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Abstract

In this paper we tackle the problem of learning Structure-
from-Motion (SfM) through the use of graph attention net-
works. SfM is a classic computer vision problem that is
solved though iterative minimization of reprojection errors,
referred to as Bundle Adjustment (BA), starting from a good
initialization. In order to obtain a good enough initial-
ization to BA, conventional methods rely on a sequence
of sub-problems (such as pairwise pose estimation, pose
averaging or triangulation) which provide an initial solu-
tion that can then be refined using BA. In this work we re-
place these sub-problems by learning a model that takes
as input the 2D keypoints detected across multiple views,
and outputs the corresponding camera poses and 3D key-
point coordinates. Our model takes advantage of graph
neural networks to learn SfM-specific primitives, and we
show that it can be used for fast inference of the recon-
struction for new and unseen sequences. The experimen-
tal results show that the proposed model outperforms com-
peting learning-based methods, and challenges COLMAP
while having lower runtime. Our code is available at:
https://github.com/lucasbrynte/gasfm/.

1. Introduction
Structure-from-Motion (SfM) is a classic and still relevant
problem in computer vision. The goal of SfM is to es-
timate camera poses and 3D coordinates of keypoints de-
tected across multiple images, and can be formulated as an
optimization over m camera matrices {Pi}, i = 1, . . . ,m
and n 3D points {Xj} , j = 1, . . . , n of the form

minimize
{Pi},{Xj}

∑
ij

r (mij , zij)

subject to zij = PiX̄j , ∀i, j
(1)

where mij holds the 2D coordinates of the jth keypoint in
the ith image. The loss in (1) is generally chosen as the
reprojection error

r (mij , zij) = ||mij −Π(zij) ||2 (2)

where Π(x) =
(

x1

x3
, x2

x3

)
, and the nonlinear least squares

problem (1), referred to as Bundle Adjustment (BA) [15],
can be solved iteratively using second-order methods like
Levenberg-Marquardt [15, 41]. Given the sparsity of the
problem, sparse computation methods [27] can be used in
order to increase the efficiency of the optimization, allow-
ing BA to be used even for scenes with a large number of
views or points. However, it is widely known that BA is
highly non-convex and tends to converge to the nearest local
minimum when not initialized close to the globally optimal
solution. As a consequence, BA is typically the last step of
a reconstruction pipeline, preceeding global SfM methods
such as [9, 10, 20, 25], or incremental SfM methods such
as [2, 37, 38] that solve a sequence of subproblems like pair-
wise pose estimation, pose averaging, triangulation or cam-
era resection [13, 15, 22, 32]. A different approach consists
of projective factorization methods [8, 17, 18, 28, 39, 48]
which factorize the 2m × n measurement matrix into two
rank four matrices corresponding to the camera matrices
and 3D points (in homogeneous coordinates). In particular,
works like [17, 18, 48] allow initialization-free SfM given
their wide basin of convergence, meaning that their meth-
ods can be initialized with random camera poses and still
converge with a high rate of success to the desired global
minimum. Even though these methods have been improv-
ing in terms of accuracy and robustness to missing data,
factorization-based methods require the input data to be al-
most completely free of outliers which unfortunately cannot
be guaranteed in most real world sequences or datasets, and
hence severely compromises the usability of these methods.

A common challenge with all these approaches to solve
SfM is their scalability as the number of views and key-
points increase. Incremental SfM tries to tackle this is-
sue by starting with a subset of the views, estimate its re-
construction and incrementally adding more views. Some
factorization-based methods can also take advantage of the
same sparse computation methods used in BA, which sig-
nificantly improves their ability to scale with sequence size.
While this allows to reconstruct scenes with thousands of
views and millions of points, it can still take hours to re-
cover the reconstruction of a single scene.
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More recently, deep learning methods for 3D reconstruc-
tion and SfM have been proposed [7, 29, 31, 35, 44–47].
Given their increased complexity, these models are able
to learn complex relations between the input data, outper-
forming conventional methods and achieving state-of-the-
art results in 3D reconstruction and novel view synthesis
when the camera pose and calibration are known [7, 29, 46].
Works such as [31, 46, 47] tackle SfM with deep learning
models which different degrees of success.

In DeepSfM [46] the authors propose an end-to-end ap-
proach to estimate camera pose and a dense depth map of a
target view from multiple source views. Their method es-
timates a feature map for each of the source views, which
are then combined with the feature map of the target view
in order to estimate pose and depth cost volumes. These
cost volumes are then fed to two heads that estimate the
camera pose and depth map of the target view. In PoseDif-
fusion [44], a probabilistic diffusion framework is proposed
to mirror the iterations of bundle adjustment, allowing it to
incorporate geometric priors into the problem. The model
is trained on object-centric scenes and it is shown that it can
generalize to unseen scenes without further training.

In [31], which is the closest work to ours, the authors
have pursued an approach similar to projective factoriza-
tion, taking as input the 2D keypoints tracked along multi-
ple views. These 2D point tracks are processed by a num-
ber of linear permutation-equivariant layers, i.e. layers such
that a permutation on the rows and/or columns of the input
tensor results in the same permutation on the output. The
output of these layers is then fed to camera pose and 3D
points coordinate regression heads. The model is learned
using reprojection errors as loss combined with a hinge
loss term to push points in front of the cameras. By using
Adam [26] as optimizer along with gradient normalization,
the authors show that their method has improved conver-
gence properties compared to random initializations.

A major benefit of learning-based methods is their po-
tential in generalizing to new data after being trained. This
can be particularly beneficial to SfM problems since occlu-
sions and missing measurements are common issues that
make some scenes particularly challenging to reconstruct.
In these cases, the learned model can act as a prior and help
constrain the solution based on the data seen during train-
ing. However, most of the learning-based methods men-
tioned for 3D reconstruction or SfM require scene-specific
optimization or training, which turns out to be particularly
slow for large sequences. PoseDiffusion [44] achieves some
degree of generalization to unseen scenes, but it is con-
ditional on the categories and object-centric datasets seen
during training. In [31] the authors actually show that their
model can be trained on a large collection of scenes and then
used for inference on unobserved scenes. However, without
fine-tuning on these new scenes (which is time-consuming)

the model’s accuracy is significantly reduced.
In this paper we propose a graph attention network

for initialization-free Structure-from-Motion that can be
trained on multiple scenes and used for fast inference on
new, unseen scenes. Similarly to [31], our network takes as
input sparse measured image points, matched across multi-
ple viewpoints, which are processed through a sequence of
permutation-equivariant graph cross attention layers. The
output of the graph cross attention layers is then processed
by two regression heads, one for the 3D points and another
for the camera poses. By using graph attention layers in-
stead of linear equivariant maps as in [31], our model is
able to better learn the implicit geometric primitives of SfM
in the input data, leading to more expressiveness and better
generalization to unseen sequences. Additionally, by not re-
quiring time-consuming fine-tuning on unseen scenes, our
model is able to provide fast inference, which can then be
refined directly with BA with good convergence.

The contributions of the paper can be summarized as:
• We propose graph attention networks for initialization-

free Structure-from-Motion that estimates camera param-
eters and 3D coordinates of 2D keypoints tracked across
multiple views;

• The method takes advantage of the graph cross-attention
layers, which are equivariant to permutation on the input
data regarding order of views and points. We show that
these layers can model more complex relations between
input data and when combined with data augmentation
result in significantly improved performance when com-
pared to baseline methods;

• We evaluate the proposed learned method on unobserved
scenes and show that it outperforms competing state-of-
the art learning methods at inference in terms of accuracy
without the need of scene-specific model fine-tuning;

• We show that our method achieves competitive re-
sults when compared to state-of-the-art conventional
Structure-from-Motion pipelines while having a signifi-
cantly lower runtime.

2. Graph Attention Network Preliminaries
Before introducing our proposed method, we will here
briefly outline the graph attention networks that will be uti-
lized – the GATv2 model [4] based on [43].

The GATv2 model is a type of graph neural network
(GNN) that carries out aggregation from neighboring nodes
with a dynamic attention-based weighted average. The in-
put to a GATv2 layer is a set of current node features
{hi ∈ Rd | i ∈ V} along with a set of directed edges E
defining the graph connectivity. The layer outputs a new set
of node features {h′

i ∈ Rd′ | i ∈ V}, by applying a single
shared learned function on every node hi together with its
neighborhood Ni = {j ∈ V | (j, i) ∈ E}.

First, a scoring function e : Rd ×Rd →R is applied on
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all edges, by feeding the respective source and target node
features as input to a shared 2-layer Multi-Layer Perceptron
(MLP):

e (hi,hj) = a⊤ · LeakyReLU (W [hi∥hj ]) , (3)

where a ∈ Rd′
and W ∈ Rd′×2d are learned parameters,

and ∥ denotes vector concatenation. The attention scores
are then normalized across all neighbors:

αij = softmaxj (e (hi,hj)) =
exp (e (hi,hj))∑

j′∈Ni
exp (e (hi,hj′))

,

(4)
and the layer is completed by carrying out a weighted aver-
age of linear projections of all source node features:

h′
i =

∑
j∈Ni

αij ·Whj . (5)

3. Method
We apply a graph attention network model to perform
Structure-from-Motion on a desired scene based on its mea-
sured image point correspondences. The model then out-
puts a reconstruction, represented by all m camera matrices
and all n scene points. Structure-from-Motion is in gen-
eral a large and complex optimization problem, and it is not
trivially addressed as a learning problem. Our architecture
combines the power and expressivity of the attention mech-
anism, and exploits its inherent permutation equivariance in
a meaningful way, while balancing expressivity with effi-
ciency, resulting in a very limited computational and mem-
ory footprint considering the task at hand.

The input data for a particular scene consists of a sparse
set of measured image point correspondences (point tracks).
To represent this data, we define a binary observability ma-
trix O ∈ {0, 1}m×n, where m is the number of views and
n is the number of scene points, and where Oij = 1 if and
only if scene point j is observed in image i. Furthermore,
let P = {mij ∈ R2 | Oij = 1} be the collection of ob-
served image point tracks, where mij is the (normalized)
measured image point for the projection of scene point j in
camera i.

3.1. Graph Attention Network Architecture

In this section, we will outline our graph attention network
architecture, starting by introducing our feature representa-
tion. Then we proceed to define update operations for dif-
ferent feature types, and finally define the entire network
architecture based on these operations.

Feature representation. Throughout the network archi-
tecture, we maintain and continuously update a set of fea-
tures of various types1:

1For simplicity, we use a slight abuse of set notation here. If there are
feature vector duplicates, they are still considered as separate elements.

V

g S

P

Figure 1. Illustration of the different types of features in the net-
work architecture, for m = 3 cameras and n = 6 scene points.
The projection features P are represented by a sparse vector-
valued matrix, with its sparsity pattern determined by the point
track measurements, while view features V and scene point fea-
tures S are represented by dense vector-values column and row
vectors. A single vector g holds global features.

• Projection features, P = {pij ∈ Rdp | Oij = 1}.
• View features, V = {vi ∈ Rdv | i = 1, 2, . . . ,m}.
• Scene point features, S = {sj ∈ Rds | j = 1, 2, . . . , n}.
• Global features, g ∈ Rdg .
The projection features pij are feature vectors specific to
every observed image point. In practice, these are bun-
dled together and organized in a sparse vector-valued ma-
trix, as illustrated by the large top-right matrix in Figure 1.
The sparsity pattern of P will be fixed throughout the net-
work and is determined by O, which however depends on
the scene. The view features V and scene point features S,
on their part, are organized in dense vector-valued column
and row vectors, respectively, also illustrated in Figure 1.
Finally, the global features g, consist of a single globally
shared feature vector, and is illustrated in the bottom-left
corner of Figure 1.

In order to define graph operations, we see every feature
vector as being associated with a corresponding graph node.
At this point, note that a simple approach would be to con-
nect all nodes P , V , S, and {g} in one unified graph, and di-
rectly apply a graph neural network with global weight shar-
ing. Instead, since the nodes are semantically different, we
consider these semantics when choosing the level of weight
sharing, and even vary the feature dimension depending on
the type of node. In practice, we construct different graphs
for propagation between different types of nodes.

Having defined the different feature types, we proceed to
define corresponding update operations, which are repeat-
edly carried out throughout the network. In all pseudo-code,
ReLU denotes to the rectified linear unit and LN denotes
layer normalization [3]. Linear denotes a learned affine
layer and FFN denotes a number of stacked Linear layers
interleaved with ReLU activations. Subscripts may occur to
emphasize feature dimensions. Note that all of these opera-
tions may be applied on multiple nodes at once, with shared
parameters. The + notation implies node-wise addition.
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Graph Cross-Attention. Procedure 1 is utilized for all
feature aggregations throughout the network. It carries out
cross-attention [42], attending to and propagating informa-
tion from one set of input / source nodes H1 to another set of
output / target nodes Ĥ2. The previous target node features
H2, if provided, will act as query features when computing
attention scores. In the first few layers these may not be
available, and initial zero-features are used instead.

In our context, the source nodes and target nodes cor-
respond to different feature types, possibly with different
feature dimension. As the source and target nodes are dis-
joint, we may represent the connectivity by a directed bipar-
tite graph. Furthermore, in our context this graph will often
consist of a number of disconnected subgraphs. Procedure1
essentially acts as a wrapper around a GATv2 layer [4] (for
which we use the PyTorch Geometric [11] implementation),
while carrying out input normalization, and feature projec-
tions as necessary. We consistently use 4 attention heads for
the GATv2 layers.

Procedure 1 GRAPHCROSSATTENTION
Input: H1 Source node features.
Input: H2 Previous target node features (optional).
Input: EH1→H2

Set of edges fromH1 →H2 .
Input: d1 Source node feature dimension.
Input: d2 Target node feature dimension.
Output: Ĥ2 Updated target node features.
1: Ĥ1 ← ReLU(LN(H1))
2: ifH2 provided then
3: Ĥ2 ← ReLU(LN(H2))
4: if d1 ̸= d2 then
5: Ĥ2 ← Lineard2→d1 (Ĥ2)

6: else
7: Ĥ2 ← zero features

#»
0 ∈ Rd1

8: Ĥ2 ← GATv2Conv(Ĥ1, Ĥ2, EH1→H2
)

9: if d1 ̸= d2 then
10: Ĥ2 ← Lineard1→d2 (Ĥ2)

View & Scene Point Feature Update. View features and
scene point features are updated by Procedure 2 and 3, re-
spectively, entirely symmetrical to one another. A directed
bipartite graph is constructed by taking P as source nodes,
and V (or S) as target nodes, and connecting every projec-
tion node with its corresponding view (or scene point) node,
corresponding to rows (or columns) of P . Graph cross-
attention according to Procedure 1 is then carried out on
the graph, and used as a residual mapping. This is followed
by another residual mapping with a feed-forward network.
Illustrations of these update operations are provided in Fig-
ures 2 and 3.

Global Feature Update. The global feature update, out-
lined in Procedure 4 is carried out in almost the same man-
ner, but now aggregating from all view features V and scene

V

g S

P

Figure 2. Illustration of the update of a single view feature. All V
features are updated based on their previous value and the corre-
sponding rows of P .

V

g S

P

Figure 3. Illustration of the update of a single scene point feature.
All S features are updated based on their previous value and the
corresponding columns of P .

Procedure 2 UPDATEVIEWFEAT
Input: P,O Projection features + observability matrix.
Input: V Previous view features (optional).
Input: dp, dv Feature dimensions.
Output: V̂ Updated view features.
1: EP→V ← {(Pij ,Vi) | Oij = 1, i = 1, 2, . . . ,m}
2: if V provided then
3: V̂ ← V + GRAPHCROSSATTENTION(P,V, EP→V , dp, dv)
4: else
5: V̂ ← GRAPHCROSSATTENTION(P, EP→V , dp, dv)

6: V̂ ← V̂ + FFN(ReLU(LN(V̂)))

Procedure 3 UPDATESCENEPOINTFEAT
Input: P,O Projection features + observability matrix.
Input: S Previous scene point features (optional).
Input: dp, ds Feature dimensions.
Output: Ŝ Updated scene point features.
1: EP→S ← {(Pij ,Si) | Oij = 1, i = 1, 2, . . . ,m}
2: if S provided then
3: Ŝ ← S + GRAPHCROSSATTENTION(P,S, EP→S , dp, ds)
4: else
5: Ŝ ← GRAPHCROSSATTENTION(P, EP→S , dp, ds)

6: Ŝ ← Ŝ + FFN(ReLU(LN(Ŝ)))

point features S instead of P . This is carried out with two
independent aggregations, with different learned parame-
ters, and the sum of both aggregations constitute the resid-
ual mapping. Figure 4 provides an illustration for the update
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V

g S

P

Figure 4. Illustration of the global feature update, where g is up-
dated based on its previous value, together with an aggregation of
all V and S features.

operation.

Procedure 4 UPDATEGLOBALFEAT
Input: V View features.
Input: S Scene point features.
Input: g Previous global features (optional).
Input: dv , ds, dg Feature dimensions.
Output: ĝ Updated global features.
1: EV→g ← {(Vi,g) | i = 1, 2, . . . ,m}
2: ES→g ← {(Sj ,g) | j = 1, 2, . . . , n}
3: if g provided then
4: ĝv ← GRAPHCROSSATTENTION(V, {g}, EV→g, dv , dg)
5: ĝs ← GRAPHCROSSATTENTION(S, {g}, ES→g, ds, dg)
6: ĝ← g + ĝv + ĝs

7: else
8: ĝv ← GRAPHCROSSATTENTION(V,−, EV→g, dv , dg)
9: ĝs ← +GRAPHCROSSATTENTION(S,−, ES→g, ds, dg)

10: ĝ← ĝv + ĝs

11: ĝ← ĝ + FFN(ReLU(LN(ĝ)))

Projection Feature Update. The projection features are
updated according to Procedure 5. No aggregation is in-
volved during this step. Instead, at every projection node the
corresponding V , S and g features are all collected along
with the current projection features P , as illustrated in Fig-
ure 5. Each of these sources then undergoes a ReLU activa-
tion and normalization with LN, before being concatenated.
Note that the initial projection features P0 are typically also
added to the input, and in this case they are simply concate-
nated to the previous projection features before the proce-
dure is called. Finally, a residual mapping is applied, by
feeding the concatenated features to a shared feed-forward
network.

Entire Network Architecture. Now we have all the
pieces to define the complete network architecture, which is
outlined in Procedure 6. The structure is straightforward: 1)
UPDATEVIEWFEAT and UPDATESCENEPOINTFEAT (Pro-
cedures 2 and 3) are called to aggregate projection features.
2) UPDATEGLOBALFEAT (Procedure 4) is called to aggre-

V

g S

P

P0

Figure 5. Illustration of the update of a single projection feature.
All P features are updated based on their previous value, as well
as initial projection features P0, the global feature g, and the cor-
responding V and S features.

Procedure 5 UPDATEPROJFEAT
Input: P Previous projection features.
Input: V View features.
Input: S Scene point features.
Input: g Global features.
Input: dinp , dv , ds, dg , doutp Feature dimensions.
Output: P̂ Updated projection features.
1: P̂ ← ReLU(LN(V)) ∥ ReLU(LN(S))

∥ ReLU(LN(g)) ∥ ReLU(LN(P)) // View, scene

point, and global features are implicitly distributed

to their corresponding projection features before

feature concatenation.

2: P̂ ← P + FFN(dv+ds+dg+dinp )→dout
p

(P̂)

gate the resulting features further, to a single global fea-
ture vector. 3) UPDATEPROJFEAT (Procedure 5) is called in
order to again distribute the aggregated information across
the projection features. These steps are repeated L times,
where we refer to L as the number of layers. Then, a fi-
nal call to UPDATEVIEWFEAT and UPDATESCENEPOINT-
FEAT is carried out, and the resulting view and scene point
features are further processed by two corresponding regres-
sion heads, consisting of shared 3-layer feed-forward net-
works (FFN) with hidden neurons of the same dimension
as the input (dv or ds). The scene point head simply out-
puts the 3 coordinates of every estimated scene point. For
Euclidean reconstruction, the view head outputs the 3 coor-
dinates of the location of the camera center, together with a
unit-norm quaternion representing its orientation. For pro-
jective reconstruction, all 12 camera matrix elements are re-
gressed, followed by a normalization in the same manner
as [31]. Except for the regression heads, we use 1-layer
FFNs throughout the network, which in general seemed
slightly easier to train.

3.2. Loss Function

The network is trained using the Adam optimizer, and as
loss function we use the (non-squared) reprojection error,
averaged over all observed image points. To handle negative
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Procedure 6 GRAPHATTENTIONSFM
Input: M Image point tracks, normalized.
Input: O Observability matrix.
Input: dp, dv , ds, dg Feature dimensions.
Input: L Number of layers.
Output: V Estimated camera parameters.
Output: S Estimated scene points.
1: P0 ← Linear2→2(M) // Initial projection features:

linear embedding of image points.

2: V ← UPDATEVIEWFEAT(P0,O,−, 2, dv)
3: S ← UPDATESCENEPOINTFEAT(P0,O,−, 2, ds)
4: g← UPDATEGLOBALFEAT(V,S,−, dv , ds, dg)
5: for l = 1, 2, . . . , L do
6: if l = 1 then
7: P ← UPDATEPROJFEAT(P0,V,S,g, 2, dv , ds, dg , dp)
8: else
9: P ← UPDATEPROJFEAT(P∥P0,V,S,g,

10: dp + 2, dv , ds, dg , dp)

11: V ← UPDATEVIEWFEAT(P,O,V, dp, dv)
12: S ← UPDATESCENEPOINTFEAT(P,O,S, dp, ds)
13: if l < L then
14: g← UPDATEGLOBALFEAT(V,S,g, dv , ds, dg)
15: {Pi} ← FFN(ReLU(V)) // Camera regression head

16: {Xj} ← FFN(ReLU(S)) // Scene point regression head

depths and overcome the singularity at the principal plane,
we substitute the reprojection error with minus the depth in
the loss function for any projection with depth smaller than
a threshold h = 1e− 4. We also apply gradient normaliza-
tion in the same manner as [31].

3.3. Data Augmentation

For Euclidean reconstruction, where the image points are
normalized using the intrinsic camera parameters, and
therefore geometrically interpretable, we experiment with
augmenting the training scenes with slightly transformed
variations. While the scene points remain fixed, each cam-
era is randomly rotated about its center, first by a uniformly
sampled angle α ∈ [−15, 15] about the principal axis, fol-
lowed by a uniformly sampled angle γ ∈ [−20, 20] about
an axis orthogonal to the principal axis with a random di-
rection. The image points are transformed accordingly.

3.4. Artificial Outlier Injection

We also consider the presence of measurement outliers, by
artificially corrupting the data. This is done by: 1) Selecting
a subset of the 2D keypoint measurements to be replaced
by artificial outliers. 2) For each view, replace all measure-
ments marked to be outliers with random samples from a bi-
variate normal distribution, which is fit to all remaining (in-
lier) points. For step 1), we carefully select points for outlier
injection such that we avoid getting any scene points visible
in < 2 views or any views with < 8 scene points visible, if
regarding only the inlier projections. In the supplementary
material, the details are given on how this is achieved. Note
that while the network input is corrupted by outlier injec-

tion, the uncorrupted data is still used as learning targets for
the loss function.

4. Results
4.1. Experimental Setup

We take a particular interest in Euclidean reconstruction,
due to the relevance of metric reconstructions for pho-
togrammetry applications. Furthermore, we focus mainly
on the task of learning and generalizing from a set of train-
ing scenes, due to the great potential in having a fast learned
model acquire reconstructions of completely novel scenes.
We use the DPESFM method of Moran et al. [31] as a base-
line, as they have presented experiments on precisely this.
To this end, we also use Olsson’s dataset [33] (together with
the VGG dataset [12] for additional projective reconstruc-
tion experiments in the supplement), and we use the same
random partition of 10 test scenes and 3 validation scenes.

We base our implementation on that of [31], imple-
mented in PyTorch [34], but replace the network architec-
ture with our proposed GRAPHATTENTIONSFM network,
implemented using GATv2Conv layers [4] from PyTorch
Geometric [11]. The implementation details are in general
consistent with [31], for more details see the supplement.
The DPESFM results reproduced by us are obtained by run-
ning the method of [31] with our code base, with the hyper-
parameters published on the official GitHub repository of
the method [30]. For our model, we use L = 12 layers and
feature dimensions dp = 32, dv = 1024, ds = 64, dg =
2048, which corresponds to 145M parameters. By using
small dimensions for the projection features and scene point
features the otherwise high memory consumption is signif-
icantly reduced. Hyper-parameters have been chosen based
on the performance on the validation data, but without any
rigorous hyper-parameter tuning.

4.2. Euclidean Reconstruction of Novel Scenes

In Table 1, we report the Euclidean reconstruction results of
our method, when applied on novel test scenes, and mea-
sure the performance by reprojection errors, as well as ro-
tation and translation errors for the estimated camera poses.
For calculating the latter, the predicted and ground truth
poses are first aligned to a common reference frame, as
described in Section C in the supplement. The results of
DPESFM as reported in [31] can be seen in parentheses,
when available, but we also retrain their model and incor-
porate further results of the model, not reported in [31], in
particular results without bundle adjustment, and additional
metrics to reprojection errors. Experiments are carried out
both with and without data augmentation with random ro-
tational cameras perturbations, as described in Section 3.3,
and the columns are partitioned accordingly. Consistently
with [31], Inference refers to the network output followed
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Without data augmentation With data augmentation
Inference Inference + BA Inference Inference + BA

Ours DPESFM Ours DPESFM Ours DPESFM Ours DPESFM Colmap

R
ep

ro
je

ct
io

n
er

ro
r(

px
)

Alcatraz Courtyard 68.41 68.50 1.70 0.81 (0.82) 36.01 92.37 0.81 0.92 0.81
Alcatraz Water Tower 36.30 50.47 1.05 1.13 (0.55) 87.67 2831.94 0.88 10.16 0.55
Drinking Fountain Somewhere in Zurich 36.02 45.87 0.55 0.31 (7.21) 219.75 234.90 0.31 6.73 0.31
Nijo Castle Gate 65.71 64.53 0.73 0.73 (5.81) 61.41 68.19 0.88 0.89 0.73
Porta San Donato Bologna 74.32 94.26 0.74 0.74 (1.10) 52.15 84.46 0.76 0.75 0.75
Round Church Cambridge 61.18 55.51 0.39 0.39 (0.50) 29.80 59.54 0.39 1.49 0.39
Smolny Cathedral St Petersburg 156.16 120.85 0.81 0.81 (15.15) 85.38 87.81 0.81 0.81 0.81
Some Cathedral in Barcelona 150.01 146.10 10.42 12.71 (21.46) 125.68 687.83 0.89 16.77 0.89
Sri Veeramakaliamman Singapore 121.02 157.39 2.19 16.87 (16.92) 83.50 166.68 2.13 9.30 0.71
Yueh Hai Ching Temple Singapore 37.46 52.59 0.65 0.65 (1.16) 25.60 51.35 0.65 0.73 0.65
Average 80.66 85.61 1.92 3.52 (7.07) 80.69 436.51 0.85 4.86 0.66

R
ot

at
io

n
er

ro
r(

de
g)

Alcatraz Courtyard 10.102 13.201 2.607 0.035 6.093 10.946 0.038 0.030 0.043
Alcatraz Water Tower 10.637 11.053 0.499 0.764 11.501 10.641 0.699 19.351 0.228
Drinking Fountain Somewhere in Zurich 15.846 16.014 0.003 0.001 15.415 15.704 0.001 22.759 0.007
Nijo Castle Gate 16.751 10.546 0.062 0.062 17.347 20.032 0.038 0.036 0.064
Porta San Donato Bologna 23.839 24.120 0.095 0.094 18.411 25.004 0.094 0.094 0.099
Round Church Cambridge 18.906 14.473 0.029 0.026 10.295 18.685 0.029 1.086 0.035
Smolny Cathedral St Petersburg 19.387 17.971 0.023 0.022 11.662 14.380 0.023 0.019 0.029
Some Cathedral in Barcelona 27.270 30.471 10.009 20.050 27.908 29.119 0.020 47.892 0.025
Sri Veeramakaliamman Singapore 28.275 36.903 0.549 4.871 23.702 36.176 0.457 2.759 0.169
Yueh Hai Ching Temple Singapore 15.733 22.706 0.038 0.038 9.515 21.561 0.038 0.038 0.043
Average 18.675 19.746 1.391 2.596 15.185 20.225 0.144 9.406 0.074

Tr
an

sl
at

io
n

er
ro

r(
m

)

Alcatraz Courtyard 4.82 4.93 1.09 0.01 2.73 5.74 0.01 0.01 0.01
Alcatraz Water Tower 8.66 7.35 0.31 0.44 7.53 7.77 0.41 9.05 0.12
Drinking Fountain Somewhere in Zurich 4.44 4.44 0.00 0.00 4.45 4.46 0.00 1.38 0.00
Nijo Castle Gate 5.07 3.08 0.01 0.01 5.67 6.95 0.01 0.01 0.01
Porta San Donato Bologna 9.50 10.72 0.05 0.05 4.80 10.48 0.05 0.05 0.05
Round Church Cambridge 8.94 7.19 0.01 0.01 5.28 9.00 0.01 0.56 0.01
Smolny Cathedral St Petersburg 2.70 2.43 0.01 0.01 2.33 2.52 0.01 0.01 0.01
Some Cathedral in Barcelona 12.64 12.69 3.22 6.38 12.32 12.66 0.01 11.93 0.01
Sri Veeramakaliamman Singapore 4.94 4.90 0.16 1.32 4.93 4.90 0.14 0.77 0.04
Yueh Hai Ching Temple Singapore 4.12 4.27 0.01 0.01 2.44 4.28 0.01 0.01 0.01
Average 6.58 6.20 0.49 0.82 5.25 6.88 0.07 2.38 0.03

Table 1. Results of Euclidean reconstruction of novel test scenes, with and without data augmentation. The results of DPESFM [31] have
been acquired by us training the model, along with the results reported by [31] in parentheses, if available. The result of Colmap, as
reported by [31], is also added for reference.

Scene Infer. BA Colmap
Alcatraz Courtyard 0.24 45.54 286
Alcatraz Water Tower 0.13 31.11 130
Drinking Fountain Somewhere In Zurich 0.06 1.98 16
Nijo Castle Gate 0.09 3.97 21
Porta San Donato Bologna 0.18 27.02 170
Round Church Cambridge 0.43 56.47 229
Smolny Cathedral St Petersburg 0.49 86.09 516
Some Cathedral In Barcelona 0.24 47.05 451
Sri Veeramakaliamman Singapore 0.63 115.80 583
Yueh Hai Ching Temple Singapore 0.08 8.54 106

Table 2. Runtime (s) of our method for Euclidean reconstruction
on test scenes, in comparison with Colmap (measured by [31]).

by a computationally cheap triangulation and Inference +
BA refers to the network output followed by bundle adjust-
ment, which is carried out in the same manner as [31], using
the Ceres solver [1]. Moran et al. [31] also performed ex-
periments with fine-tuning the network parameters on the
test scenes. In contrast, we advocate against this, since this
approach is relatively costly, and one might as well acquire

high-quality reconstructions from traditional SfM pipelines
such as Colmap, in similar execution time. Nevertheless,
the supplementary material includes such experiments, for
completeness.

Without data augmentation, there is no clear difference
between the Inference results of both methods. Neither re-
construction is good, and it is not so meaningful to com-
pare minor differences in the metrics under these circum-
stances. In particular, calculating rotation and translation
errors requires aligning the predicted and ground truth cam-
era poses in a common reference frame, as described in
Section C in the supplement, and when the predicted con-
figuration of camera poses is not very consistent with the
ground truth, determining this alignment itself can be sen-
sitive. In all other scenarios, we outperform DPESFM, and
when using both data augmentation and applying bundle ad-
justment, the solutions we acquire for the novel test scenes
are in general very good. In terms of reprojection error and
translation error, we match the performance of Colmap for
almost every test scene, leading to an average reprojection

4814



error of 0.85 (vs 0.66) px, and an average translation error
of 0.07 (vs 0.03) m. In terms of rotation error, the error is
actually lower than Colmap’s for 8 out of 10 scenes, but the
average error is slightly larger: 0.144 (vs 0.074) degrees.

4.3. Artificial Outlier Injection

In Table 3 we present additional results where, on top of
data augmentation (see Section 3.3), we also apply artificial
outlier injection during training according to Section 3.4.

We evaluate inference of the model in two settings:
1) Applied on the uncorrupted outlier-free test scenes as-
is. 2) Applied to the test scenes followed by random injec-
tion of 10%, in the same manner as during training2. One
can immediately observe significantly reduced reprojection
errors for our model, suggesting that the outlier injection
during training has a regularizing effect. Beyond that, this
experiment is intended to serve as a teaser for the utility and
promise of learning-based methods for SfM. Constant chal-
lenges such as the presence of outliers may not be as big
of a challenge for learning-based as for conventional meth-
ods, and the phenomenon may even be exploited to develop
effective training strategies. In fact, for any real-world sce-
nario, it is crucial for learning-based methods applied on
image point correspondences to be resilient to outliers, as
we do not have the luxary of facing high-quality curated
data such as Olsson’s [33] in the wild. Note that it should
be possible to apply bundle adjustment on the corrupted test
data as well, when combined with a robust loss function.

Similarly as for the data augmentation, we note that
DPESFM appears to struggle with the presence of outliers
during training, and its performance on the test scenes at
inference is not very good. It is very probable that the non-
linear attention layers make our model more powerful and
expressive than DPESFM.

4.4. Additional Results

In the supplementary material we provide additional results
on projective reconstruction, as well as single-scene opti-
mization, for completeness. We also include statistics of
the number of views and scene points for each scene.

5. Conclusion
With this paper we have added to the research direction of
learned initialization-free Structure-from-Motion by intro-
ducing a novel and expressive graph attention network out-
performing previous learning-based methods for Euclidean
reconstruction of novel scenes. When succeeded by bundle
adjustment, we are able to reconstruct novel test scenes to
perfection or of very decent precision, at a speedup of about
5−10× compared to Colmap. Moreover, we illustrate great

2Yet, during evaluation, we use all true measurements as ground truth
targets when calculating reprojection errors, even in the corrupted case.

Uncorrupted Outlier-injected
Ours DPESFM Ours DPESFM

Alcatraz Courtyard 47.74 85.81 52.99 94.24
Alcatraz Water Tower 35.96 72.84 37.89 83.55
Drinking Fountain
Somewhere in Zurich 52.08 1012.14 46.65 1453.31

Nijo Castle Gate 46.48 72.99 62.52 126.18
Porta San Donato
Bologna 53.12 88.02 65.08 94.72

Round Church
Cambridge 36.09 63.72 48.63 90.63

Smolny Cathedral St
Petersburg 47.28 91.03 59.52 98.05

Some Cathedral in
Barcelona 109.86 397.75 123.75 462.28

Sri Veeramakali-
amman Singapore 63.60 169.63 70.90 146.98

Yueh Hai Ching
Temple Singapore 26.83 51.41 36.69 57.59

Average 51.91 210.53 60.46 270.75

Table 3. Reprojection errors of Euclidean reconstruction of novel
test scenes, with model trained with data augmentation as well as
artificial outlier injection. The results of DPESFM [31] have been
acquired by us training the model.

potential in coping with the presence of outliers, and even
show artificial outlier injection to provide an effective regu-
larizing training strategy, combined with data augmentation
by random rotational camera perturbations.

For future work, it could definitely be promising to train
on larger datasets, since model generalization is still a chal-
lenge. While the proposed model does not require fine-
tuning, and thus is much faster to execute than previous
work, it still relies on bundle adjustment to acquire a good
reconstruction, which constitutes the computational bottle-
neck. Exploring alternative formulations where the network
regresses relative camera poses is also an interesting direc-
tion, as the current absolute pose prediction may be a weak-
ness due to the reconstruction ambiguity up to a similarity
transformation. Other possible research directions include
unrolling the architecture to multiple learned iterations /
refinement steps, extensions to non-rigid Structure-from-
Motion, and incorporating modern learned image matching
pipelines such as [5, 6, 40] in an end-to-end fashion.
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