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Figure 1. LEDITS++ facilitates versatile image-to-image editing. Several complex cases are available now.

Abstract

Text-to-image diffusion models have recently received in-

creasing interest for their astonishing ability to produce

high-fidelity images from solely text inputs. Subsequent

research efforts aim to exploit and apply their capabili-

ties to real image editing. However, existing image-to-

image methods are often inefficient, imprecise, and of lim-

ited versatility. They either require time-consuming fine-

tuning, deviate unnecessarily strongly from the input im-

age, and/or lack support for multiple, simultaneous edits.

To address these issues, we introduce LEDITS++, an effi-

cient yet versatile and precise textual image manipulation

technique. LEDITS++’s novel inversion approach requires

no tuning nor optimization and produces high-fidelity re-

sults with a few diffusion steps. Second, our methodology

supports multiple simultaneous edits and is architecture-

agnostic. Third, we use a novel implicit masking technique

that limits changes to relevant image regions. We propose

the novel TEdBench++ benchmark as part of our exhaus-

tive evaluation. Our results demonstrate the capabilities of

LEDITS++ and its improvements over previous methods.

1. Introduction

Text-to-image diffusion models (DM) have garnered recog-

nition for their ability to generate high-quality images from

textual descriptions. A growing body of research has re-

cently been dedicated to utilizing these models for manip-

ulating real images. However, several barriers prevent

many real-world applications of diffusion-based image edit-

ing. Current methods often entail computationally expen-

sive model tuning or other optimization, presenting prac-

tical challenges [6, 18, 28, 30, 44]. Additionally, existing

techniques have the proclivity to induce profound changes

to the original image [17, 26], often resulting in completely

different images. Lastly, all these approaches are inherently

constrained when editing multiple (arbitrary) concepts si-

multaneously. We tackle these problems by introducing

LEDITS++1, a diffusion-based image editing technique ad-

dressing these limitations.

LEDITS++2 offers a streamlined approach for textual

image editing, eliminating the need for extensive parameter

tuning. To this end, we derive image inversion for a more ef-

ficient diffusion sampling algorithm to a) drastically reduce

computational resources and b) guarantee perfect image re-

construction. Thus, we overcome computational obstacles

and avoid changes in the edited image in the first place. Fur-

thermore, we use a novel implicit masking approach to se-

mantically ground each edit instruction to its relevant image

region. This further optimizes changes to the image by re-

taining the overall image composition and object identity.

*Equal contribution †Partially as research intern at Adobe
1LEDITS++ stands for Limitless Edits with sde-dpm-solver++.
2https://huggingface.co/spaces/leditsplusplus/project

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Additionally, LEDITS++ is the only method to date to fa-

cilitate easy and versatile image editing by supporting mul-

tiple simultaneous instructions without causing undue inter-

ference. Finally, its lightweight architecture-agnostic nature

ensures compatibility with both latent and pixel-based dif-

fusion models, providing high accessibility.

In this work, we establish the methodical benefits of

LEDITS++ and demonstrate that this intuitive, lightweight

approach offers sophisticated semantic control for image

editing. Specifically, we contribute by (i) devising a for-

mal definition of LEDITS++ while (ii) deriving perfect in-

version for a more efficient diffusion sampling method, (iii)

qualitatively and empirically demonstrating its efficiency,

versatility, and precision, (iv) providing an exhaustive em-

pirical comparison to concurrent works with automatic and

human user metrics, and thereby (v) introducing Textual

Editing Benchmark++ (TEdBench++), a more holistic and

coherent testbed for evaluating textual image manipulation.

2. Background

Recently, large-scale, text-guided DMs have enabled versa-

tile applications in image generation [3, 33, 37]. Especially

latent diffusion models [31, 34] have gained attention for

their computational efficiency. Below, we discuss related

work for efficient, versatile image manipulation with DMs.

Diffusion Sampling. Generating outputs with DMs re-

quires multiple iterative denoising steps that constitute the

main bottleneck at inference. Commonly used sampling

methods such as DDPM [15] or DDIM [42] require tens or

hundreds of steps to produce high-quality samples. Conse-

quently, numerous works have been dedicated to speeding

up the sampling process without loss in quality. Distillation

efforts progressively reduce the number of required steps

through further training [25, 27]. Other works focus on

improving the sampling itself, e.g. using high-order ODE-

solvers [22, 23, 46]. Such solvers can be readily combined

with pre-trained DMs at inference to lower the number of

denoising steps. With LEDITS++, we derive perfect image

inversion with the DPM-Solver++, allowing image editing

in as few as 20 total steps.

Semantic Control during Diffusion. While text-to-

image DMs generate new, astonishing images, fine-grained

control over the generative process remains challenging.

Minor changes to the text prompt lead to entirely differ-

ent outputs. Wu et al. [45] studied concept disentanglement

using linear combinations of text embeddings to gain se-

mantic control. Methods like Prompt-to-Prompt [14] and

other works [8, 30] utilize the DM’s attention layers to at-

tribute pixels to tokens from the text prompt. Dedicated op-

erations on the attention maps enable more control over the

generated images. Other works have focused on the noise

estimates of DMs [5, 20] providing semantic control over

the generation process. With LEDITS++, we now enable

fine-grained semantic control for manipulating real images,

going beyond purely generative applications.

Real Image Editing. Since DMs’ rise in popularity

for text-to-image generation, they have also been explored

for (real) image-to-image editing. As a first, simple ap-

proach, SDEdit added noise to the image for an interme-

diate step in the diffusion process [26]. While lightweight,

the resulting image diverges substantially from the input as

it is (partially) regenerated. Inpainting allows to keep the

change small by having a user provide additional masks to

restrict changes to certain image regions [2, 29]. Yet, user

masks are costly or often simply unavailable. Other works

have thus explored semantically grounded approaches using

cross-attention instead to better control image manipulation

[7, 28, 30]. In contrast, LEDITS++ leverages both attention-

and noise-based masking to obtain fine-grained masks, en-

abling strong semantic control over real images.

Another important aspect of image manipulation meth-

ods is the required tuning and overall runtime. Instruct-

Pix2Pix continues training a DM at scale to enable image

editing capabilities [6]. Finetuning instead on each indi-

vidual input to constrain the generation on the real image

has shown helpful [18, 44] but not computationally effi-

cient. Consequently, recent works have largely relied on

inverting the deterministic DDIM sampling process [42] to

save computational resources. DDIM inversion identifies

an initial noise vector that results in the input image when

denoised again. However, faithful reconstructions are only

obtained in the limit of small steps, thus requiring large

numbers of inversion steps. Moreover, small errors will still

incur at each timestep, often accumulating into meaning-

ful deviations from the input, requiring costly error correc-

tion through optimization [28, 30]. Recently, Huberman-

Spiegelglas et al. proposed an inversion technique [17] for

the DDPM sampler [15] to address the limitations of DDIM

inversion. LEDITS++ provides the same guarantees of per-

fect inversion with even further reduced runtime alongside

an edit-friendly latent space, enabling more versatility.

3. Image Editing with Text-to-Image Models

Before devising the methodology of LEDITS++, let us first

motivate the desired features and use cases. Specifically,

we aim for efficiency, versatility, and precision. The goal

is to provide a method that enables a fast exploratory work-

flow for image editing in which a user can iteratively in-

teract with the model and explore various edits. Conse-

quently, LEDITS++ produces outputs quickly with no tun-

ing or optimization to not disrupt the creative process. Fur-

ther, arbitrary editing instructions and combinations thereof

are supported to facilitate a wide range of image manip-

ulations (e.g., complex multi-editing). Lastly, we provide

precise and sophisticated semantic control over the image

editing. Each of the (potentially multiple) edit instruc-
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tions can be steered individually, and changes are automati-

cally restricted to relevant image regions. Importantly, with

LEDITS++ we prioritize compositional robustness.

3.1. Guided Diffusion Models

Let us first define some general background for diffusion

models. DMs iteratively denoise a Gaussian distributed

variable to produce samples of a learned data distribution.

Let’s consider a diffusion process that gradually turns an

image x0 into Gaussian noise.

xt =
p

1− �txt−1 +
p

�tnt, t = 1, ..., T (1)

where nt are iid normal distributed vectors and �t a variance

schedule. The diffusion process is equivalently expressed as

xt =
√
µ̄tx0 +

√
1− µ̄t/t (2)

where µt = 1−�t, µ̄t = Π
t
s=1µs and /t ∼ N (0, I). Impor-

tantly, all /t are not statistically independent. Instead, con-

secutive pairs /t, /t−1 are strongly dependent, which will

be relevant later. To generate an (new) image x̂0 the reverse

diffusion process starts from random noise xT ∼ N (0, I)
which can be iteratively denoised as

xt−1 = µ̂t(xt) + �tzt, t = T, ..., 1 (3)

Here zt are iid standard normal vectors, and common vari-

ance schedulers �t can be expressed in the general form

�t = ;�t
1− µ̄t−1

1− µ̄t

where ; ∈ [0, 1]. In this formulation, ; = 0 corresponds

to the deterministic DDIM [42] and ; = 1 to the DDPM

scheme [15]. Lastly, in theses cases, we have µ̂t(xt) =

√
µ̄t−1

xt −
√
1− µ̄t/̂θ(xt)√
µ̄t

+
q

1− µ̄t−1 − �2
t /̂θ(xt)

Here /̂θ(xt) is an estimate of /t produced by our neural

network DM with learned parameters 7, commonly imple-

mented as a U-Net [35]. For text-to-image generation, the

model is conditioned on a text prompt p to produce images

faithful to that prompt. The DM is trained to produce the

noise estimate /̂θ(xt) needed for iteratively sampling x̂0

(Eq. 3). For text-conditioned DMs, /̂θ is calculated using

specific guidance techniques.

Most DMs rely on classifier-free guidance [16], a condi-

tioning method using a purely generative diffusion model,

eliminating the need for an additional classifier. During

training, the text conditioning cp is randomly dropped with

a fixed probability, resulting in a joint model for uncon-

ditional and conditional objectives. During inference, the

score estimates for the /-prediction are adjusted so that:

/̂θ(xt, cp) := /̂θ(xt) + sg(/̂θ(xt, cp)− /̂θ(xt)) (4)

with guidance scale sg and /̂θ defining the noise esti-

mate with parameters 7. Intuitively, the unconditioned /-

prediction is pushed in the direction of the conditioned one,

with sg determining the extent of the adjustment.

3.2. LEDITS++

With the fundamentals established, the methodology of

LEDITS++ can now be broken down into three components:

(1) efficient image inversion, (2) versatile textual editing,

and (3) semantic grounding of image changes.

Component 1: Perfect Inversion. Utilizing text-to-

image models for editing real images requires condition-

ing the generation on the input image. Recent works have

largely relied on inverting the sampling process to identify

xT that will be denoised to the input image x0 [28, 30].

Inverting the DDPM scheduler is generally preferred over

DDIM inversion since the former can be achieved in fewer

timesteps and with no reconstruction error [17].

However, there exist more efficient schemes than DDPM

for sampling DMs that greatly reduce the required number

of steps and consequently DM evaluations. We here pro-

pose a more efficient inversion method by deriving the de-

sired inversion properties for such a scheme. As demon-

strated by Song et al.[43], DDPM can be viewed as a first-

order stochastic differential equation (SDE) solver when

formulating the reverse diffusion process as an SDE. This

SDE can be solved more efficiently—in fewer steps—

using a higher-order differential equation solver, here dpm-

solver++ [23]. The reverse diffusion process from Eq. 3 for

the second-order sde-dpm-solver++ can be written as

xt−1 = µ̂t(xt, xt+1) + �tzt, t = T, ..., 1 (5)

where now

�t =
p

1− µ̄t−1

p

1− e−2ht−1

and higher-order µ̂t depends now on x from two timesteps,

xt and xt+1. Such that µ̂t(xt, xt+1) =

√
1− µ̄t−1√
1− µ̄t

e−ht−1xt +
√
µ̄t−1

�

1− e−2ht−1

�

/̂θ(xt)

+ 0.5
√
µ̄t−1

�

1− e−2ht−1

� −ht

ht−1

�

/̂θ(xt+1)− /̂θ(xt)
�

with

ht =
ln(

√
µ̄t)

ln(
√
1− µ̄t)

−
ln(

√
µ̄t+1)

ln(
√
1− µ̄t+1)

For the detailed derivation of the solver and proof of faster

convergence, we refer the reader to the relevant literature

[22, 23]. Based on the above, we now devise our inversion

process. Given an input image x0 we construct an auxiliary

reconstruction sequence of noise images x1, ..., xT as

xt =
√
µ̄tx0 +

√
1− µ̄t/̃t (6)
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where /̃t ∼ N (0, I). Contrary to Eq. 2, the /̃t are now statis-

tically independent, which is a desirable property for image

editing [17]. Lastly, the respective zt for the inversion can

be derived from Eq. 5 as

zt =
xt−1 − µ̂t(xt, xt+1)

�t
, t = T, .., 1 (7)

with µ̂ and �t as defined above. We base our implemen-

tation on the multistep variant of sde-dpm-solver++, which

only requires one evaluation of the DM at each diffusion

timestep by reusing the estimates from the previous step.

The number of timesteps can be reduced further by stop-

ping the inversion at an intermediate step t < T and start-

ing the generation at that step. Empirically, we observed

that t ∈ [0.9T, 0.8T ] usually produces edits of the same fi-

delity as t = T , supporting observations in previous work

[17, 26] that earlier timesteps are less relevant to the edit.

Component 2: Textual Editing. After creating our re-

construction sequence x1, ..., xT and calculating the respec-

tive zt, we now edit the image by manipulating the noise es-

timate /̂θ based on a set of edit instructions {ei}i∈I . We de-

vise a dedicated guidance term for each concept ei based on

conditioned and unconditioned estimates. Let us formally

define LEDITS++’s guidance by starting with a single edit-

ing prompt e. We compute

/̂θ(xt, ce) := /̂θ(xt) + �(xt, ce) (8)

with guidance term �. Consequently, setting � = 0 will re-

construct the input image x0. We construct � to push the

unconditioned score estimate /̂θ(xt)—i.e. the input image

reconstruction—away from/towards the edit concept esti-

mate /̂θ(xt, ce), depending on the guidance direction:

�(xt, ce) = �( ; se,�) (xt, ce) (9)

where � applies an edit guidance scale se element-wise, and

 depends on the edit direction:  (xt, ce) =

(

/̂θ(xt, ce)− /̂θ(xt) if pos. guidance

−
�

/̂θ(xt, ce)− /̂θ(xt)
�

if neg. guidance
(10)

Thus, changing the guidance direction is reflected by the

direction between /̂θ(xt,ce) and /̂θ(xt). The term � iden-

tifies those dimensions of the image and respective /̂θ that

are relevant to a prompt e. Consequently, � returns 0 for all

irrelevant dimensions and a scaling factor se for the others.

We describe the construction of � in detail below. Larger

se will increase the effect of the edit, and � ∈ (0, 1) re-

flects the percentage of the pixels selected as relevant by �.

Notably, for a single concept e and uniform � = se, Eq. 8

generalizes to the classifier-free guidance term in Eq. 4.

For multiple ei, we calculate �it as described above, with

each defining their own hyperparameter values �i, sie. The

sum of all �it results in

�̂t(xt, cei) =
X

i∈I
�it(xt, cei) (11)

Component 3: Semantic Grounding. The masking

term � (Eq. 9) is the intersection (pointwise product) of bi-

nary masks M1 and M2 combined with scaling factor se:

�( ; sei ,�) = seiM
1
i M

2
i (12)

where M1
i is a binary mask generated from the U-Net’s

cross-attention layers and M2
i is a binary mask derived from

the noise estimate. Intuitively, each mask is an importance

map, where M1
i is more strongly grounded than M2

i , but of

significantly coarser granularity. Therefore, the intersection

of the two yields a mask both focused on relevant image

regions and of fine granularity. With LEDITS++, we empir-

ically demonstrate that these maps can also capture regions

of an image relevant to an editing concept that is not al-

ready present. Specifically for multiple edits, calculating a

dedicated mask for each edit prompt ensures that the cor-

responding guidance terms remain largely isolated, limiting

interference between them.

Formally, at each time step t, a U-Net forward pass with

editing prompt ei is performed to generate cross-attention

maps for each token of the editing prompt. All cross-

attention maps of the smallest resolution (e.g., 16×16 for

SD) are averaged over all heads and layers, and the re-

sulting maps are summed over all editing tokens, result-

ing in a single map Aei
t ∈ R16×16. Importantly, we utilize

the same U-Net evaluation /̂θ(xt, ce) already performed in

Eq. 10 to produce M1 with minimal overhead. Each map

Aei
t is up-sampled to match the size of xt. Cross-attention

mask M1 is derived by calculating the �-th percentile of

up-sampled Aei
t and

M1
i =

(

1 if |Aei
t | ≥ ;λ(|A

ei
t |)

0 else
(13)

where ;λ(|·|) is the �-th percentile. By definition, M1 only

selects image regions that correlate strongly with the editing

prompt, and � determines the size of this selected region.

The fine-grained mask M2 is calculated based on the

guidance vector  of noise estimates derived in Eq. 10.

The difference between unconditioned and conditioned /̂θ,

generally captures outlines and object edges of xt. Conse-

quently, the largest absolute values of  provide meaningful

segmentation information of fine granularity for M2

M2 =

(

1 if | | ≥ ;λ(| |)

0 else
(14)

In general, threshold � should correspond to the performed

edit. Changes affecting the entire image, such as style trans-

fer, should choose smaller � (→ 0), whereas edits targeting
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Original LEdits++ (Ours) SDEdit DDIM Inversion Imagic (SD) Edit Friendly DDPM Pix2Pix-Zero

+‘cherry blossom’ −‘car ’

+‘blue hat’ +‘moustache’ +‘curly hair ’

Figure 2. Comparison of image editing methods. (top) LEDITS++ is the only method to restrict edits to the tree leaves and position of the

car. (bottom) Ours is the only approach faithfully executing all three edits and keeping changes minimal. (Best viewed in color)

Method
Reconstruction

Error (RMSE)
↓

Execution

Time (s)
↓

Variation/

Sampling

Semantic

Grounding

Multi-

Editing

SDEdit [26] 0.81 ±0.07 2.10 ±0.02 X 7 7

Imagic [18] 0.58 ±0.12 349.98 ±0.45 X 7 7

Vanilla DDIM Inversion 0.22 ±0.10 37.23 ±0.04 7 7 7

Pix2Pix-Zero [30] 0.20 ±0.09 56.78 ±0.14 (X) X 7

DiffEdit [9] 0.13±0.03 27.65 ±0.03 X X 7

Edit-friendly DDPM [17] 0.00 10.36 ±0.05 X 7 7

LEDITS++ (Ours) 0.00 1.78 ±0.03 X X X

Table 1. Comparing key properties for diffusion-based image editing techniques, with LEDITS++ offering clear methodological benefits.

Due to LEDITS++’s efficient perfect inversion, it is the fastest and error-free method. At the same time, its methodology is the only

enabling versatility in terms of variation, semantic grounding, and multi-editing. Subscript numbers indicate standard deviation.

specific objects or regions should use � proportional to the

region’s prominence in the image.

4. Properties of LEDITS++

With the fundamentals of LEDITS++ established, we next

showcase its unique properties and capabilities.

Efficiency. First off, LEDITS++ offers substantial per-

formance improvements over other image editing methods.

In Tab. 1, we provide a qualitative runtime comparison, with

all methods being implemented for Stable Diffusion (SD)

1.5 [34]. As a parameter-free approach, LEDITS++ does

not require any computationally expensive fine-tuning or

optimization. Consequently, LEDITS++ is orders of magni-

tude faster than methods like Imagic [18] or Pix2Pix-Zero

[30]. Further, we only need to invert the same number of

diffusion steps used at inference, which results in signifi-

cant runtime improvements over the standard DDIM inver-

sion (21x). In addition to efficient inversion, we use a re-

cent, fast scheduler that generally requires fewer total steps,

further boosting performance. This way, LEDITS++ is six

times faster than recent DDPM inversion [17] and on par

with fast but poor-quality SDEdit [26].

Versatility. In addition to its efficiency, LEDITS++ re-

mains versatile, enabling sheer limitless editing possibili-

ties. In Fig. 1, we showcase a broad range of edit types.

LEDITS++ facilitates fine-grained edits (adding/removing

glasses) and holistic changes such as style transfer (paint-

ing/sketch). Furthermore, object removal and replacement

facilitate even more image editing tasks. Importantly, the

overall image composition is preserved in all cases. To our

knowledge, LEDITS++ is the only diffusion-based image

editing method inherently supporting multiple edits in iso-

lation, which allows for more complex image manipulation.

Fig. 2 highlights LEDITS++ benefits over previous meth-

ods. Our method produces the highest edit fidelity and is the

only approach capable of faithfully executing multiple, si-

multaneous instructions. Moreover, LEDITS++ also makes

the least changes to unrelated objects and the overall back-

ground and composition of the image.

Lastly, the editing versatility benefits from the stochas-

tic nature of the perfect but non-deterministic inversion.

LEDITS++ provides meaningful image variations by re-

sampling /̃t. Additionally, the visual expression of each

concept in the edited image scales monotonically with se,

and the direction and magnitude of each concept can be var-

ied freely. We present examples of both features in App. B.

Precision. Furthermore, LEDITS++’s methodology

keeps edits concise and avoids unnecessary deviations from

the input image (Fig. 2). First, the perfect inversion will

reconstruct the exact input image if no edit is applied (cf.
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Original LEdits++ Edit LEdits++ Masks

+‘cherry blossom’ +‘green convertible’

Figure 3. Exemplary edit performed with LEDITS++ in only 25

diffusion steps with SD1.5. We apply a complex, compounded

edit and ground each to a semantically reasonable image region.

Sec. 3.2). Consequently, we already improve on faithful-

ness to the input image even before applying any edits. This

benefit over other methods is highlighted by the reconstruc-

tion error in Tab. 1. Second, implicit masking will seman-

tically ground each edit to relevant image regions. This is

specifically important for editing multiple concepts at the

same time. While other methods only utilize one prompt for

all instructions, LEDITS++ isolates edits from each other

(Eq. 11). Thus, we get dedicated masks for each concept

as shown in Fig. 3. This design ensures that each instruc-

tion (e.g., red mask for ‘cherry blossom’) will be only ap-

plied where necessary. Subsequently, we provide further

evidence for the efficacy of LEDITS++’s masking approach.

5. Semantically Grounded Image Editing

Cross-attention maps of DMs have been used extensively

to ground regions of interest during image generation se-

mantically [7, 8, 14, 30]. Nonetheless, these have not been

combined with noise-based masks so far and thus lack fine

granularity. Hence, we empirically evaluate the quality of

implicit masks, i.e., attention maps M1 and noise maps M2

(Eq. 13 and 14) in the LEDITS++ setup. We use a broad

segmentation task for common objects as a proxy to mea-

sure the performance of implicit masks in identifying rele-

vant image areas from edit instructions. Specifically, we uti-

lize segmentation masks from the COCO panoptic segmen-

tation challenge [19]. For each unique object in an image,

we retrieve the masks M1,M2, and their intersection per

diffusion step. We use the (semantic) class label (e.g. ‘per-

son’ or ‘TV’) as editing concept e. We consider masks at

each of 50 total diffusion steps without actually editing the

input image. Furthermore, we approximate mask threshold

� based on the relative size of an object’s bounding box.

Concise masks with LEDITS++. Fig. 4 shows implicit

masking as a reliable means to identify relevant image re-

gions. Importantly, the intersection of both cross-attention

masks M1 and noise maps M2 clearly outperforms each

separate mask. The overall performance is even similar to a

dedicated CLIPSeg model [24], despite LEDITS++ masks

being implicitly calculated at inference with only minimal

overhead. At the same time, LEDITS++’s masking is su-

perior to DiffEdit’s [3]. Consequently, our method’s inter-
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Figure 4. Semantic segmentation quality of LEDITS++. We show

the intersection over union (higher is better) for COCO panoptic

segmentation. The intersection masks outperform each by a clear

margin, close to the CLIPSeg reference. (Best viewed in color)

section of cross-attention masks and noise maps provides

strong semantic grounding while being efficient during im-

age manipulation to ensure precise editing.

6. Image Editing Evaluation

Let us now compare LEDITS++ to current SOTA methods

for image manipulation on two benchmarks.

6.1. Editing Multiple Concepts

First, we investigate the complex task of performing mul-

tiple edits simultaneously. We rely on a well-established

setup for semantic image manipulation [5] to evaluate

multi-conditioned attribute manipulation in facial images.

In our experiment, we consider 100 images from the

CelebA dataset [21]. For each image, we simultaneously

edit three attributes out of a set of five, leading to ten total

combinations of edit concepts. Further, we perform each

edit across ten different seeds, resulting in 10,000 evaluated

images for each method and hyperparameter setting, over

1M images in total. As measures for comparison, we em-

ploy CLIP and LPIPS scores. CLIP measures the text-to-

image similarity of the edit instruction to the edited image,

and LPIPS measures the image-to-image similarity of the

real to the edited image. This way, we assess the trade-

off between the versatility of edits (CLIP) and the precision

of those manipulations (LPIPS). We implement all methods

based on SD1.5 and provide more details in App. C.

LEDITS++ outperforms competing methods. Fig. 5

shows the resulting CLIP vs. LPIPS plots for all methods.

The top left corner represents the ideal editing method with

maximum edit alignment without deviating from the initial

image. Generally, one can observe a natural trade-off be-

tween versatility and precision for all methods, i.e., higher

image-to-text alignment comes at the expense of lower sim-

ilarity to the original image. LEDITS++ is closest to the

ideal region and thus clearly outperforms the other methods.

In particular, the outputs remain close to the original image

(low LPIPS scores), thanks to the precise implicit masking.

8866



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LPIPS Score ↓

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

C
L
IP

S
co
re

↑

Method
LEdits++ (Ours)
Edit-friendly DDPM
SDEdit
Pix2Pix-Zero
DDIM Inversion
Imagic (SD)
DiffEdit

Figure 5. Comparison of instruction-alignment vs. image similar-

ity trade-off for different editing methods. Results were reported

for simultaneous manipulation of three facial attributes on CelebA.

We plot CLIP scores (higher is better) of the target attributes

against LPIPS similarity (lower is better). LEDITS++ clearly out-

performs all competing methods. (Best viewed in color)

At the same time, it faithfully performs the edits (high CLIP

scores) due to the dedicated, isolated editing for each con-

cept. The depicted scores reflect our qualitative inspections

for Pix2Pix-Zero and Imagic on such complex manipula-

tions (cf. Fig. 2). We observed that these methods often

break—either failing to perform all three edits and/or dras-

tically altering the input image. Only edit-friendly DDPM

[17] and LEDITS++ reliably achieve the maximum aver-

age CLIP score of over 0.25. This value seems to represent

an upper bound according to our manual investigations, as

each attribute is edited correctly for all input images, and

higher scores are not observed. Despite being computation-

ally very efficient, LEDITS++ faithfully executes each edit

instruction while keeping the changes to the input low, high-

lighting the method’s versatility and precision.

6.2. TEdBench(++)

Next, we investigate the versatility of LEDITS++’s edit-

ing capabilities by running the Textual Editing Benchmark

(TEdBench [18]), a collection of 100 input images paired

with textual edit instructions. However, we observed a va-

riety of inconsistencies in TEdBench and a lack of relevant

editing tasks. Therefore, we propose TEdBench++ (Fig. 6a

and App. D), a more challenging revised benchmark now

containing 120 entries in total.3 We addressed misspellings

and rephrased ambiguous and inconclusive instructions. In

addition to resolving these issues, we added instructions

targeting challenging types of image manipulations previ-

ously not included in TEdBench: multi-conditioning, ob-

ject/concept removal, style transfer, and complex replace-

ments (Fig. 6a). We provide more details in App. D.

We compare LEDITS++ on TEdBench(++) to one of the

strongest editing methods, Imagic [18] with Imagen [37].

3
https://huggingface.co/datasets/AIML-TUDA/TEdBench_plusplus

TEdBench TEdBench++

SR ↑ LPIPS ↓ SR ↑ LPIPS ↓

Imagic w/ SD1.5 0.55 0.56 0.58 0.57

LEDITS++ w/ SD1.5 0.75 0.28 0.79 0.30

Imagic w/ Imagen [18] 0.83 0.59 — —

LEDITS++ w/ SD-XL 0.84 0.33 0.87 0.34

Table 2. Success rate (SR) and LPIPS scores on the original Ted-

Bench [18] and our revised version (TEdBench++). We compare

Imagic to LEDITS++ based on different DMs and find the latter to

outperform on both metrics and benchmarks.

Since both are not publicly available, we can only compare

to this specific combination of DM and editing method us-

ing Kawar et al.’s [18] curated outputs for TEdBench. Ad-

ditionally, we, therefore, cannot combine LEDITS++ with

Imagen[37] and instead use a similarly advanced diffu-

sion model, SD-XL [32]. However, to not only compete

for the best fidelity outputs but focus the evaluation on

methodological differences—not the pre-trained DM—we

also compare both methods implemented with SD1.5. We

provide further details in App. C.

LEDITS++ edits images reliably. We first asked users

to assess the overall success of edits, i.e., if an edit instruc-

tion was faithfully realized for a given input image. The

results in Tab. 2 show that LEDITS++ outperforms Imagic

on TEdBench despite a greatly reduced runtime (Tab. 1).

The difference is even stronger when comparing both meth-

ods on the same pre-trained DM, i.e., SD1.5. The high suc-

cess rate on TEdBench++ (87%) and the examples shown

in Fig. 1 and 6a once again highlight LEDITS++’s versa-

tility. Overall, our proposed method can reliably perform a

diverse set of editing instructions for real images.

High-quality edits with LEDITS++. While investigat-

ing both methods’ performance we observed a substantial

difference in edit quality. The examples in Fig. 6b particu-

larly highlight the discrepancy in compositional robustness

and object coherence. Hence, we also assessed both meth-

ods’ editing quality on TEdBench(++). We focus on sam-

ples where both methods performed a successful edit, i.e.,

were labeled as successful by users. We show the perceptual

similarity (LPIPS) to the input image in Tab. 2. One can ob-

serve that the LPIPS scores for LEDITS++ are much lower

than for Imagic, empirically supporting the qualitative ex-

amples in Fig. 6b. When manually inspecting the generated

images, we often found Imagic to generate a completely

new image based on the edit instruction, entirely disregard-

ing the input image (cf. App. Fig. 11a).

7. Discussion

Let us now discuss open research questions and limitations.

Model Dependency. While LEDITS++ achieves im-

pressive results on a large variety of image manipulation

tasks, there are external factors to consider. Since the
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+‘child’s drawing ’ −‘apples ’ +‘oranges ’ −‘basket’ +‘bowl ’

(a) Novel challenging examples of TEdBench++ and LEDITS++ applied, showcasing

the versatility of supported edits.

Original LEdits++ (Ours) Imagic

+‘basket of oranges ’

+‘couple holding hands ’

(b) Qualitative comparison of LEDITS++ and Imagic on TEd-

Bench, clearly highlighting the performance improvement.

Figure 6. Benchmark examples for LEDITS++ and Imagic on TEdBench(++). (Best viewed in color)

method is architecture-agnostic, it can be easily used with

any DM. At the same time, the general editing quality

strongly depends on the overall capabilities of the under-

lying pre-trained DM. Naturally, more capable models will

also enable better edits. But, at times, specific editing in-

structions may fail because the used DM does not have a

decent representation of the targeted concept to begin with.

One example is the model failing to edit a giraffe to be sit-

ting since the underlying DM generally fails to generate this

pose (cf. App. F). This effect can also clearly be seen in

Tab. 2, with the editing success rate of a method varying

strongly between DMs. Although the same image editing

method is employed (LEDITS++), the more capable SD-XL

variant outperforms the weaker SD1.5 model. Nonetheless,

this means that the architecture-agnostic LEDITS++ will

benefit from increasingly powerful DMs.

Coherence Trade-offs. Next to the benefits of

LEDITS++’s semantic grounding, there are also downsides

to this approach. Overall, implicit masking limits changes

to relevant portions of the image and achieves strong coher-

ence with the original image composition. Yet, the object

and its identity within the masked area may change based on

various factors. Generic prompts, like “a standing cat” (cf.

App. F), do not contain detailed information about this spe-

cific object (“cat”). Thus, an edit with this prompt does not

guarantee to preserve object identity, particularly for strong

hyperparameters. We observed that fine-tuning approaches

like Imagic make the opposite trade-off, better preserving

the object identity while changing the background and im-

age composition substantially (cf. App. F). A potential rem-

edy for a loss in object coherence with LEDITS++, is more

descriptive edit prompting, e.g. using textual inversion [12].

Lastly, the automatically-inferred implicit masks allow

for easy use of LEDITS++ without users tediously provid-

ing masks. Nonetheless, user intentions are diverse and

cannot always be automatically inferred. Sometimes, in-

dividual user masks provide better control over the edit-

ing process. Such user masks can be easily integrated into

LEDITS++ (cf. App. F), wherefore we encourage future re-

search in this promising direction.

Societal Impact. LEDITS++ is an easy-to-use image

editing technique that lowers the barrier for users and puts

them in control for fruitful human-machine collaboration.

Yet, the underlying text-to-image models offer both promise

and peril, as highlighted by prior research [4, 11]. The (soci-

etal) biases within these models will also impact image edit-

ing applications [11]. Moreover, image manipulation can

also be used adversarially to generate inappropriate [39] or

fake content. Hence, we advocate for a cautious deployment

of generative models together with image editing methods.

8. Conclusion

We introduced LEDITS++, an efficient yet versatile and

precise method for textual image manipulation with diffu-

sion models. It facilitates the editing of complex concepts

in real images. Our approach requires no finetuning nor

optimization, can be computed extremely efficiently, and is

architecture agnostic. At the same time, it perfectly recon-

structs an input image and uses implicit masking to limit

changes to relevant image regions, thus editing precisely.

Our large experimental evaluation confirms the efficiency,

versatility, and precision of LEDITS++ and its components,

as well as its benefits over several related methods.
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