fi-

Original Prompt
Human bod
—

Adapted Prompt
Vehicle body
i

L
Vehicle registration plate|

Figure 6. Failure cases and adapted prompts from [1].

nally, the analysis of text-object similarity demonstrates im-
proved alignment between visual tokens and text embed-
dings, enhancing vision-language integration.

4.6. Analysis of Failure Cases

Finally, we review some failure cases in Figure 6 (see SM
for more examples). For the first image, when prompted
with “Human body”, the model segments both the human
and the car body. For the second image, prompted with
“Vehicle registration plate”, the model focuses on both the
car and registration plate. This effect can be mitigated by
decoupling the emphasized word, as shown for the adapted
prompts in Figure 6. We attribute this failure to the text
encoder, paving the way for future research.

5. Conclusion

In this work, we proposed GEM, the Grounding Every-
thing Module, which leverages latent localization ability of
pretrained vision-language models, enabling SOTA open-
vocabulary segmentation without the need for re-training
or fine-tuning. GEM utilizes a novel self-self attention
pipeline to extract localization information from VLMs.
Despite being zero-shot, i.e., without training and hyper-
parameter tuning, GEM improves the SOTA across all eval-
uated datasets for training-free methods, and improves the
SOTA on OpenlmagesV7 even across training methods.
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