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Abstract

This paper introduces a versatile paradigm for inte-

grating multi-view reflectance (optional) and normal maps

acquired through photometric stereo. Our approach em-

ploys a pixel-wise joint re-parameterization of reflectance

and normal, considering them as a vector of radiances

rendered under simulated, varying illumination. This re-

parameterization enables the seamless integration of re-

flectance and normal maps as input data in neural volume

rendering-based 3D reconstruction while preserving a sin-

gle optimization objective. In contrast, recent multi-view

photometric stereo (MVPS) methods depend on multiple,

potentially conflicting objectives. Despite its apparent sim-

plicity, our proposed approach outperforms state-of-the-art

approaches in MVPS benchmarks across F-score, Chamfer

distance, and mean angular error metrics. Notably, it sig-

nificantly improves the detailed 3D reconstruction of areas

with high curvature or low visibility.

1. Introduction

Automatic 3D reconstruction is pivotal in various fields,

such as archaeological and cultural heritage (virtual recon-

struction), medical imaging (surgical planning), virtual and

augmented reality, games and film production.

Multi-view stereo (MVS) [5], which retrieves the geom-

etry of a scene seen from multiple viewpoints, is the most

famous 3D reconstruction solution. Coupled with neural

volumetric rendering (NVR) techniques [22], it effectively

handles complex structures and self-occlusions. However,

dealing with non-Lambertian scenes remains a challenge

due to the breakdown of the underlying brightness consis-

tency assumption. The problem is also ill-posed in certain

configurations e.g., poorly textured scene [25] or degener-
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Figure 1. One image from DiLiGenT-MV’s Buddha dataset [12],

and 3D reconstruction results from several recent MVPS methods:

[11, 26, 27] and ours. The latter provides the fine details closest to

the ground truth (GT), while being remarkably simpler.

ate viewpoints configurations with limited baselines. More-

over, despite recent efforts in this direction [13], recovering

the thinnest geometric details remains difficult under fixed

illumination. In such a setting, estimating the reflectance of

the scene also remains a challenge.

On the other hand, photometric stereo (PS) [24], which

relies on a collection of images acquired under varying

lighting, excels in the recovery of high-frequency details

under the form of normal maps. It is also the only pho-

tographic technique that can estimate reflectance. And,

with the recent advent of deep learning techniques [8], PS

gained enough maturity to handle non-Lambertian surfaces

and complex illumination. Yet, its reconstruction of geom-

etry’s low frequencies remains suboptimal.
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Given these complementary characteristics, the integra-

tion of MVS and PS seems natural. This integration, known

as multi-view photometric stereo (MVPS), aims to recon-

struct geometry from multiple views and illumination con-

ditions. Recent MVPS solutions jointly solve MVS and PS

within a multi-objective optimization, potentially losing the

thinnest details due to the possible incompatibility of these

objectives – see Fig. 1. In this work, we explore a simpler

route for solving MVPS by decoupling the two problems.

We start with the observation that recent PS techniques

deliver exceptionally high-quality reflectance and normal

maps, which we use as input data. To accurately recon-

struct the surface reflectance and geometry, we need to fuse

these maps, a challenging task within a single-objective op-

timization due to their inhomogeneity. Our method provides

a solution to this problem by combining NVR with a simple

and effective pixel-wise re-parameterization.

In this method, the input reflectance and normal for each

pixel are merged into a vector of radiances simulated un-

der arbitrary, varying illumination. We then adapt an NVR

pipeline to optimize the consistency of these simulations

wrt to the scene reflectance and geometry, modeled as the

zero-level set of a trained signed distance function (SDF).

Coupled with a state-of-the-art PS method such as [8] for

obtaining the input reflectance and normals, this approach

yields an MVPS pipeline reaching an unprecedented level

of fine details, as illustrated in Fig. 1. Besides being the

first to exploit reflectance as a prior, our proposed MVPS

paradigm is extremely versatile, compatible with any exist-

ing or future PS method, whether calibrated or uncalibrated,

deep learning-based, or classic optimization procedures.

The rest of this work is organized as follows. Sect. 2 dis-

cusses state-of-the-art MVPS methods. The proposed 3D

reconstruction from reflectance and normals is detailed in

Sect. 3. Sect. 4 then sketches a proposal for an MVPS algo-

rithm based on this approach. Sect. 5 extensively evaluates

this algorithm, before our conclusions are drawn in Sect. 6.

2. Related work

Classical methods The first paper to deal with MVPS is

by Hernandez et al. [6]. To avoid having to arbitrate the

conflicts between the different normal maps, a 3D mesh is

iteratively deformed, starting from the visual hull until the

images recomputed using the Lambertian model match the

original images, while penalizing the discrepancy between

the PS normals and those of the 3D mesh. No prior knowl-

edge of camera poses or illumination is required. Under the

same assumptions, Park et al. [19, 20] start from a 3D mesh

obtained by SfM (structure-from-motion) and MVS. Simul-

taneous estimation of reflectance, normals and illumination

is achieved by uncalibrated PS, using the normals from the

3D mesh to remove the ambiguity, and estimating the de-

tails of the relief through 2D displacement maps.

MVPS is solved for the first time with a SDF representa-

tion of the surface by Logothetis et al. [14]. Therein, illumi-

nation is represented as near point light sources which are

assumed calibrated, as well as the camera poses. Thanks to

a voxel-based implementation, the surface details are better

rendered than with the method of Park et al. [20].

Li et al [12] refine a 3D mesh obtained by propagating

the SfM points according to [17], and estimate the BRDF

using a calibrated setup. The creation of the public dataset

“DiLiGenT-MV” validates numerically the improved re-

sults, in comparison with those of [20].

Deep learning-based methods Kaya et al. [10] pro-

posed a solution to MVPS based on neural radiance fields

(NeRFs) [16]. For each viewpoint, a normal map is ob-

tained using a pre-trained PS network, before a NeRF is

adapted to account for input surface normals from PS in

the color function. The recovered geometry yet remains

perfectible, according to [9]. Therein, the authors propose

learning an SDF function whose zero level set best explains

pixel depth and normal maps obtained by a pre-trained

MVS [21] or PS network [7], respectively. To manage con-

flicting objectives in the proposed multi-objective optimiza-

tion and get the best out of MVS and PS predictions, both

networks are modified to output uncertainty measures on

depth and normal predictions. The SDF optimization is then

carried out while accounting for the inferred uncertainties.

PS-NeRF [26] solves MVPS by jointly estimating the ge-

ometry, material and illumination. To this end, the authors

propose to regularize the gradient of a UNISURF [18] us-

ing the normal maps from PS, while relying on multi-layer

perceptrons (MLPs) to explicitly model surface normals,

BRDF, illumination, and visibility. These MLPs are op-

timized based on a shadow-aware differentiable rendering

layer. A similar track is followed in [2], where NeRFs are

combined with a physically-based differentiable renderer.

Such NeRF-based approaches provide undeniably better

3D reconstructions than classical methods, yet they remain

computationally intensive. Recently, Zhao et al. [27] pro-

posed a fast deep learning-based solution to MVPS. Ag-

gregated shading patterns are matched across viewpoints so

that to predict pixel depths and normal maps.

In [11], the authors proposed to complement the solu-

tion of [9] by adding a NVR loss term in order to benefit

from the reliability of NVR in reconstructing objects with

diverse material types. However, this results in a multi-

objective optimization comprising three loss terms (besides

the Eikonal term). However, similar to [9], the uncertainty-

based hyper-parameter tuning does not completely elimi-

nate conflicting objectives, which may induce a loss of fine-

scale details. In contrast, we propose a single objective opti-

mization based on an ad hoc re-parametrization which leads

to the seamless integration of PS results in standard NVR

pipelines. This is detailed in the next paragraph.
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Figure 2. Overview of the proposed MVPS pipeline. The reflectance and normal maps provided for each view by PS are fused, by

combining volume rendering with a pixel-wise re-parameterization of the inputs using physically-based rendering.

3. Proposed approach

Our aim is to infer a surface whose geometric and photo-

metric properties are consistent with the per-view PS re-

sults. To do so, we resort to a volume rendering framework

coupled with a re-parameterization of the inputs, as illus-

trated in Fig. 2 and detailed in the rest of this section.

3.1. Overview

Input data From the N image sets captured under fixed

viewpoint and varying illumination, PS provides N re-

flectance and normal maps, out of which we extract a batch

of m posed reflectance and normal values {rk ∈ R,nk ∈
S
2}k=1...m. Here, the normal vectors are expressed in

world coordinates using the known camera poses. The in-

put reflectance is without loss of generality represented by

a scalar (albedo). Let us emphasize that this assumption

does not imply that the observed scene must be Lambertian,

but rather that we use only the diffuse component of the

estimated reflectance. Using other reflectance components

(specularity, roughness, etc.), if available, would represent a

straightforward extension to more evolved physically-based

rendering (PBR) models. Yet, we leave such an extension

to perspective for now, since there are few PS methods reli-

ably providing such data. Also, if the PS method provides

no reflectance, one can set rk ≡ 1 and use the proposed

framework for multi-view normal integration.

Surface parameterization Our aim is to infer a 3D

model of a scene, which consists of both a geometric map

f : R
3 → R and a photometric one ρ : R

3 → R.

Therein, f associates a 3D point with its signed distance

to the surface, which is thus given by the zero level set of f :

S = {x ∈ R
3 | f(x) = 0}. Regarding ρ, it encodes the re-

flectance associated with a 3D point. For input consistency,

ρ is considered as a scalar function (albedo), though more

advanced PBR models could again be incorporated.

Objective function Our method builds upon a re-

parameterization v : S
2 × R → R

n which combines a

surface normal nk ∈ S
2 and a reflectance value rk ∈ R

into a vector v(nk, rk) ∈ R
n of n radiance values that

are simulated by physically-based rendering, using an ar-

bitrary image formation model under varying illumination.

Given this re-parameterization, the 3D reconstruction prob-

lem amounts to minimizing the difference between a batch

of m intensity vectors simulated either from the input data

or from volume rendering with the same PBR model, along

with a regularization on the SDF:

min
f,ρ

m∑
k=1

∥v(nk, rk)− ṽk(f, ρ)∥1 + λLreg(f). (1)

Here, {(nk, rk)}k=1...m stands for the batch of input re-

flectance and normal values, v(nk, rk) for the k-th in-

tensity vector simulated from the input data, ṽk(f, ρ) for

the corresponding one simulated by volume rendering, and

λ > 0 is a tunable hyper-parameter for balancing the data

fidelity with the regularizer Lreg. The actual optimization

can then be carried out seamlessly by resorting to a vol-

ume rendering-based 3D reconstruction pipeline such as

NeuS [22], given that both ṽk(f, ρ) and v(nk, rk) cor-

respond to pixel intensities. Let us now detail how we

simulate the latter intensities v(nk, rk) from the input re-

flectance and normal data.

3.2. Reflectance and normal re­parameterization

The input reflectance {rk ∈ R}k and normals {nk ∈ S
2}k

values constitute inhomogeneous quantities: the former are

photometric scalars, and the latter geometric vectors lying

on the three-dimensional unit sphere. Direct optimization

of their consistency with the scene normal ∇f
∥∇f∥ and albedo

ρ would lead to multiple objectives balanced by hyper-

parameters.
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Instead, we propose to jointly re-parameterize the re-

flectance and normal data into a set of vectors {v(nk, rk) ∈
R

n}k of homogeneous quantities, namely radiance val-

ues simulated using a PBR model under varying illu-

mination. In order to enforce the bijectivity of this

re-parameterization, we choose as PBR model the lin-

ear Lambertian one, under pixel-wise varying illumina-

tion represented by n = 3 arbitrary illumination vectors

lk,1, lk,2, lk,3 ∈ R
3:

v(nk, rk) = rk[n
⊤
k lk,1,n

⊤
k lk,2,n

⊤
k lk,3]

⊤ (2)

= rkLk nk,

with Lk = [lk,1, lk,2, lk,3]
⊤

the arbitrary per-pixel illumina-

tion matrix.

For the re-reparameterization to be bijective, the re-

flectance rk must be non-null (a basic assumption in pho-

tographic 3D vision), and Lk must be non-singular i.e., the

lighting directions must be chosen linearly independent.

Then, the original reflectance and normal can be retrieved

from the simulated intensities by rk = ∥L−1
k v(nk, rk)∥ and

nk =
L
−1

k
v(nk,rk)

∥L−1

k
v(nk,rk)∥

. Considering n > 3 illumination vec-

tors and resorting to the pseudo-inverse operator might in-

duce more robustness but at the price of losing bijectivity

and thus not entirely relying on the PS inputs. We leave

this as a possible future work, which might be particularly

interesting when the PS inputs are uncertain, or when con-

sidering more evolved PBR models involving additional re-

flectance clues such as roughness, anisotropy or specularity.

In practice, the choice of each arbitrary triplet of light

directions lk,1, lk,2, lk,3 can be made to minimize the uncer-

tainty on the normal estimate. To this end, the illumination

triplet proposed in [4] can be considered. Therein, the au-

thors show that the optimal configuration for three images

is vectors that are equally spaced in tilt by 120 degrees, with

a constant slant of 54.74 degrees (wrt to nk).

Let us remark that with the above linear model, it is

possible to simulate negative radiance values, when one

of the dot products between the normal and the lighting

vectors is negative, which corresponds to self-shadowing.

While negative radiance values are obviously non physi-

cally plausible, this is not a problem for the proposed re-

parameterization, as long as it remains consistent with the

NVR strategy, which we are now going to detail.

3.3. Volume rendering­based 3D reconstruction

We now turn our attention to deriving the volume rendering

function ṽk arising in Eq. (1). The role of this function is

to simulate, from the scene geometry f and albedo ρ, an

intensity vector ṽk which will be compared with the vec-

tor vk that is simulated from the inputs as described in the

previous paragraph.

Our solution largely takes inspiration from the NeuS

method [22], that was initially proposed as a solution to the

single-light multi-view 3D surface reconstruction problem.

Therein, the rendering function follows a volume render-

ing scheme which accumulates the colors along the ray cor-

responding to the k-th pixel. Denoting by ok ∈ R
3 the

camera center for this observation, and by dk the corre-

sponding viewing direction, this ray is written {xk(t) =
ok + tdk | t ≥ 0}. By extending the NeuS volume renderer

to the multi-illumination scenario, each coefficient ṽk,l of

ṽk is then given, ∀l ∈ {1, 2, 3}, by:

ṽk,l =

∫ tf

tn

w(t, f(xk(t))) cl(xk(t)) dt, (3)

where tn, tf stand for the range bounds over which the col-

ors are accumulated. The weight function w is constructed

from the SDF f in order to ensure that it is both occlusion-

aware and locally maximal on the zero level set, see [22]

for details. As for the functions cl : R
3 → R, they represent

the scene’s apparent color. In the original NeuS framework,

this color depends not only on the 3D locations, but also on

the viewing direction dk, and it is directly optimized along

with the SDF f . Our case, where the albedo is optimized in

lieu of the apparent color, and the illumination varies with

the data index k and the illumination index l, is however

slightly different.

As a major difference with this prototypical NVR-based

3D reconstruction method, we optimize the SDF f and the

surface albedo i.e., the scene’s intrinsic color ρ rather than

its apparent color cl. The dependency upon the viewing di-

rection must thus be removed, in order to ensure consistency

with the Lambertian model used for simulating the inputs.

More importantly, contrarily to NeuS where the illumina-

tion is fixed, each input data vk,l := rkn
⊤
k lk,l is simulated

under a different, arbitrary illumination lk,l. For the NVR to

produce simulations ṽk,l matching this input set of intensi-

ties, it is necessary to explicitly write the dependency of the

apparent color cl upon the scene’s geometry f , reflectance

ρ and illumination lk,l. Our volume renderer is then still

given by Eq. (3), but the color of each 3D point must be

replaced by:

cl(xk(t)) = ρ(xk(t))∇f(xk(t))
⊤
lk,l, (4)

where the illumination vectors lk,l are the same as those in

Eq. (2).

Let us remark that the scalar product above corresponds,

up to a normalization by ∥∇f(xk(t))∥, to the shading. Yet,

we do not need to apply this normalization, because the reg-

ularization term Lreg(f) in (1) will take care of ensuring the

unit length of ∇f . Indeed, as in the original NeuS frame-

work, the SDF is regularized using an eikonal term:

Lreg(f) =

∑m
k=1

∫ tf

tn
(∥∇f(xk(t))∥

2 − 1)2 dt

m (tf − tn)
. (5)
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Similarly to the original NeuS, an additional regularization

based on object masks can also be utilized for supervision,

if such masks are provided.

Plugging (4) into (3) yields the definition of our volume

renderer accounting for the varying, arbitrary illumination

vectors lk,l. Next, plugging (2), (3) and (5) into (1), we ob-

tain our objective function, which ensures the consistency

between the simulations obtained from the input, and those

obtained by volume rendering. It should be emphasized

that, besides the eikonal regularization – which is standard

and only serves to ensure the unit-length constraint of the

normal, our strategy leads to a single objective optimization

formulation for NVR-based 3D surface reconstruction from

reflectance and normal data.

The discretization of the variational problem (1) is then

achieved exactly as in the original NeuS work [22]. It is

based on representing f and ρ by MLPs and hierarchically

sampling points along the rays.

4. Application to MVPS

We present a standalone MVPS pipeline that is built on top

of the proposed reflectance and normal-based 3D recon-

struction method. Our MVPS pipeline includes the follow-

ing steps:

1. Compute the reflectance and normals maps for each

viewpoint through PS;

2. Select a batch of the most reliable inputs {rk} and {nk};

3. Scale the reflectance values {rk} across the entire image

collection;

4. Simulate the radiance values following Eq. (2), using a

pixel-wise optimal lighting triplet Lk;

5. Optimize the loss in Eq. (1) over the SDF f and

albedo ρ;

6. Reconstruct the surface from the SDF.

Step 1: PS-based reflectance and normal estimation

Any PS method is suitable for obtaining the inputs for each

viewpoint. However, not all PS methods actually provide

reflectance clues, and not all of them can simultaneously

handle non-Lambertian surfaces and unknown, complex il-

lumination. CNN-PS [7], for instance, provides only nor-

mals, and for calibrated illumination. For these reasons,

we base our MVPS pipeline on the recent transformers-

based method SDM-UniPS [8], which exhibits remarkable

performance in recovering intricate surface normal maps

even when images are captured under unknown, spatially-

varying lighting conditions in uncontrolled environments.

As advised by the author of [8], when the number of images

is too large for the method to be applied, one can simply

take the median of the results over sufficiently many Ntrials

random trials, each trial involving the random selection of a

few number of images.

Step 2: Uncertainty evaluation To prevent poorly esti-

mated normals from corrupting 3D reconstruction, we dis-

card the less reliable ones. To this end, we use as uncer-

tainty measure the average absolute angular deviation of the

normals computed over the Ntrials random trials in Step 1.

Pixels associated with an uncertainty measure higher than a

threshold (τ = 15◦ in our experiments) are excluded from

the optimization. Advanced uncertainty metrics, as pro-

posed by Kaya et al. [9], could further refine this process.

Step 3: Reflectance maps scaling The individual re-

flectance maps computed by PS need to be appropriately

scaled. This is because in an uncalibrated setting, the re-

flectance estimate is relative to both the camera’s response,

and the incident lighting intensity. Consequently, each re-

flectance map is estimated only up to a scale factor. To es-

timate this scale factor, the complete pipeline is first run

without using the reflectance maps. This provides pairs

of homologous points that are subsequently used to scale

the reflectance maps. Concretely, given a pair of neigh-

boring viewpoints, the ratios of corresponding reflectance

values between the two viewpoints are stored, and their me-

dian is used to adjust each reflectance map’s scale factor.

This operation is repeated across the entire viewpoint col-

lection. Note that, if the camera’s response and the illumi-

nation were known i.e., a calibrated PS method was used

in Step 1, then the reflectance would be determined without

scale ambiguity and this step could be skipped.

Step 4: Radiance simulation To simulate the radiance

values, we choose as lighting triplet the one which is op-

timal, relative to the normal nk [4]. The actual formula is

provided in the supplementary material.

Step 5: Optimization The actual optimization of the loss

function is carried out using a straightforward adaptation

of the NeuS architecture [22], where viewing direction was

removed from the network’s input to turn radiance into

albedo. In all our experiments, we let the optimization run

for a total of 300k iterations, with a batch size of 512 pix-

els. To ensure that the networks have a better understanding

of our MVPS data, we decided to train each iteration not

only on a random view, but also on all rendered images of

this view under varying illumination. The backward oper-

ation is then applied only after the loss is computed on all

pixels for all the illumination conditions. In terms of com-

putation time, our approach is comparable with the original

NeuS framework, requiring in our tests from 8 to 16 hours

on a standard GPU for the 3D reconstruction of each dataset

from DiLiGenT-MV [12].

Step 6: Surface reconstruction Once the SDF is esti-

mated, we extract its zero level set using the marching cube

algorithm [15].
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5. Experimental results

5.1. Experimental setup

Evaluation datasets We used the DiLiGenT-MV bench-

mark dataset [12] to perform all our experiments, statistical

evaluations, and ablations. It includes five real-world ob-

jects with complex reflectance properties and surface pro-

files, making it an ideal choice for the proposed method

evaluation. Each object is imaged from 20 calibrated

viewpoints using the classical turntable MVPS acquisition

setup [6]. For each view, 96 images are acquired under

different illuminations. Given the large volume of images,

which is impractical for transformers-based methods, our

implementation of Step 1 (PS) employs SDM-UniPS [8]

with only 10 input images. To this end, we computed each

rk and nk as the medians of the computed reflectances and

normals over Ntrials = 100 random trials, each trial involv-

ing the random selection of 10 images from the 96 available

in the DiLiGenT-MV dataset.

Evaluation scores We performed our quantitative evalua-

tions using F-score and Chamfer distance (CD), to measure

the accuracy of the reconstructed vertices. We also mea-

sured the mean angular error (MAE) of the imaged meshes,

to evaluate the accuracy of the reconstructed normals wrt

the ground truth normals provided in DiLiGenT-MV. We

report both the results averaged over all mesh vertices, and

those on vertices clustered in two particularly interesting

classes, namely high curvature and low visibility areas, as

illustrated in Fig. 3. To identify the high curvature areas,

we used the library VCGLib [1] and the 3D mesh process-

ing software system Meshlab [3], taking the absolute value

of the curvature to merge the convex and concave zones and

retaining the vertices whose curvature is higher than 1.6. To

segment the low visibility areas, we summed the boolean

visibility of each vertex in each view. Low visibility then

corresponds to vertices visible in less than 5 viewpoints,

among the 20 ones of DiLiGenT-MV.

Figure 3. High curvature (left) and low visibility (right) areas, on

the Buddha and Reading datasets.

5.2. Baseline comparisons

We first provide in Fig. 4 a qualitative comparison of our re-

sults on four objects, and compare them with the three most

recent methods from the literature, namely PS-NERF [26],

Kaya23 [11] and MVPSNet [27]. In comparison with these

state-of-the-art deep learning-based methods, the recovered

geometry is overall more satisfactory.

This is confirmed quantitatively when evaluating Cham-

fer distances and MAE, provided in Tables 1 and 2. Therein,

beside the aforementioned methods we also report the re-

sults from the Kaya22 method [9] and those from the non

deep learning-based ones Park16 [20] and Li19 [12] (which

is not fully automatic). From the tables, it can be seen

that our method outperforms other fully automated stan-

dalone ones, and is competitive with the semi-automated

one. On average, our method reports a Chamfer distance

which is 17.4% better than the second best score, obtained

by MVPSNet [27]. Regarding MAE, our score is similar

to Kaya23 [11] with a small average difference of 0.2 de-

gree. The superiority of our approach can also be observed

by considering the F-scores, which are reported in Fig. 5.

Chamfer distance ↓

Methods Bear Budd. Cow Pot2 Read. Aver.

Park16 0.92 0.39 0.34 0.94 0.53 0.62

Li19 † 0.22 0.28 0.11 0.23 0.27 0.22

Kaya22 0.39 0.4 0.3 0.4 0.35 0.37

PS-NeRF 0.32 0.28 0.24 0.24 0.33 0.28

Kaya23 0.33 0.21 0.22 0.37 0.28 0.28

MVPSNet 0.28 0.3 0.25 0.27 0.25 0.27

Ours 0.22 0.22 0.25 0.16 0.27 0.23

Table 1. Chamfer distance (lower is better) averaged overall all

vertices. Best results. Second best. Since † requires manual

efforts, it is not ranked.

Normal MAE ↓

Methods Bear Budd. Cow Pot2 Read. Aver.

Park16 9.64 12.6 8.23 11.1 9.01 10.1

Li19 † 3.85 11.0 2.82 5.88 6.30 5.97

Kaya22 4.89 12.5 4.44 8.68 6.52 7.41

PS-NeRF 5.48 11.7 5.46 7.65 9.13 7.88

Kaya23 3.24 8.12 3.04 5.63 5.66 5.14

MVPSNet 5.26 14.1 6.28 6.69 8.58 8.18

SDM-UniPS* 4.79 9.60 5.46 5.56 10.1 7.12

Ours 2.70 8.17 3.61 4.11 6.18 4.95

Table 2. Normal MAE (lower is better) averaged over all views.

For reference, the mono-view PS results from SDM-UniPS [8] (*)

are also provided, although it does not provide a full 3D recon-

struction and thus its Chamfer distance cannot be evaluated.

5235



PS-NeRF Kaya23 MVPSNet Ours GT PS-NeRF Kaya23 MVPSNet Ours GT
—————————————————————- —————————————————————-

Buddha Cow

PS-NeRF Kaya23 MVPSNet Ours GT PS-NeRF Kaya23 MVPSNet Ours GT
—————————————————————- —————————————————————-

Pot2 Reading

Figure 4. Reconstructed 3D mesh and corresponding angular error of four objects from the DiLiGenT-MV benchmark.
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Figure 5. F-score (higher is better) as a function of the distance

error threshold, in comparison with other state-of-the-art methods

(a), and disabling individual components of our method (b).

5.3. High curvature and low visibility areas

To highlight the level of details in the 3D reconstructions,

Figs. 1 and 6 provide other qualitative comparisons focusing

on one small part of each object. Ours is the only method

achieving a high fidelity reconstruction on the ear, the knot

and the navel of Buddha, and on the spout of Pot2. To quan-

tify this gain, we also report in Table 3 the average CD and

MAE over all datasets, yet taking into account only the high

curvature and low visibility areas. It is worth noticing that

the CD error of PS-NeRF and MVPSNet on high curvature

areas increases by 36% and 96%, respectively, in compari-

son with that averaged over the entire set of vertices. Ours,

on the contrary, increases by 4% only. Similarly, on low

visibility areas their error increases by 78% and 81%, and

Kaya23 by 46%, while ours increases only by 13%.

All High curv. Low vis.

% Vertices 100% 8.27% 8.70%

Scores CD MAE CD MAE CD MAE

Park16 0.62 10.1 0.88 29.0 0.68 29.6

Li19 † 0.22 5.97 0.51 26.2 0.67 33.3

Kaya22 0.37 7.41 0.45 28.0 0.54 31.7

PS-NeRF 0.28 7.88 0.38 25.8 0.5 24.0

Kaya23 0.28 5.14 0.29 23.6 0.41 20.7

MVPSNet 0.27 8.18 0.53 23.9 0.49 28.9

Ours 0.23 4.95 0.24 23.1 0.26 17.8

Table 3. Chamfer distance and normal MAE (lower is better) on

high curvature and low visibility areas.

5.4. Ablation study

Lastly, we conducted an ablation study, to quantify the im-

pact of some parts of our pipeline. More precisely, we

quantify in Fig. 5b and Table 4 the impact of providing PS-

estimated reflectance maps, in comparison with providing

only normals (“W/o reflectance”). We also evaluate that of

the pixel-wise optimal lighting triplet, in comparison with

using the same arbitrary one for all pixels in one view (“W/o

optimal lighting”). Lastly, we evaluate the impact of dis-

carding the less reliable inputs, in comparison with using

all of them (“W/o uncertainty”). The feature that influences

most the accuracy of the 3D reconstruction is the use of re-

flectance. The other two features also positively impact the

reconstruction, but to a lesser extent.
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Figure 6. Qualitative comparison between our results and state-of-the-art ones, on parts of the meshes representing fine details.

Chamfer distance ↓

Methods Bear Budd. Cow Pot2 Read. Aver.

W/o reflect. 0.23 0.22 0.39 0.16 0.31 0.26

W/o opt. l. 0.32 0.22 0.20 0.19 0.27 0.24

W/o uncert. 0.22 0.22 0.27 0.16 0.27 0.23

Ours 0.22 0.22 0.25 0.16 0.27 0.23

Table 4. Chamfer distance (lower is better) averaged overall all

vertices, while disabling individual features of the pipeline (re-

flectance estimation, optimal lighting, and uncertainty evaluation).

5.5. Limitations

Our approach heavily relies on the quality of the PS normal

maps. In our experiments, we used SDM-UniPS [8], which

generally yields high quality results. Yet, it occasionally

yields corrupted normals, leading to inconsistencies across

viewpoints that may result in errors in the reconstruction

(cf. supplementary material). This could be handled in the

future by replacing the PS method by a more robust one. A

second limitation, similar to PS-NeRF, is the computation

time, which falls within the range of 8 to 16 hours for one

object in DiLiGenT-MV. Fortunately, NeuS2 [23], a signif-

icantly faster version of NeuS, will allow us to reduce the

computation time to around ten minutes.

6. Conclusion

We have introduced a neural volumetric rendering method

for 3D surface reconstruction based on reflectance and nor-

mal maps, and applied it to multi-view photometric stereo.

The proposed method relies on a joint re-parameterization

of reflectance and normal as a vector of radiances rendered

under simulated, varying illumination. It involves a single

objective optimization, and it is highly flexible since any ex-

isting or future PS method can be used for constructing the

input reflectance and normal maps. Coupled with a state-

of-the-art uncalibrated PS method, our method reaches un-

precedented results on the public dataset DiLiGenT-MV in

terms of F-score, Chamfer distance and mean angular er-

ror metrics. Notably, it provides exceptionally high quality

results in areas with high curvature or low visibility. Its

main limitation for now is its computational cost, which we

plan to reduce by adapting recent developments within the

NeuS2 framework [23]. Using reflectance uncertainty in ad-

dition to that of normal maps offers room for improvement.
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