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Abstract

Image segmentation algorithms can be understood as
a collection of pixel classifiers, for which the outcomes of
nearby pixels are correlated. Classifier models can be cal-
ibrated using Inductive Conformal Prediction, but this re-
quires holding back a sufficiently large calibration dataset
for computing the distribution of non-conformity scores of
the model’s predictions. If one only requires only marginal
calibration on the image level, this calibration set consists of
all individual pixels in the images available for calibration.
However, if the goal is to attain proper calibration for each
individual pixel classifier, the calibration set consists of in-
dividual images. In a scenario where data are scarce (such
as the medical domain), it may not always be possible to set
aside sufficiently many images for this pixel-level calibration.
The method we propose, dubbed “Kandinsky calibration”,
makes use of the spatial structure present in the distribution
of natural images to simultaneously calibrate the classifiers
of “similar” pixels. This can be seen as an intermediate
approach between marginal (imagewise) and conditional
(pixelwise) calibration, where non-conformity scores are ag-
gregated over similar image regions, thereby making more
efficient use of the images available for calibration. We
run experiments on segmentation algorithms trained and
calibrated on subsets of the public MS-COCO and Medical
Decathlon datasets, demonstrating that Kandinsky calibra-
tion method can significantly improve the coverage. When
compared to both pixelwise and imagewise calibration on
little data, the Kandinsky method achieves much lower cov-
erage errors, indicating the data efficiency of the Kandinsky
calibration.

1. Introduction
Calibration of predictive models is a critical aspect of ma-
chine learning, particularly in applications with significant
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impact based on model outcomes, such as medical diagnos-
tics. Calibration ensures that predicted probabilities match
the actual empirical likelihood of the predicted events. A
well-calibrated model will output probabilities that corre-
spond closely to real-world frequencies; for instance, if
a model predicts an event with a probability p, this event
should, in reality, occur with frequency p.

In this work, we will focus on image segmentation tasks.
Here, the calibration procedure also plays a vital role. A seg-
mentation model can be interpreted as a collection of classi-
fiers, one for each output pixel. The calibration of each clas-
sifier thus affects decision-making at the pixel level, which
subsequently influences global measures of segmentation ac-
curacy (e.g. the Dice score). There are two straightforward
notions of calibration in the context of image segmentation:
marginal calibration, which measures the calibration aver-
aged over all pixels, or calibration conditional on a specific
pixel location.

One standard method for calibrating prediction models is
Conformal Prediction (CP), a framework that has received
increasing amounts of attention in recent years [2–5, 19, 26].
Conformal prediction provides statistically valid measures
of confidence in a model-agnostic manner. Whereas the
original (transductive) CP method [27] is computationally
demanding, the more recently developed inductive CP [23–
25, 30] is better suited for a present-day machine-learning
setting. This lower demand for computational resources
comes at the cost of requiring extra (labeled) data to be set
aside as a calibration set. One then defines a notion of a
non-conformity score, which measures the “strangeness” of
each sample and the associated model prediction in this cali-
bration set. The distribution of non-conformity scores in the
calibration set can then be used as a benchmark to compare
with newly unseen samples, which allows one to obtain a
statistically valid notion of confidence for the model’s pre-
dictions.

Now consider the case where one has set aside a calibra-
tion set of N images of dimensions m ⇥ n. If we require
only marginal calibration (i.e., aggregated over the whole
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image), we can view each pixel in each image as a separate
calibration data point so that our calibration set is of size
N ⇥m⇥ n. However, since a segmentation model contains
a “separate” classifier for each individual pixel, calibrating
such a model on the pixel level requires one to view each
image in the calibration set as a single sample. The calibra-
tion set is, therefore, only of size N in this case. Clearly, this
can pose a challenge for settings where data availability is
limited — for example, in the medical domain.

To address these challenges, we introduce “Kandinsky
calibration”, a technique that capitalizes on prior knowledge
of the spatial correlations within images to calibrate classi-
fiers across similar pixels more efficiently. This approach
balances the need for detailed calibration at the pixel level
with the practical limitations of data availability. It applies
conformal prediction in a novel way, achieving fine-grained
calibration with fewer calibration images. The following
sections will detail the Kandinsky calibration approach and
present experiments demonstrating its effectiveness in im-
proving the calibration when few calibration images are
available, a valuable attribute for segmentation applications.

Related Work Calibration for machine learning, and in
particular deep learning, has received much attention of late
[10, 11, 16, 18, 22]. For example, the “formalization” of the
calibration has been discussed in [8], providing the first steps
to a more formal understanding of the procedure and of cali-
brated functions. Conformal prediction [1, 20, 24, 31], the
framework we utilize in this work, is also growing increas-
ingly popular. Although work on risk control for segmenta-
tion purposes has been studied [3], thorough investigations of
calibration methods for segmentation are scarce [32]. Class
clustering based on the similarity of conformal scores was
investigated in a classification context in [12].

Overview The contributions of this work are ordered as
follows. In Sec. 2, we provide a short overview of calibra-
tion, conformal prediction, and coverage. In the following
section, Sec. 3, we discuss our novel Kandinsky calibration
framework. In Sec. 4, we show the experimental results of
the different calibration methods.

2. Calibration and Conformal Prediction
Due to the significant role of conformal prediction, calibra-
tion, and coverage, we provide a short introduction contain-
ing relevant information for this work.

2.1. Conformal Prediction

We provide a short introduction of conformal prediction
[20, 24, 31], following the conventions of the excellent in-
troduction in [1].

Let us consider a classification task first. Suppose we
are given a training set of images and labels of K classes.
Furthermore, we train a predictive model f on this data,
such that its outputs f(x) 2 [0, 1]K . Using the inductive
conformal prediction framework, we then apply the model
f to so-called calibration data, consisting of n i.i.d. unseen
samples I = (X1, Y1), . . . , (Xn, Yn).

Utilizing this calibration data and f , we consider a new
(unseen) datapoint (Xtest, Ytest), where we do not know Ytest.
The objective is to create a prediction set C↵(Xtest) ⇢
{1, 2, . . . ,K} with the following property

P (Ytest 2 C↵(Xtest)) � 1� ↵ , (1)

where ↵ is a user-chosen error rate. We can create these
prediction sets by defining a so-called non-conformity score
s(x) that measures how far off the model’s prediction f(x)
on an input x is from the ground truth. Then we define q̂↵ as
the d(n+1)(1�↵)e/n empirical quantile of the si ⌘ s(Xi)
in the calibration set. For the new test point Xtest (where the
label is unknown), we create the prediction set

C↵(Xtest) = {y | si  q̂↵} . (2)

It can then be shown that C↵(Xtest) satisfies (1).
The choice of the scoring function s(x) determines the

usefulness of the prediction sets, and what choice to make
here depends on the task at hand. For the remainder of this
work, we set

s(x) = 1� f(x)Y , (3)

where the subscript Y indicates that we take the model’s
output for the ground truth class Y . We leave it for future
work to investigate whether other scoring functions could
lead to better performance in the context of segmentation.

Segmentation In the case of segmentation, the model can
be seen as a collection of classifiers, one for each pixel.
Since these are separate classifier models, they should in
principle be calibrated independently if we want to create
valid prediction sets for each individual pixel. The upshot
of this is that every labeled image (Xi, Yi) in a calibration
dataset I should be taken as just a single calibration sample
for which we compute the non-conformity score si. We call
this pixelwise (or conditional) calibration.

If, however, we set ourselves the more modest goal of
marginal calibration where we only need the prediction sets
to be valid on average over the whole image, we can view
each pair (Xi, Yi,(x,y)) of input images with the ground
truth value for the pixel with coordinate (x, y) as a separate
calibration point. However, marginal calibration can be
attained even if a number of individual pixels are severely
miscalibrated, so this approach is suboptimal if we want to
have proper calibration guarantees in specific regions of the
image.
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If, therefore, one has access to a sufficiently large set
I of calibration images, it is preferable to apply the pixel-
wise calibration method. However, since labeling data for
segmentation is a time-consuming task, such data are often
scarce.

2.2. Calibration and Coverage Errors
A common calibration measure for prediction models is the
Expected Calibration Error (ECE). For a binary classification
task, it can be defined as

ECED(f) = ED [|ED[y|f(x)]� f(x)|] . (4)

Here D is the data distribution on inputs x and ground truth
labels y 2 {0, 1}. This expression, however, is not well-
defined for finite samples since it conditions on null events.
The ECE can be approximated in several ways [8]. One
particularly convenient and efficient method is to collect the
model output scores f(xi) (evaluated on a labeled dataset
of N samples xi) in bins Bm, and compute the so-called
binned ECE:

bECEM =
1

N

MX

m=1

|Bm| (conf (Bm)� acc (Bm)) , (5)

where conf (Bm) is the mean output score in the bin Bm and
acc (Bm) is the true fraction of positive samples for which
the score f(xi) is assigned to this bin. Throughout this
work, we refer to the binned ECE simply as ECEM (with a
subscript indicating the number of bins) to avoid clutter. We
present an example of a so-called reliability diagram in 1,
where we plot the accuracy as a function of the confidence
of the prediction model used in one of our experiments.

The ECE for a perfectly calibrated model equals zero: the
model’s output scores are precisely equal to the correspond-
ing observed accuracies in the long run. Note that this does
not imply the model has good classification performance: a
prediction model that outputs a score of 1/2 for each input
is perfectly calibrated if exactly half the samples belong to
the positive class.

When calibrating a model using conformal prediction,
we need another measure of calibration performance. The
aim of the prediction sets C↵ is to satisfy coverage condi-
tions, meaning that the correct (ground truth) class Ytest of an
unseen input Xtest should be in the prediction set C↵ (Xtest)
with probability at least 1�↵. We therefore define a (binned)
measure of the Coverage Error (CE) as follows:

CEM =
MX

m=1

⇣
cov

�
C1� m

M

�
� m

M

⌘
. (6)

The coverage cov (C↵) is defined as the frequency with
which the ↵ level prediction set C↵ contains the ground truth
class. We point out to the reader to carefully distinguish

Figure 1. Reliability diagram [7] of a segmentation model trained
on a subset of MS-COCO. The model’s prediction scores and
associated accuracies are aggregated over all pixels and assigned
to 20 bins of equal width. The ECE is computed by averaging the
absolute difference between the height of the bins and the diagonal.
This particular model is overconfident for output scores f ' 0.4
and underconfident for lower output scores.

Figure 2. Coverage diagram for two individual pixel locations of a
segmentation model trained on a subset of MS-COCO, calibrated
pixelwise on 20.000 images (blue) and on 100 images (red).

between the abbreviations ‘ECE’ for Expected Calibration
Error and ‘CE’ for Coverage Error.

For all our experiments in this work, we report the CE20,
that is, the coverage error obtained with 20 bins. A cov-
erage diagram is the counterpart of a reliability diagram
when evaluating the coverage properties of our prediction
sets. In Fig. 2 we present the “coverage curves” of two of
the (partially) calibrated pixel classifiers used in one of our
experiments.
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3. Kandinsky Calibration
Now that we have discussed the two ‘naive’ approaches
of marginal and conditional calibration, we introduce our
Kandinsky method. The primary rationale is as follows: the
pixel-level classifiers of a segmentation network are not inde-
pendent and are related by well-organized patterns encoded
in the task and data. In other words, we are able to use prior
knowledge in the calibration process of the segmentation
networks.

In order to do this, we first define the notion of a non-
conformity curve. Once we have computed non-conformity
scores for a classifier model on a calibration set, we use
its q̂-th quantiles to create prediction sets for unseen data.
This q̂-th quantile of the non-conformity scores is what we
refer to as the non-conformity curve z(q̂), where 0  q̂  1.
Note that non-conformity curves are defined for all q̂ in this
range, even if it based on only a small number of individual
non-conformity scores.

When performing pixelwise calibration, we compute a
separate non-conformity curve for each pixel coordinate
in the image. The other extreme, imagewise calibration,
computes a single non-conformity curve (based on the non-
conformity scores aggregated over the whole image) that is
then used for all pixel locations. Our Kandinsky method is
an intermediate approach, where we cluster nearby pixels
and compute a non-conformity curve for each cluster by
aggregating their non-conformity scores.

This clustering is performed by finding pixels with similar
non-conformity curves. This approach may seem circular,
since we first require the (potentially noisy) non-conformity
curves themselves to subsequently improve these curves over
the whole cluster. However, the prior knowledge used in
forming our clusters is that spatially nearby pixels are likely
to have similar non-conformity curves: therefore, even if
individual pixel locations in a certain spatial region have
a dissimilar non-conformity curve due to a lack of data,
they will still be grouped together with other pixels in their
neighborhood.

The general Kandinsky method for calibrating a predic-
tion model f can then be outlined as follows:
• Perform pixelwise calibration, computing separate non-

conformity curves for each pixel location. These non-
conformity curves are likely to be noisy in a low-data
scenario.

• Cluster pixel locations based on the similarity of their
non-conformity curves, potentially with a prior choice of
possible region shapes.

• For each cluster, aggregate all the non-conformity scores
encountered in the cluster, and compute a cluster-specific
non-conformity curve.

• When forming prediction sets for a given pixel, use the
newly obtained non-conformity curve of the cluster to
which this pixel belongs.

3.1. Computing Kandinsky Clusters

Having motivated the creation of clusters of non-conformity
curves, we will now provide several example methods of
computing them.

3.1.1 K-Means Clustering

As a first approach, we can find Kandinsky clusters using
a k-means clustering approach. In particular, we start with
a pixel-level calibrated model and subsequently consider
the non-conformity curves per pixel. At this stage, we
choose a set of k quantiles at which we wish to compare
non-conformity curves between the different pixels. The
k-means clustering approach then tries to group all m⇥ n
(image size) points in this k-dimensional space. Provided
we can obtain ‘good’ enough calibration measurements per
pixel, this approach will yield precise information about
which pixels are related.

However, in the low-data regime, this approach will be
prone to noise in the calibration of the individual pixels.
The resulting clusters will most likely be only based on
spurious relations and will not help obtain better calibration.
To optimize groups even in this low-data regime, we propose
two more methods.

3.1.2 Genetic Algorithms

Genetic algorithms [14, 17] are a class of optimization
techniques that “simulate” the process of natural evolution.
These algorithms excel in navigating complex search spaces
to identify solutions that might otherwise be inaccessible
through traditional optimization methods. The specific type
of algorithm we will employ is the so-called differential evo-
lution [29]. In the rest of the work, we refer to the approach
we outline here as GenAnn (for Genetic Annuli).

To be precise, for GenAnn, we will need to define a fitness
function F that evaluates how ‘good’ a candidate solution is,
a crossover function C which takes a collection of candidate
solutions and combines them into a new one, a mutating
function M which takes a candidate solution and randomly
transforms it, and a replacement function R that determines
if the candidate solutions are replaced with the mutated ones.
Furthermore, we must provide a parametrization xi of a can-
didate solution in terms of a finite set of real parameters.
In our experiments, this parametrization will consist of the
center coordinates and a set of radii for annuli. We show
the specific implementations of the above functions and gen-
eral procedure used in differential evolution for the reader’s
convenience in the supplementary material, Algorithm 1.
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3.1.3 Fourier Concentric Clustering

Here, we introduce the Fourier Concentric Clustering (FCC)
method. In this section, we shall provide only a short sum-
mary of the method; a detailed and formal explanation
can be found in the supplementary material, Sec. 8. For-
mally, we wish to construct a concentric decomposition of
Rn := [0, n1 � 1]⇥ [0, n2 � 1] on which the variances of a
user-prescribed quantity J : Rn ! Rp are minimized. This
approach systematically decomposes an image into a series
of concentric, nested subsets V0 ⇢ . . . ⇢ Vm�1 ⇢ Rn,
centralizing around the mean of J with minimized variance

mX

l=0

EAl

�
kJ � µlk2

�
, (7)

where µl denotes the mean of J on Al, and each Al will be
analogous to the annuli discussed in the genetic algorithms.
In other words, these Al will be one of the nested subsets
Vn, excluding the previous Vn�1.

To facilitate the decomposition, we redefine the image
domain Rn in a new coordinate system, with the image’s
midpoint serving as the origin. The boundary of each subset
Al is then represented by polar curves, which are expressed
via a finite Fourier series to allow for computational tractabil-
ity. For example, the boundary of the initial subset A0 is
parameterized as

A0 = {(r, ✓) | 0  r  r0(✓), ✓ 2 [0, 2⇡]} , (8)

with r0 being a smooth, periodic function.
The numerical integration necessary for evaluating the

variances is achieved using Legendre and Fourier quadra-
ture methods, providing a means to compute the integrals
over the domains Al as functions of the Fourier coefficients.
This is exemplified by the equation

´
A0

f(x) dx = 2⇡c00,
where c00 is the zeroth Fourier coefficient of a line integral,
approximated using the FFT.

In setting up the optimization problem to minimize vari-
ance, we initialize the Fourier coefficients with a perturbation
" to represent a ‘noisy’ set of concentric circles. The BFGS
algorithm [9, 13, 15, 28] is then employed to find the optimal
coefficients that minimize the variance term coupled with
a regularization term ⇤ to enforce the nested nature of the
subsets without overlapping. The FCC method allows for a
faster optimization of circular and elliptical cases than the
genetic approach. However, the genetic approach provides a
much more flexible optimization process as opposed to the
Fourier approach, where special care has to be taken not to
ignore higher-order modes.

3.2. Limitations
The most prominent limitation lies in creating prior knowl-
edge of the calibration. There is no universal way to make

Figure 3. Results of the k-means clusters of non-conformity curves.
A U-Net model was calibrated on 20.000 calibration images. Dur-
ing this calibration procedure, we obtained non-conformity curves
for each pixel output of the model for the ‘person’ class. We ob-
tained the non-conformity score for each curve for the 60, 70, 80,
and 90th quantiles. These four-dimensional points were subse-
quently clustered using k-means. The appearance of concentric
shapes is visible in the image. These shapes arise due to the dif-
ferent prevalences of persons appearing in different locations of
the image. Furthermore, persons near the image’s border are likely
more difficult to identify because they might, for example, be found
in the distance more often. The combination of the object (persons
in this case) and the data characteristics determine the precise ge-
ometry of the clusters.

the Kandinsky clusters, as it depends deeply on the charac-
teristics of the data and task; it will require human input.
The concentric circles and ellipses will not work for every
imaginable task. Secondly, the numerical methods we intro-
duced to compute the Kandinsky clusters may not be able to
handle all possible geometric priors. The genetic algorithm
should, in principle, be able to optimize the result, provided
a suitable parametrization of the objective can be found; this
is, however, not always a trivial task.

4. Experiments
This section will investigate the utility of using Kandinsky
clusters in the calibration procedure. We will compare the
marginal, conditional, and Kandinsky methods for various
trained models on the unseen test sets. In particular, we wish
to investigate the coverage errors attained by the different
models and methods, as that will provide us with a robust
metric. As we have described, the Kandinsky methods will
be most helpful in scenarios with little calibration data. To in-
vestigate this, we have set up four experiments with different
data availabilities:
• MS-COCO-XL: the highly idealized setting where we

utilize 20.000 images for calibration.
• MS-COCO-S: same dataset, but we use only 100 calibra-

tion images.
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Figure 4. This figure shows the most ‘extreme’ scenario, where
we have only used 100 images from the MS-COCO dataset during
the calibration. The k-means clusters are shown in the background,
clearly unable to find the same clusters as in Fig. 3. The red rings
show the radii of the annuli found to minimize the objective using
the genetic algorithm approach.

Figure 5. Violin plot of the pixelwise coverage errors for the MS-
COCO-XL experiment. This experiment investigated the idealized
scenario with access to large calibration sets. Here, we have uti-
lized 20.000 images to calibrate the segmentation model. Due to
the size of this calibration set, we can effectively use the pixelwise
calibration, which attains the lowest mean coverage errors. The
Kandinsky methods follow closely, and only the imagewise calibra-
tion performs visibly worse. The reason for this is that imagewise
calibration will ‘average’ over all the pixels, providing for each
individual pixel a skewed estimate of its calibration.

• Decathlon-L: a, for medical standards, large calibration
dataset consisting of 77 patients.

• Decathlon-S: same dataset, but utilizing only 27 patients
for calibration.

Figure 6. Results of all calibration methods using only 100 cal-
ibration images. All Kandinsky methods (the three rightmost)
outperform the pixelwise and imagewise calibrations. The GenAnn
and FCC annuli outperform the K-means approach due to the in-
creased noise in the clusters found by K-means.

The different objectives and calibration dataset sizes al-
low us to investigate the utility of Kandinsky calibration
across varying scales and domains, providing insights into
its effectiveness in more abundant and scarce data scenarios
and its adaptability to diverse image contexts. In Tab. 1, we
summarize the results of all the experiments, showing the
mean coverage errors attained by all methods.

Model For all experiments in this section, we utilize a
U-Net for the segmentation. In particular, we have a U-Net
with four up and downsampling layers, resulting in 53.5M
parameters. Since our goal lies with the calibration of the
models and not finding the maximal possible performance
of the models, there is no need for extensive hyperparameter
searches. In the case of MS-COCO, we utilized 678 data-
points for training and 2869 unseen images to evaluate the
coverage. For Medical Decathlon, the model was trained on
86 patients and evaluated on 118 patients.

4.1. MS-COCO-XL
The goal of this first experiment is to investigate a highly
idealized scenario where there is no shortage of calibration
data whatsoever. In particular, we utilize the publicly avail-
able MS-COCO dataset [21], consisting of images of size
320 ⇥ 240 depicting various classes to be segmented. We
use 20.000 images to calibrate the segmentation model. In
our experiments on this dataset, we choose, without loss
of generality, the person class for our investigations. As is
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the case for many photographed objects, we expect that ‘on
average’ the object of interest will be reasonably centered
in the image. We can utilize this knowledge in creating our
Kandinsky clusters. In particular, for the genetic and FCC
approaches, we will choose them to be concentric sets of
circles or ellipses. More precisely, the first cluster, starting
from a particular center point, will be a disk, and each sub-
sequent cluster an annulus (or elliptic version thereof). It is
also in the formation of such clusters that they have found
their name.

In this extreme high-data calibration regime, the k-means
method provides an elucidating insight into the presence of
these clusters. In Fig. 3, we show the Kandinsky clusters
found by the k-means method (art aficionados will recognize
the motivation for our method’s chosen name in this figure).
The presence of these clusters arises from a combination of
different prevalences of the persons on the pixels and the
difficulty of identifying them. In particular, we expected
and found the center of the image to contain most instances
of the person class, subsequently decreasing in concentric
shapes. If a person is near the boundaries, they are also more
likely to be challenging to determine, as they can be out of
focus, in the distance, etc.

In Fig. 5, we show the violin plot of the pixelwise cov-
erage errors for all described methods. In this experiment,
and this one only, the baseline pixelwise calibration method
slightly outperforms all other methods. This is because, with
such an enormous amount of calibration data, we can prop-
erly calibrate the individual pixel classifiers. The Kandin-
sky methods still perform well in this situation, only the
image-wise calibration is significantly worse. The moral of
this experiment is that provided you have access to tens of
thousands of calibration images, pixelwise calibration will
perform best, followed closely by all Kandinsky methods.

4.2. MS-COCO-S

We now move on to the scenario with little calibration data
to spare. This situation is more common, especially in the
medical field, due to the cost of annotating large amounts of
data. To investigate the low-data scenarios, we now utilize
only 100 calibration data points. As one can imagine, the
k-means approach will have trouble finding relevant clusters
in the images with such few samples. However, our prior
knowledge does not change, and we proceed to find the
annuli using the GenAnn and FCC approaches, described
in Sec. 3. In Fig. 4, we show the k-means and the genetic
algorithm approach results. It can be seen that the k-means
clusters are no longer as clear as in Fig. 3. The results of
all methods are shown in Fig. 6 and Tab. 1. In this low-data
regime, all Kandinsky methods outperform both pixelwise
and imagewise calibration. As expected, the GenAnn and
FCC approaches outperform the k-means approach, as they
can better incorporate prior knowledge; k-means gets slightly

Figure 7. Subtraction image of coverage errors per pixel for im-
agewise vs. GenAnn calibration (left) and imagewise vs. FCC-
calibration (right) on the MS-COCO-S dataset. Red indicates lower
coverage error for the former, and blue indicates lower coverage
error for the latter.

worse due to the noise in the non-conformity curves.
In Fig. 7, we show the difference in coverage error for

the two annuli methods, GenAnn and FCC, versus the errors
obtained by imagewise calibration. The Kandinsky meth-
ods can group the relevant pixels to get better estimates of
non-conformity curves. We refer to the supplementary ma-
terial Sec. 9 for a comparison of pixelwise and Kandinsky
calibration under shrinking calibration dataset sizes.

4.3. Decathlon-L
We now consider a different segmentation task, falling in
the medical domain. In particular, we consider the Medical
Decathlon Challenge data [6]. The object of interest in our
case is the Pancreas data, consisting of CT images along
with segmentations of the pancreas and (possibly) tumors.
All CT scans were sliced, utilizing slices that contained an-
notations. The data split was made on the patient level. The
resulting slices of scans were of size (384, 384). For our
first experiment, we created a large, for medical standards,
calibration dataset consisting of 77 patients. In Fig. 8, we
show the violin plot for all methods. As also found in Tab. 1,
all Kandinsky calibration techniques outperform the pixel-
wise and imagewise calibration. In this case, the k-means
can find the most effective clusters, closely followed by both
annuli methods.

4.4. Decathlon-S
Let us now consider the scenario of little calibration data,
which occurs frequently in real-life medical datasets. In par-
ticular, we utilize only 27 of the patients for the calibration.

Due to the increased noise in the calibration procedure,
we can expect the k-means clusters to be less meaningful,
as they will cluster based on more spurious relations. The
methods using prior knowledge, GenAnn and FCC, will
retain their strength, as their baked-in knowledge is more
robust to the noise in the calibration. The results are shown
in Fig. 9. As before, all Kandinsky methods perform bet-
ter than the pixel and imagewise calibrations. In this case,
the GenAnn approach achieves the lowest coverage errors.
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METHOD MS-COCO-XL MS-COCO-S DECATHLON-L DECATHLON-S
PIXEL 0.055 [0.037, 0.080] 0.131 [0.055, 0.319] 0.217 [0.041, 0.500] 0.249 [0.051, 0.500]
IMAGE 0.090 [0.038, 0.175] 0.091 [0.039, 0.180] 0.177 [0.038, 0.410] 0.175 [0.036, 0.410]

K-MEANS 0.066 [0.043, 0.114] 0.086 [0.039, 0.169] 0.145 [0.038, 0.285] 0.168 [0.040, 0.378]
GEN-ANN 0.067 [0.040, 0.113] 0.068 [0.036, 0.134] 0.150 [0.041, 0.352] 0.152 [0.037, 0.340]
FCC-ANN 0.064 [0.037, 0.112] 0.060 [0.032, 0.111] 0.152 [0.040, 0.410] 0.165 [0.036, 0.410]

Table 1. Mean coverage errors (with [0.05, 0.95] quantiles) over all pixels in the test subset of four datasets, computed for five distinct
calibration methods. The last three methods show our novel methods; all attempt to cluster similar pixels for simultaneous calibration. All
Kandinsky clustering-type methods outperform both pixelwise and imagewise calibration in all datasets except MS-COCO-XL, where the
calibration set is so large that pixelwise calibration is superior.

Figure 8. On the large calibration set of 77 patients, all Kandinsky
methods have lower coverage errors than the baseline methods.
In this case, the k-means clusters can find the most informative
clusters of pixels for calibration, closely followed by the annuli
methods.

Furthermore, in Fig. 11 of the supplementary material, we
show the difference in coverage error between the GenAnn
and imagewise calibration. Especially near the boundaries,
where the pancreas is less often seen, the clusters can find
better calibration.

5. Conclusion
In this article, we have investigated the problem of efficient
calibration for segmentation models. In particular, in prac-
tice, there is often little ‘extra’ data available to calibrate
models. We have presented progress for solving this prob-
lem by presenting the Kandinsky calibration framework.
The framework utilizes the well-organized patterns between
pixels-classifiers in segmentation networks. We have pro-
posed three methods for computing these clusters in fairly

Figure 9. Results for the small decathlon calibration set, using 27
patients. In this case, the GenAnn clusters can most effectively
group relevant pixels, closely followed by the k-means and FCC
methods. Especially the pixelwise calibration performs poorly in
this low-data regime.

general settings. In all investigated low-data calibration set-
tings, the Kandinsky methods can produce better-calibrated
methods, leading to lower coverage errors on unseen data.
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