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Abstract
Gated cameras flood-illuminate a scene and capture the

time-gated impulse response of a scene. By employing
nanosecond-scale gates, existing sensors are capable of
capturing mega-pixel gated images, delivering dense depth
improving on today’s LiDAR sensors in spatial resolution
and depth precision. Although gated depth estimation meth-
ods deliver a million of depth estimates per frame, their res-
olution is still an order below existing RGB imaging meth-
ods. In this work, we combine high-resolution stereo HDR
RCCB cameras with gated imaging, allowing us to exploit
depth cues from active gating, multi-view RGB and multi-
view NIR sensing – multi-view and gated cues across the
entire spectrum. The resulting capture system consists only
of low-cost CMOS sensors and flood-illumination. We pro-
pose a novel stereo-depth estimation method that is capa-
ble of exploiting these multi-modal multi-view depth cues,
including the active illumination that is measured by the
RCCB camera when removing the IR-cut filter. The pro-
posed method achieves accurate depth at long ranges, out-
performing the next best existing method by 39% for ranges
of 100 to 220 m in MAE on accumulated LiDAR ground-
truth. Our code, models and datasets are available here1.

1. Introduction
Depth estimation has become a cornerstone sensing

modality for 3D scene understanding in a wide range of ap-
plications such as perception and planning in autonomous
driving and robotics [32,47,82]. Today’s fully-autonomous
robots mainly rely on scanning LiDAR for depth estima-
tion [68, 71]. However, at ranges greater than 100 m, the
spatial resolution of existing sensors, with a few points
per pedestrian, is not sufficient for semantic understanding.
Furthermore, both frequency-modulated as well as time-of-
flight LiDAR systems have proven to be unreliable in the
presence of backscatter [6]. While innovations in LiDAR
technology such as MEMS scanning mechanisms [81] and
advanced photodiode systems [77] have substantially low-
ered costs and enabled the development of sensors with
approximately 100 to 200 scanlines, they still fall short
in comparison to the vertical resolution offered by mod-

1
https://light.princeton.edu/gatedrccbstereo/

ern HDR megapixel cameras, which can exceed 10k pix-
els. Wide-baseline RGB stereo depth estimation methods
overcome this issue by providing depth maps at image res-
olution, but struggle in low-light scenes and texture-less
regions. Recently, gated imaging [3, 7, 10, 11, 23, 29] has
emerged as a potential alternative sensor modality for 3D
detection and depth estimation, offering the capability to
overcome low LiDAR-resolution, while providing compa-
rable accuracy [24, 78, 80]. Operating in the near-infrared
spectrum, gated imaging systems combine CMOS sensors
with active flash illumination and analogue gated readout.
This approach is robust to low-light and adverse weather
conditions [7]. For depth prediction, Gated2Depth [24] em-
ploys three gated slices in a neural network which is trained
via a combination of simulation and LiDAR supervision.
Following this, Walia et al. [78] proposed a self-supervised
training approach resulting in higher-quality depth maps.
Walz et al. [80] recently introduced Gated Stereo, employ-
ing a wide-baseline stereo-gated configuration for depth
estimation. These methods outperform scanning LiDAR
systems in depth resolution, precision, and robustness to
backscatter in fog, rain and snow. While these methods
successfully outperform LiDAR in depth sensing, they are
constrained by the gated imager’s megapixel resolution and
lack of color information. This results in diminished de-
tails, particularly noticeable at long distances. RGB-only
depth methods yield high-resolution depth maps, but these
are not metric and lack the precision of LiDAR-based depth
measurements.

In this work, we close this gap by proposing a low-
cost CMOS-only sensing method that combines multi-
view RGB sensing with gated cameras, exploiting active
and multi-view cues across the visible and NIR spectrum.
Specifically, we propose a NIR gated camera in conjunction
with a HDR RCCB camera without an IR-cut filter present.
RCCB cameras incorporate clear channel filters where con-
ventional RGGB Bayer color filters feature the green chan-
nel, which enhances their sensitivity in low-light conditions.
This joint approach allows us to use the spectral overlap
for estimating high-resolution depth maps at RCCB-camera
resolution of 8 megapixels, an order of magnitude higher
than the gated imager resolution. Previous works have rec-
ognized the capabilities of cross-spectral imaging due to
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the complementary information coming from different sen-
sor modalities [8, 9, 28, 66]. For depth estimation, how-
ever, combining images from different spectra has proven
to be difficult due to the differing appearance of the im-
ages [55, 75, 92]. Our approach combines two multi-view
stereo views across the spectrum and an active illuminator
(visible by both) by fusing the features of both modalities
of the respective viewpoints. Specifically, to recover depth,
we propose a stereo depth estimation method that incorpo-
rates a novel cross-spectral fusion module which leverages
intermediate depth outputs for accurate registration of fea-
ture maps from both modalities, a pose refinement step and
attention-based feature fusion. The merged features encom-
pass complementary data from both spectra, enabling their
use in the stereo network to generate accurate depth maps
in any lighting conditions.

We validate our method on automotive driving data in
urban, suburban and highway environments in varying illu-
mination, and we find that the method compares favorably
to existing active and hybrid methods. We also demon-
strate that the high-resolution depth enables new applica-
tions, such as detecting small lost cargo objects in high-way
scenarios that cannot be resolved by conventional methods.

Specifically, we make the following contributions:

• We propose a novel cross-spectral depth estimation ap-
proach that recovers high-resolution dense depth maps
from multi-view and time-of-flight depth cues across
the visible and NIR spectrum.

• We introduce a novel cross-modal stereo network that
jointly estimates the depth from passive and active
RCCB and gated features and a semi-supervised train-
ing scheme to train the estimator.

• We validate that the method produces accurate depth
maps on accumulated LiDAR point-clouds up to
220 m, outperforming existing methods by 39% in
MAE for long ranges ≥ 100 m. We show that these
high-resolution depth estimates enable new applica-
tions such as lost cargo detection.

2. Related Work

Depth Estimation from Monocular and Stereo Inten-
sity Images. Depth estimation from intensity images
has been thoroughly investigated using various modalities,
from single-image captures [21, 26, 51, 52] to stereo im-
ages [4, 13, 53, 88] and cross modal representations us-
ing intensity images augmented with sparse LiDAR data
[16, 90]. Further refinement techniques were introduced,
enhancing the predicted depth maps and increasing res-
olution [2, 60, 63, 91]. Existing work has investigated
various loss formations [17, 21, 22, 26, 56, 57, 65, 76, 89],
neural architectures [4, 20, 22, 26, 51, 53, 88] and intro-
duced consistencies [20, 21]. To exploit large unlabeled

datasets, self-supervised approaches [20–22,26,93] exploit-
ing stereo- [20, 21] and temporal-consistencies [22, 26, 93].
Unfortunately, these methods do not resolve the need for
dense depth ground-truth for high-quality depth estima-
tion [13, 13, 19, 34, 38, 51, 52, 58, 59]. To this end, existing
methods rely on sparse LiDAR measurements as ground-
truth. However, using LiDAR measurements as direct in-
puts [16, 31, 61, 72, 73, 84, 90] for both supervised training
and inference can result propagating temporal LiDAR dis-
tortions and scan pattern artifacts.

Depth from Time-of-Flight. Unlike depth estimation from
intensity images, Time-of-Flight (ToF) sensors determine
depth by measuring the time it takes for emitted light to
return to the detector. Acquisition approaches can be clas-
sified into correlation ToF cameras [27, 40, 41], pulsed ToF
sensors [68], and gated illumination with wide depth mea-
surement bins [23, 29]. Correlation ToF cameras use flood
illumination to gauge depth from the phase difference be-
tween emitted and received light pulses, offering high spa-
tial depth resolution [27, 40, 41]. However, these sensing
modalities struggle in outdoor environments due to sensitiv-
ity to ambient light. Pulsed ToF sensors measure the round-
trip time of a single light pulse to a scene point, yielding
high-depth accuracy [68], however, rely on scanning that
compromises spatial resolution. Moreover, these sensors
degrade in fog or snow because of backscatter [6, 12, 36].
Gated cameras combine high resolution CMOS imagers
with microsecond exposure times, integrating pulsed flood-
illumination with adjustable delays. Through this tempo-
ral gating, backscatter is effectively reduced [7], and coarse
depth is reconstructed [3, 10, 11]. Extracting more refined
depth initially focused on analytical methods [42, 43, 85],
Bayesian methods [1,67] and deep neural networks [24,78]
excel in low-light and outdoor scenarios. Gruber et al. [24]
predict depth using a reconstruction network rivaling con-
ventional stereo models, while Walia et al. [78] proposed
a refined self-supervised method. Later, Walz et al. [80]
combined two gated imagers, optimizing depth estimation
through multi-view cues. All of these methods are designed
for gated imagers only, compromising resolution compared
to RGB imagers and in scenarios when the NIR laser power
is low compared to ambient light. We lift this limitation by
combining NIR gated cameras with high-resolution visible-
spectrum RCCB sensors.

Cross-Spectral Matching Conventional stereo matching
algorithms assume match based on the brightness constancy
assumption. However, using multiple sensors, operating
in distinct spectral ranges, has been investigated as an ad-
ditional source of information. Progress was reported in
areas such as Face Recognition [37, 46, 49], self-driving
cars [33,86], visual surveillance [44], and smartphones [74].
Existing methods have proposed methods for matching fea-
tures that may be visually distinct but remain semantically
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Figure 1. RCCB cameras (top row) capture 8 Mpix passive RGB
images. Gated cameras (bottom row) record Time-of-Flight data
of a scene by combining active flash illumination and analog gated
readout. Both sensors are complementary, with distinct strengths
depending on the scenario. RCCB cameras excel in daylight (a)
with high dynamic range, resolution and color. At night (b, c),
gated images (gated slices here RGB-color coded by mapping each
slice to one RGB color) provide strong depth cues and maintain
consistent scene illumination through active illumination. This
work integrates both modalities to estimate depth accurately in all
ambient illumination conditions.

congruent [15,30,35,39,62,70,75,92]. Early work [62] ex-
plores gradients as a robust feature for cross-modal match-
ing, while [35] focuses on the alignment of monochrome
images, which have increased light sensitivity, with RGB
images to achieve precise depth in dim lighting scenarios.
Recent methods [39,55,75,79,92] aim to learn cross-modal
matching, where some aim to morph one modality directly
into another [79,92], while others propose novel descriptors
for modality matching [39, 75, 92].

3. Multi-view Gated and RCCB Imaging
We propose to image a scene with a gated camera stereo

system and an RCCB stereo array characterized both by a
baseline of b = 0.76 m. The gated imager is an active sen-
sor and emits a pulse of light with a confined wavelength
around 808 nm, whereas the RCCB camera is a passive sen-
sor with a sensitivity spectrum spanning the visible band
from 380 - 1050 nm. While conventional RGB cameras use
color filter arrays with an RGGB pattern, often referred to
as a Bayer pattern, in RCCB cameras the green channels
are replaced with clear channels. The inclusion of clear
channels in this pattern allows an enhanced light sensitiv-
ity, boosting its performance ≈ 30% during night-time con-
ditions. In addition, the used Onsemi AR0820AT image
sensor is optimized for both low light and challenging high
dynamic range scene performance, with a 2.1 µm DR Pix
BSI pixel and on-sensor 140 dB HDR capture capability.

In the stereo gated camera system, a laser pulse p is emit-
ted at t = 0. Following a set time delay ξ, the reflected
scene is then integrated on both camera sensors. Only pho-
tons within a specific temporal gate are captured, using the

gate function g, embedding depth data into 2D imagery. As
detailed by Gruber et al. [25], these intensities, or range-
intensity-profiles Ck(z), are scene-independent and can be
expressed as

Ik(z, t) = αCk(z, t),

= α

∞∫
−∞

gk(t− ξ)pk

(
t −

2z

c

)
β(z)dt,

(1)

where Ik(z, t) is the gated exposure at distance z and time t;
α represents surface reflectance, while β accounts for atmo-
spheric attenuation. Both image sets are calibrated and rec-
tified for aligned epipolar lines, enabling disparity d estima-
tion. This disparity corresponds to distance z = bf

d , offer-
ing depth insights across all slices. Ambient light sources,
such as sunlight or vehicle headlights influence the gated
system’s operation. These photons get modulated by a con-
stant term Λ. Separately, irrespective of ambient light, there
is a dark current, Dk

v , which is dependent on the gating set-
tings. In total we model an image with

Ikv (z) = αCk(z) + Λ +Dk
v . (2)

We follow [80], capturing additional passive HDR images
with fixed exposure times of 21 µs and 108 µs during the
day, and extending these to 805 µs and 1745 µs at night.

When integrating both gated and RCCB stereo systems,
each camera is represented by its calibration matrix K. The
relative orientation and position between cameras in a stereo
pair are captured by the rotation matrix, R ∈ SO(3), and
the translation vector, t ∈ R3×1.

4. Depth from RCCB and Gated Stereo
In this section, we introduce our cross-modal fusion tech-
nique for depth prediction, which relies on multi-view cues
from RCCB stereo and gated stereo images. By register-
ing and fusing cross-spectral features through an attention
mechanism and prior pose refinement within the stereo net-
work, we capitalize complementary information from dif-
ferent camera modalities in Sec. 4.1. We integrate this fea-
ture fusion in a stereo network described in Sec. 4.2 which
we jointly train uni-modal and multi-modal, facilitating a
holistic feature representation across modalities and mini-
mizing domain differences between modalities as detailed
in Sec. 4.1. The training approach is detailed in Sec. 4.3.

4.1. Cross-Spectral Matching

We align and combine cross-modal features in a two-stage
approach, where we warp features first into a shared space
based on a refined pose. With these aligned features in hand,
we perform an attention-based fusion as input to the remain-
der of the stereo estimation network. An overview of cross-
spectral matching (CSM) is illustrated in Fig. 2.
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Figure 2. Cross-Spectral Matching (CSM). The layer fuses encoded features from RCCB (F c
l ) and gated (F g

l ) images. In the coarse
registration step, RCCB features are aligned with gated features based on calibrated poses Xc→g . Registration is refined based on residual
pose X̂c|g→g estimated from coarse aligned images and measured time delta with PoseNet. Registered images are fused with attention-
based fusion retaining complementary information in F̂ .

Feature Extraction and Alignment. We utilize two feature
extractor backbones for color f c

b and gated fg
b , and share the

weights for each view Iml , Imr for m ∈ {c, g}, that is

f c
b : Icl , I

c
r → F c

l , F
c
r , (3)

fg
b : Igl , I

g
r → F g

l , F
g
r . (4)

As a feature extractor, we use MPViT [45], a powerful vi-
sion transformer for dense prediction tasks. To align the
features, we use the pose information from camera calibra-
tion Xx→g and an intermediate depth estimation ẑgl from an
iterative depth estimation method, see Section 4.2, to warp
corresponding views. The mapping for homogeneous coor-
dinates xg and xc from Igl and Icl is defined as

xg ∼ KcXc→g ẑglK
−1
g xc, (5)

where Kc and Kg are the camera matrices of the gated and
RCCB camera, and Xc→g =

(
Rc→g tc→g

0 1

)
with Rc→g ∈

SO(3) and tc→g ∈ R3×1. We transform the features of the
left RCCB camera, denoted F c

l , to match the features of the
left gated camera F g

l , thus creating F̃
c|g
l .

Pose Refinement. The RCCB stereo camera and the gated
stereo camera are independently synchronized to microsec-
ond precision. However, the RCCB camera may accumu-
late a slight offset of up to 20 milliseconds between images
because of automatic exposure and shutter timing. To ad-
dress this misalignment, we utilize a lightweight Convolu-
tional Neural Network (CNN) framework dubbed PoseNet
p. This framework estimates the rotational and translational
adjustments necessary for alignment, based on prealigned
feature maps. The input to p is the concatenated context
F g
l , the transformed F̃

c|g
l and the measured time offset t be-

tween modalities. The time is integrated into every down-
sampled layer of the pose network as additional channel,
except for the final layer. This channel uniformly replicates
the value of the time-offset across the spatial dimension.
The computed pose update, denoted as X̂c|g→g combines
the initial pose as X̃c→g = Xc→g · X̂c|g→g . Subsequently, a
second warping operation with the mapping

xg ∼ KcX̃c→g ẑglK
−1
g xc, (6)

is applied, which generates the aligned features F c|g
l .

Attention-based Feature Fusion. Following the align-
ment, we fuse RCCB and gated features, aiming to com-
bine contextual information from both spectra effectively.
Our approach adopts a two-step process. Firstly, we em-
ploy channel self-attention for aggregating both global and
local contexts within feature maps. Secondly, we combine
the individual feature maps, utilizing the predicted attention
weights. The first setup is defined as

F̄ =
F g
u ⊕ F c

u

au(F
g
l ) + au(F c

l )
(7)

F g
u = F g

l ⊗ au(F
g
l ) (8)

F c
u = F

c|g
l ⊗ au(F

c|g
l ), (9)

where ⊕ denotes element-wise addition and ⊗ indicates
element-wise multiplication, and the attention au() is cal-
culated following [18]. The final fusion of features F̂ are
the result of the following weighting-operation

F̂ =
(
F g
u ⊗ am(F̄ )

)
⊕
(
F c
u ⊗ (1− am(F̄ ))

)
, (10)

where am follows the implementation as in [18] and denotes
the multi-modal attention network, facilitating the effective
combination of features from both modalities.

4.2. Stereo Matching

With the process to align features F̂ in hand, we pre-
dict depth across all camera views. This task is executed
through a stereo matching network, as depicted in Figure 3.
We build on top of the CREStereo architecture [48] with
major modifications to allow the development of a dynamic
framework switching between modalities. This dynamic in-
terchangeability allows us to adapt and optimize the dispar-
ity prediction in either modalities coordinate system. Such
flexibility not only enhances domain generalization but also
opens avenues for the application of various consistency
losses, thereby improving the accuracy of our predictions.

To bridge the coordinate system we heavily rely on the
CSM layers, whose predicted context feature maps are used
to guide the prediction in the targeted frames. Thereby, we
rely on the iterative refinement introduced in [48] and cal-
culate the correlation volume in each step according to [48].
Here, we predict the correlation in the adaptive group cor-
relation layers uni-modal and alternate in modality through
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Figure 3. The proposed cross-spectral stereo architecture for depth estimation from stereo RCCB and stereo gated images incorporating
our CSM layer. The network can output depth for all four input images. Intermediate depth estimates are used for iterative fusion within
the CSM along the depth estimation process. The network is trained with self-supervision (Left-Right consistency for RCCB and gated
images, Gated Reconstruction) and LiDAR supervision.

the iterative refinement. The secondary modality is pro-
jected into the target frame with the refined transformation
X̃c→g in the pre-correlation warping PCW, see Fig. 3.

Then the correlation is calculated as follows,

Corr(x, y, k) =
1

C

C∑
i=1

F v
l (i, x, y)F

v
r (i, x

′, y′), (11)

where F v is the respective feature map transformed into the
modality v ∈ {c, g, c|g, g|c}, with camera view l, r. We
follow [48] and predict x′ = x + f(k), y′ = y + g(k),
with fixed offsets f(k) and g(k) for the k-th correlation pair,
sum all channels C and apply 2D-1D alternate local search
strategy for computational efficiency. Notably, the initial
iteration at the coarsest scale focuses on predicting depth
solely from the target modality.

4.3. Training Supervision

The network is trained to output the disparity d which is
converted into the depth z for all modalities g, c and views
l, r. In addition we train the stereo matching uni-modal and
multi-modal, with and without cross-spectral feature en-
hancement to ensure optimal extracted features while shar-
ing the stereo matching stage. This is achieved by deac-
tivating the CSM and PCW layers. Through this alternat-
ing training, we ensure that the backbone learns relevant
features for all modalities and the mix and matching be-
tween modalities forces all features to be domain indepen-
dent, thereby creating robust cross-modal representations.
Further this allows us to implement self-supervised and su-
pervised loss functions for both the gated camera and the
RCCB camera, as well as consistencies in between.

All self-supervised consistency losses and supervised
losses are described below. Without diminishing generality,
in the following all losses are defined for disparity predic-
tion in the gated frame for better readability.
Left-Right Reprojection Consistency. The projection loss

enforces the photometric consistency between the left and
right camera views within each modality. Cross-modally
the homogeneity between predicted depth maps is enforced.
The total loss for the left gated camera gl can be written as,

Lgl
w = Lp(I

g
l , I

g
r|lg ) + Lp(I

c
l|lg , I

c
r|lg ) + Lp(z

c|g
l , zgl ),

(12)
with Igr|lg the r right g gated image warped into the l left
gated view using the predicted depth zgl denoted as warp-
ing operation lg for the stereo pairs. For the gated warp-
ing consistency further the RCCB frames IC are warped
according to the predicted depth into the gated frame lg .
Additionally, the predicted depth in c is transformed to
the gated frame g leading to z

c|g
l . Consistencies are also

applicable to the right gated frame, yielding Lgr
w , and to

both left Lcl
w and right Lcr

w RCCB frames. The total loss
can be written as Lreproj = Lcl

w + Lcr
w + Lgl

w + Lgr
w .

Note, Lp follows [21] and is a similarity loss based on the
structural similarity (SSIM) metric [83] and the L1 norm,
Lp(a, b) = 0.85 1−SSIM(a,b)

2 + 0.15∥a− b∥1.
Gated Reconstruction Loss. To supervise the embedded
time of flight information in the gated slices we adopt the
cyclic gated reconstruction loss from [78], which uses mea-
sured range intensity profiles to reconstruct the input gated
images from the predicted depth z, the albedo α̃, and the
ambient Λ̃. Departing from [78] who employed measured
profiles, we employ an analytical gating model. We esti-
mate the albedo α̃ and ambient Λ̃ through an additional con-
text encoder taking the feature pyramid as input, see Fig-
ure 3, and model a gated slice as Ĩk(z) = α̃ Ck(z) + Λ̃.
The loss term incorporates both per-pixel difference and
structural similarity, following

Lrecon = Lp(Mg ⊙ Ĩk(z),Mg ⊙ Ik) + Lp(Λ̃,Λ
k0),

(13)
with Mg as per-pixel SNR consistency mask [78].
LiDAR Supervision. We supervise final and interme-
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Figure 5. The sensor setup of the test vehicle used for capturing
the dataset. It features a stereo gated camera, consisting of a flood-
light flash source (not visible, mounted at front bumper of the car)
and two gated imagers, a Velodyne VLS128 scanning lidar, a stan-
dard stereo RGB camera and the RCCB stereo camera.

diate disparity predictions. Each disparity prediction
{dl,i, ...,dl,n} is upsampled to full resolution and com-
pared to ground-truth with a weighted combination of l1
and l2 defined as,

Llidar =

n∑
i=1

γn−i
(2
3
||dgt−M⊙dl||1+

1

3
||dgt−M⊙dl||22

)
.

(14)
The weight γ is set to 0.9 and the mask M excludes areas
without ground-truth. For ground-truth we use accumulated
and sparse LiDAR measurements, more details in Section 5.
Overall Training Loss. The following loss term is obtained
by combining all self-supervised and supervised loss com-
ponents from above,

Lstereo = c1Lreproj + c2Lrecon + c3Llidar, (15)

which we combine with scalar weights c1,...,3 provided in
the Supplemental Material.
Implementation Details. We refer to the Supplemental
Document for implementation details, training settings, and
hyperparameter settings used for the approach described.

5. Dataset
For training and testing, we use the dataset introduced by
Walz et al. [80]. The dataset includes stereo gated, stereo
RGB and ground-truth LiDAR data. More information is
given in the Supplemental Material. In this work, we ex-
tend the dataset with RCCB stereo data, captured with an
AR0820 sensor. All sensors were housed in a portable sen-
sor cube as showcased in Figure 5. As an additional source
of ground-truth, we utilize a densely constructed LiDAR
map, derived from a custom adaptation of the LIO-SAM al-
gorithm, as detailed in Shan et al. [69]. We refer to the Sup-
plemental Document for details on the setup and dataset.

6. Assessment
In this section, we experimentally validate our proposed
method. We examine the accuracy of our depth estimation
under nighttime and daytime conditions and compare it to

METHOD
Modality Train RMSE ARD MAE δ1 δ2 δ3

[m] [m] [%] [%] [%]

Test Data – Night (Evaluated on LiDAR Ground-Truth Points)

C
O

M
PA

R
IS

O
N

T
O

ST
A

T
E

-O
F

-T
H

E
-A

R
T

GATED2DEPTH [24] Mono-Gated D 16.15 0.17 8.07 75.70 92.74 96.47
GATED2GATED [78] Mono-Gated MG 14.08 0.19 7.95 79.84 92.95 96.59
PACKNET [26] Mono-RGB M 17.82 0.20 10.21 66.35 87.85 95.61
MONODEPTH2 [22] Mono-RGB M 18.44 0.18 9.47 75.70 90.46 95.68
SIMIPU [50] Mono-RGB D 15.78 0.18 8.71 76.25 90.84 96.44
ADABINS [5] Mono-RGB D 14.45 0.15 7.58 81.47 93.75 97.39
DPT [64] Mono-RGB D 12.15 0.12 6.31 85.38 95.94 98.42
DEPTHFORMER [51] Mono-RGB D 12.15 0.11 6.20 85.18 95.76 98.47
PSMNET [14] Stereo-RGB D 27.98 0.27 16.02 50.77 74.77 85.93
STTR [54] Stereo-RGB D 20.99 0.19 11.14 70.84 87.70 93.46
HSMNET [88] Stereo-RGB D 12.42 0.09 5.87 88.41 96.08 98.50
ACVNET [87] Stereo-RGB D 11.70 0.08 5.25 89.91 96.33 98.47
RAFT-STEREO [56] Stereo-RGB D 10.89 0.09 5.10 90.47 96.71 98.64
CS-STEREO [92] RCCB-NIR D 21.35 0.20 11.48 72.73 89.71 95.58
UCSSM [55] RCCB-NIR D 18.22 0.27 14.63 64.51 87.12 94.27
CRESTEREO [48] Stereo-RCCB D 12.05 0.10 5.18 88.48 94.12 97.26
GATED STEREO [80] Stereo-Gated DGS 6.39 0.05 2.25 96.40 98.44 99.24
GATED RCCB STEREO Stereo-RCCB-Gated DGS 6.23 0.04 2.03 96.69 98.50 99.26

Test Data – Day (Evaluated on LiDAR Ground-Truth Points)

C
O

M
PA

R
IS

O
N

T
O

ST
A

T
E

-O
F

-T
H

E
-A

R
T

GATED2DEPTH [24] Mono-Gated D 28.68 0.22 14.76 66.68 82.76 87.96
GATED2GATED [78] Mono-Gated MG 16.87 0.21 9.51 73.93 92.15 96.10
PACKNET [26] Mono-RGB M 17.69 0.21 9.77 72.12 90.65 96.51
MONODEPTH2 [22] Mono-RGB M 20.78 0.22 10.06 79.05 90.66 94.69
SIMIPU [50] Mono-RGB D 14.33 0.14 7.50 81.77 94.01 97.92
ADABINS [5] Mono-RGB D 12.76 0.12 6.53 86.15 95.77 98.41
DPT [64] Mono-RGB D 11.29 0.09 5.52 89.56 96.83 98.79
DEPTHFORMER [51] Mono-RGB D 10.59 0.09 5.06 90.65 97.46 99.02
PSMNET [14] Stereo-RGB D 32.13 0.28 18.09 53.82 74.91 84.96
STTR [54] Stereo-RGB D 16.77 0.16 8.99 78.44 93.53 98.01
HSMNET [88] Stereo-RGB D 10.36 0.08 4.69 92.47 97.93 99.11
ACVNET [87] Stereo-RGB D 9.40 0.07 4.08 94.61 98.36 99.12
RAFT-STEREO [56] Stereo-RGB D 9.40 0.07 4.07 93.76 98.15 99.09
CS-STEREO [92] RCCB-NIR D 21.51 0.22 11.87 73.70 88.77 96.06
UCSSM [55] RCCB-NIR D 17.32 0.29 13.26 64.80 84.78 93.83
CRESTEREO [48] Stereo-RCCB D 9.68 0.06 3.88 95.02 96.04 98.57
GATED STEREO [80] Stereo-Gated DGS 7.11 0.05 2.25 96.87 98.46 99.11
GATED RCCB STEREO Stereo-RCCB-Gated DGS 6.89 0.03 1.95 97.18 98.55 99.18

Table 1. Evaluation of the method and competing gated ap-
proaches on [80]. We compare our model to supervised and un-
supervised approaches. “M” refers to methods that use temporal
data for training, S for stereo supervision, “G” for gated consis-
tency and “D” for depth supervision. Best results in each category
are in bold and second best are underlined.

EVALUATION RANGE 0 - 160 m 0 - 220 m 100 - 220 m

METHOD RMSE MAE RMSE MAE RMSE MAE

N
IG

H
T CRESTEREO [48] 13.58 8.60 17.64 10.05 26.39 20.24

GATED STEREO [80] 11.45 7.36 14.03 8.93 25.55 18.36
GATED RCCB STEREO 10.74 7.02 12.02 7.94 15.67 11.15

D
A

Y

CRESTEREO [48] 11.16 6.53 15.65 8.11 20.76 14.65
GATED STEREO [80] 10.75 6.42 14.24 8.67 22.07 16.79
GATED RCCB STEREO 9.72 6.24 10.69 6.83 14.33 10.07

Table 2. Evaluation on Accumulated LiDAR Scans. We compare
our method to the top 3 methods from Tab. 1 using accumulated
dense LiDAR as ground-truth for a range from 0 - 220 m.

existing depth estimation techniques. Furthermore, we vali-
date our design choices through a series of ablation studies.
Experimental Setup. The test set comprises 2463 frames,
split into 1269 daytime and 1194 nighttime frames. Each
frame is accompanied by high-resolution LiDAR ground-
truth measurements, capturing reliable data up to 160 m.
We further use the 655 frames of refined LiDAR ground-
truth (303 daytime and 352 nighttime). These frames fea-
ture accumulated point clouds, allowing us to assess the
methods on a dense ground-truth for accuracy up to a dis-
tance of 220 m. Our method’s evaluated depth maps show
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Figure 4. Depth estimation for ”lost cargo”, small objects at far distances on ground level that may be lost from preceding vehicles. Our
method estimates accurate depth for these small objects in both daylight and nighttime conditions by integrating complementary RCCB
and gated images. Single modality methods suffer from limitations: CREStereo [48] (RCCB) lacks effective illumination at night, and
Gated Stereo [80] suffers from poor resolution during the day.

Modality Full CS Pose Att. MPViT RMSE MAE δ1 δ2 δ3
Res. Training Ref. Fusion Backb. [m] [m] [%] [%] [%]

Test Data – Night (Evaluated on LiDAR Ground-Truth Points)

A
B

L
A

T
IO

N

Stereo-RCCB-Gated ✓ ✓ ✓ ✓ ✓ 6.23 2.03 96.69 98.50 99.26
Stereo-RCCB-Gated ✗ ✓ ✓ ✓ ✓ 6.53 2.04 96.37 98.45 99.24
Stereo-RCCB-Gated ✗ ✗ ✓ ✓ ✓ 6.87 2.18 96.20 98.24 99.13
Stereo-RCCB-Gated ✗ ✗ ✗ ✓ ✓ 6.98 2.23 96.01 98.21 99.11
Stereo-RCCB-Gated ✗ ✗ ✗ ✗ ✓ 7.23 2.42 95.89 98.20 99.10
Stereo-RCCB-Gated ✗ ✗ ✗ ✗ ✗ 8.17 2.74 95.23 97.79 98.89
RCCB-Gated ✗ ✗ ✗ ✗ ✗ 10.56 7.89 45.23 79.49 91.14
Mono-Gated ✗ ✗ ✗ ✗ ✗ 10.87 4.70 89.91 95.77 97.90

Test Data – Day (Evaluated on LiDAR Ground-Truth Points)

A
B

L
A

T
IO

N

Stereo-RCCB-Gated ✓ ✓ ✓ ✓ ✓ 6.89 1.95 97.18 98.55 99.18
Stereo-RCCB-Gated ✗ ✓ ✓ ✓ ✓ 7.09 1.93 97.03 98.46 99.11
Stereo-RCCB-Gated ✗ ✗ ✓ ✓ ✓ 7.57 2.12 96.62 98.35 99.04
Stereo-RCCB-Gated ✗ ✗ ✗ ✓ ✓ 7.64 2.16 96.37 98.52 99.06
Stereo-RCCB-Gated ✗ ✗ ✗ ✗ ✓ 7.92 2.29 96.50 98.25 98.00
Stereo-RCCB-Gated ✗ ✗ ✗ ✗ ✗ 8.17 2.44 96.46 98.12 98.92
RCCB-Gated ✗ ✗ ✗ ✗ ✗ 8.61 4.73 67.33 89.75 96.30
Mono-Gated ✗ ✗ ✗ ✗ ✗ 13.71 6.05 88.99 95.56 97.71

Table 3. Ablation Experiments on the dataset from [80]. We inves-
tigate different resolution, training method, remove components of
our proposed CSM, the MPViT [45] backbone and test different
input modalities.

the perspective of the left gated camera and match the reso-
lution of the RCCB images.

Our evaluation metrics are in line with those estab-
lished in [19]. We use Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Absolute Relative Difference
(ARD), and the threshold accuracy metric δi < 1.25i for
i ∈ 1, 2, 3. All methods in our evaluation have been fine-
tuned on our dataset for a fair comparison.

Depth Reconstruction. Qualitative results are presented
in Figure 7 and quantitative results in Table 1. Here, we
compare against three recent gated [24, 78, 80], six monoc-
ular RGB [5, 22, 26, 50, 51, 64], six stereo RGB [14, 48, 54,
56, 87, 88] and two cross-spectral stereo [55, 92] methods.
Compared to the next best stereo method, Gated Stereo [80],
our method reduces the error by 9.7 % and 0.22 m in Mean
Absolute Error (MAE) during nighttime conditions and by
13.3 % and 0.3 m during day conditions. Additionally, we
compare our method to the two next-best stereo methods
[48, 80] on accumulated LiDAR ground-truth maps which
allow assessment up to 220 m in Table 2. Our method
reduces the error of the next best method averaged over
day and night, Gated Stereo [80], by 16.1 % and 1.4 m and
CREStereo [48] by 17.1 % and 1.7 m. For distances be-
tween 100 and 220 m, our method achieves an improvement

of 39.6 % over [80] and 39.2 % over [48], demonstrating a
considerable improvement at long distances. Note that [80]
is designed for distances up to 160 m only. Qualitatively,
this improvement is visible in sharper edges and rendering
of fine details missed by other methods. Compared to the
two next-best methods [48, 80], the benefits of our cross-
spectral depth estimation are highlighted for fine structures
at large distances, see Fig. 6. Compared to alternative cross-
spectral stereo methods like CS-Stereo [92], our method is
visually and quantitatively superior by a wide margin of
83.0 % as these methods generally don’t display details.

Qualitative Assessment of Lost Cargo Data Our study in-
cludes a qualitative comparison of depth estimation meth-
ods, focusing on detecting small, potentially hazardous
highway objects (as shown in Figure 4, with more exam-
ples in the Supplemental Material). This is critical for
autonomous driving, where early detection of such ”lost
cargo” is necessary for safe maneuvering. Traditional
LiDAR often lacks the necessary depth detail for small ob-
jects, while passive RCCB cameras are effective in day-
light but less so in low light. Gated cameras, although use-
ful, struggle in bright conditions and have lower resolution.
Our analysis highlights that high-resolution RCCB data and
precise time-of-flight gated data combined with our cross-
spectral gated stereo surpass single-modality sensors in de-
tecting small objects at long distances, an essential capabil-
ity for advanced autonomous driving systems.

Ablation Experiments. Next, we evaluate the effectiveness
of our method by progressively removing components from
the full model, see Table 3. We start with the full model,
achieving the overall best metrics averaged over day and
night. First, we downsample the RCCB image to a third
of its original height and width, effectively setting the res-
olution of the depth map to be similar to the resolution of
the gated image. This leads to a visible reduction of de-
tails in the depth map which cannot be measured quanti-
tatively using sparse LiDAR. To assess the effectiveness of
our cross-spectral (CS) training approach, encompassing al-
ternating training, self-supervised losses, and dense LiDAR
supervision, we then remove this component, training with
sparse LiDAR supervision only, which results in an increase
in MAE by 8.4%. Further simplification involves omitting
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Figure 6. Comparison of our method to LiDAR and the best state-of-the-art methods that rely only on a single modality: Gated Stereo
(gated images) [80] and CREStereo (RCCB images) [48]. Our method recovers fine details of distant objects irrespective of daylight and
nighttime. Limitation of depth range in colorized depth maps for visualization purposes only.

Figure 7. Qualitative comparison of our Gated-RCCB Stereo and existing methods. Our approach is unique in its ability to produce
consistently accurate and high-detail depth maps regardless of the ambient illumination condition. In our depth maps, fine structures such
as trees or poles are clearly visible, unlike other methods that struggle with consistent depth prediction for these elements. For enhanced
visibility of distant objects, the color maps used in zoom-ins are inverted and scaled.

the pose-refinement step within our proposed CSM. This
step, too, causes an increase in MAE by 2.1%, indicating
the effectiveness of these components in our method. Sub-
sequent removal of the attention-based feature fusion mech-
anism and replacing MPViT backbone with the backbone
from [48] shows an additional decrease in MAE by 7.3%
and 9.9%, respectively. Next, we analyze the impact of the
dual-camera setup, comprising one RCCB and one gated
camera. Discarding this setup leads to more than double
the MAE, highlighting the importance of the double stereo
camera configuration. Finally, we revert to a monocular
depth estimation baseline, which records the highest day-
time MAE, highlighting the value of stereo cues.

7. Conclusion
In this study, we devise a novel cross-spectral method for

stereo depth estimation, combining active gated NIR and
high-resolution HDR RCCB cameras. This approach out-
performs existing LiDAR sensors in spatial resolution with-

out compromising depth accuracy. Our method is effective
in varying lighting conditions, with gated NIR excelling at
night and RCCB cameras in daylight. To combine both
modalities, we propose a stereo depth estimation method
that hinges on a new cross-spectral fusion module trained
both supervised and self-supervised losses. Economically
viable, our system employs cost-effective CMOS sensors,
achieving depth with superior accuracy and quality, surpass-
ing existing methods that rely on single modalities by 39%
in MAE at long ranges. This enables novel applications like
long-distance detection of small ground-level objects.
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[66] Dominic Rüfenacht, Clément Fredembach, and Sabine
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